GAUTENG DEPARTMENT OF EDUCATION

SENIOR CERTIFICATE EXAMINATION

TECHNIKA (ELECTRICAL) SG

OCTOBER / NOVEMBER 2005 OKTOBER / NOVEMBER 2005

TIME: 3 hours

MARKS: 200

REQUIREMENTS:

• An approved calculator and drawing instruments

INSTRUCTIONS:

- Answer ALL the questions.
- Sketches and diagrams must be clear and neat.
- Formulae and calculations must be clear.
- Formulae and calculations must be shown where applicable.
- A list of formulae, which may be used when applicable, is given on the last page of this examination paper.

QUESTION 1 ELECTRICAL CURRENT THEORY

1.1 A resistor of 47 O, an inductor of 10 mH and a capacitor of 100 μ F is connected in series with a supply of 50 V/50 Hz.

Calculate

1.1.1	the total current of the circuit.	(8)
1.1.2	the phase angle between the current and the voltage.	(4)
1.1.3	the potential difference across each component.	(6)
1.1.4	the power factor of the circuit.	(3)
1.1.5	Draw the phasor diagram (not to scale).	(5)

1.2 A parallel circuit consists of three branches. In the one branch is a resistor of 120 O. In the other, is a coil with an inductance of 27 mH and in the last branch, a capacitor with a value of 50 μ F. The circuit is supplied by 40 V/50 Hz.

Calculate

1.2.1	the total current flow in the circuit.	(13)
1.2.2	the phase angle between the current and the voltage.	(4)
1.2.3	Draw a phasor diagram (not to scale).	(5)
		[48]

3

QUESTION 2 SINGLE AND THREE-PHASE SYSTEMS

2.1	Explain how a three-phase alternating current wave can be generated by a simple three-phase generator. Illustrate your answer with suitable sketches and waveforms.	(5)
2.2	A three-phase star generator generates 380 V across each phase. Calculate the resulting line voltage between L1 and L2.	(3)
2.3	Draw a phasor diagram of the voltages of a three-phase alternating current system.	(3) [11]

QUESTION 3 TRANSFORMERS

3.1 The rating of a three-phase transformer is 300 kVA. The secondary phase voltage is 220 volt when connected in star.

Calculate

	3.1.1	the secondary line voltage.	(2)
	3.1.2	the maximum allowable secondary phase current.	(5)
	3.1.3	the maximum power output if the power factor is 0,8.	(3)
3.2	Name	TWO losses that occur in transformers.	(4)
3.3	Use TH	IREE single-phase transformers and connect them in delta-star.	(6) [20]

QUESTION 4 ALTERNATING CURRENT MOTORS

4.1 The end connectors of the stator windings of a three-phase motor are usually brought out to the connecting block as shown in **Figure 4.1**. Show in your answer book, how the motor will be connected in delta and in star. Draw the connecting block for each connection. (10)

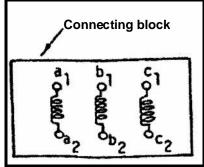
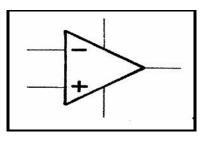


Figure 4.1

4.2	Explain the term synchronous speed when referring to alternating current motors.				
4.3	How car	n the direction of rotation be reversed in a capacitor-start motor?	(2)		
4.4	What is the purpose of the second capacitor in a capacitor-run motor?				
4.5	Sketch labelled diagrams to represent the following single-phase motors:				
	4.5.1 4.5.2	Capacitor-start-and-run motor Shaded-pole motor	(5) (5) [28]		


QUESTION 5 SEMICONDUCTORS

5.1	•	with the aid of sketches, the basic working principles of the SCR control rectifier).	[10]
		QUESTION 6 AMPLIFIERS	
6.1	Draw a circuit diagram of a common-emitter amplifier. Briefly explain the purpose of each component.		
6.2	Explain	what is meant by the following classifications of amplifiers:	
	6.2.1 6.2.2	Class A amplifier Class C amplifier	(10) [20]
		QUESTION 7 SWITCHING AND CONTROL CIRCUITS	

7.1	Draw a neat, labelled circuit diagram of a simple transistor shunt regulator. Use an NPN transistor.	(10)
7.2	Draw a neat, labelled circuit diagram that makes use of a triac to obtain lamp dimming. Show all relevant wave forms.	(10) [20]

QUESTION 8 OPERATIONAL AMPLIFIERS

8.1 Label the sketch below.

8.2 Sketch a neat, labelled circuit diagram that makes use of an operational amplifier that changes a square wave to a sawtooth wave. Show all relevant waveforms.

(5) **[10]**

(5)

QUESTION 9 OSCILLATORS

9.1 Sketch the circuit diagram and explain the working principle of the Colpitts- [8] oscillator.

QUESTION 10 COMPUTER PRINCIPLES

10.1 Sketch a neat, labelled logic gate-circuit using the following Boolean algebra expression and sketch the truth table in your answer book.

$$F = (\overline{A} B C + A \overline{B} C + \overline{A} B \overline{C})$$
(6)

10.2 Do the following calculations:

$$\begin{array}{cccc} 10.2.1 & 10011_2 + 1101_2 & (3) \\ 10.2.2 & 100101_2 - 1111_2 & (4) \end{array}$$

10.3 Draw a logic symbol by using the truth table below.

А	В	F
0	0	0
0	1	0
1	0	0
1	1	1

6

QUESTION 11 MEASURING INSTRUMENTS

		TOTAL:	200
11.2	Name an important item found in the first-aid kit in a workshop, when considering the HI virus.		(1) [9]
11.1	Draw a neat, labelled sketch of an energy meter.		(8)