# GAUTENG DEPARTMENT OF EDUCATION

# SENIOR CERTIFICATE EXAMINATION

# TECHNIKA (ELECTRICAL) HG

TIME: 3 hours

# OCTOBER / NOVEMBER 2005 OKTOBER / NOVEMBER 2005

**MARKS: 300** 

### **REQUIREMENTS**:

• Drawing instruments and an approved calculator

### **INSTRUCTIONS:**

- Answer ALL the questions.
- All the work including sketches and diagrams must be neat and clear.
- Formulae and calculations must, where applicable, be indicated.
- A list of formulae is provided on the last page of the question paper.

### QUESTION 1 ELECTRICAL CURRENT THEORY

- 1.1 The following equation represents an alternating current circuit.
  - $V = 100 \sin 314 t \text{ volt}$

I = 50 sin 
$$(314t - \frac{\pi}{3})$$
 ampere

Calculate the following:

| 1.1.1 | The circuit impedance | (3) |
|-------|-----------------------|-----|
|       |                       |     |

- 1.1.2 The frequency (3)
- 1.1.3 The power factor (2)
- 1.1.4 The power (3)

3

1.2 A circuit with a resistance of 12 ohms, an inductance of 0,15 henry and a capacitance of 100 microfarad is connected in series across a 100 V / 50 Hz supply.

Calculate the following:

| 1.2.1 | The impedance | (6) |
|-------|---------------|-----|
|       |               |     |

- 1.2.2 The current flow (3)
- 1.2.3 The voltage across R, L and C (6)
- 1.2.4 The phase angle between the supply current and the supply voltage (2)







1.3.1 Calculate



1.4 A coil with a resistance of 10 ohms and an inductance of 50 millihenrys is connected in parallel with a capacitor of 200 microfarads across a supply voltage represented by the equation below.

V = 100 sin (628 t + 
$$\frac{85}{180}$$
 volt)

Calculate

| 1.4.1 the resonant frequency of the circuit. | (3) |
|----------------------------------------------|-----|
|----------------------------------------------|-----|

- 1.4.2 the dynamic impedance of the circuit. (3)
- 1.4.3 the value of the circulating current.

(3) **[50]** 

4

### QUESTION 2 SINGLE-AND THREE-PHASE ALTERNATING-CURRENT SYSTEMS

| 2.1 | ln a bala<br>voltage. | ancec        | I star-connected three-phase system the line voltage is $\sqrt{3}$ x phase                                                    |                    |
|-----|-----------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------|
|     | Use a pl              | nasor        | diagram to prove the theorem. Show all the calculations.                                                                      | (8)                |
| 2.2 | The met<br>respectiv  | er reavely.  | adings on an inductor single-phase unit show 250 V - 50 Hz<br>The current that is been drawn is 4 A and the power is 0,75 kW. |                    |
|     | 2.2.1                 | Calc         | culate the kVA capacity of the system.                                                                                        | (3)                |
|     | 2.2.2                 | Calc         | culate the phase angle between the current and the voltage.                                                                   | (3)                |
|     | 2.2.3                 | Sho<br>the p | w by means of a phasor diagram, using an appropriate scale, how power factor can be improved to 0,9.                          | (4)                |
|     | 2.2.4                 | Dete<br>diag | ermine the following by using measurements from the phasor ram:                                                               |                    |
|     |                       | (a)          | The active current components of the original and new power factor respectively                                               | (4)                |
|     |                       | (b)          | The reactive current components of the original and new power factor respectively                                             | (4)                |
|     |                       | (c)          | The current through the capacitor                                                                                             | (2)                |
|     |                       | (d)          | The new ammeter reading                                                                                                       | (2)                |
| 2.3 | Name T<br>single-pl   | HREI<br>hase | E advantages of a three-phase alternating-current system over a alternating-current system.                                   | (3)                |
| 2.4 | Briefly d             | escril       | be the meaning of <b>power factor improvement</b> .                                                                           | (3)<br><b>[36]</b> |

P.T.O.

### QUESTION 3 TRANSFORMERS

3.1 A delta-connected, three-phase-alternator with a phase voltage of 3,3 kV is connected to three identical single-phase transformers each having a turns ratio of 17 :1. The transformers are connected in star-delta.

Calculate

|     | 3.1.1                | the secondary line voltage.                                                                                                                                   | (8)                |
|-----|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|     | 3.1.2                | the secondary phase current when the combined transformer delivers 30 kW to a load having a power factor of 0,7 if the efficiency of the transformer is 0,98. | (6)                |
| 3.2 | Sketch<br>transfor   | a circuit diagram of a voltmeter connected in a circuit using an instrument mer.                                                                              | (3)                |
| 3.3 | Describ<br>be left c | e in detail why the secondary windings of a current transformer may never open-circuited.                                                                     | (5)                |
| 3.4 | Name a               | nd describe the major disadvantages of an auto-transformer.                                                                                                   | (3)                |
| 3.5 | Sketch               | a labelled circuit diagram of an auto-transformer.                                                                                                            | (6)<br><b>[31]</b> |

#### QUESTION 4 ALTERNATING-CURRENT MOTORS

| 4.1 | Describe, by using current-wave curves and simple sketches, how a rotating |     |
|-----|----------------------------------------------------------------------------|-----|
|     | magnetic field is obtained in a three-phase induction motor.               | (9) |
|     |                                                                            |     |

4.2 A four-pole squirrel-cage induction motor is connected to a 380 V alternating current supply with a periodic time of 0,02 seconds. The motor slip is calculated to be 0,05.

Calculate the following:

|     | 4.2.1             | The supply frequency                                                                                                     | (3)                |
|-----|-------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------|
|     | 4.2.2             | The rotor speed                                                                                                          | (6)                |
| 4.3 | Explain<br>can be | by using a sketch of a capacitor-start motor how the direction of rotation changed. Also explain how this has been done. | (7)                |
| 4.4 | Briefly o         | describe TWO methods which can be used in starters to limit the starting of three-phase squirrel-cage motors.            | (4)                |
| 4.5 | Name t<br>of each | he TWO safety mechanisms in a motor starter and describe the operation one briefly.                                      | (6)<br><b>[35]</b> |

# **QUESTION 5** SEMICONDUCTORS

5.1 Study Figure 2 and answer the questions that follow.



Figure 2

| 5.3 | Show by | y means of a circuit diagram using two transistors the working of an SCR.                                | (3)<br><b>[19]</b> |
|-----|---------|----------------------------------------------------------------------------------------------------------|--------------------|
|     | 5.2.4   | Transistor                                                                                               | (2)                |
|     | 5.2.3   | SCR                                                                                                      | (2)                |
|     | 5.2.2   | Diac                                                                                                     | (2)                |
|     | 5.2.1   | Triac                                                                                                    | (2)                |
| 5.2 | Draw th | e symbol of the following semiconductors and identify the terminals.                                     |                    |
|     | 5.1.4   | Is the gate voltage in this transistor forward or reverse-biased and what is controlled by this voltage? | (2)                |
|     | 5.1.3   | What is the function of areas <b>X</b> and <b>Y</b> ?                                                    | (2)                |
|     | 5.1.2   | Identify <b>T</b> <sub>1</sub> .                                                                         | (2)                |
|     | 5.1.1   | Identify the above circuit.                                                                              | (2)                |

7

(6)

#### QUESTION 6 AMPLIFIERS

| 6.1 | Sketch neatly labelled frequency response curves to compare an RC-coupled amplifier with a mutually coupled amplifier (transformer coupled).                                            | (6) |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 6.2 | The power obtained from an amplifier is 100 mW at a frequency of 10 kHz. When the frequency is increased to 20 kHz, the power decreases to 50 mW. Calculate the power loss in decibels. | (4) |

6.3 A common-emitter-amplifier is connected to a 4 kO load resistor and a 12 Vsupply.

6.4

- 6.3.1 Calculate the co-ordinates of the load line of the amplifier. (4)
- 6.3.2 Sketch typical in- and output characteristics of an amplifier on the same axis as the loadline. The amplifier is an A-class amplifier with a sine wave input.



Figure 3

| 6.4.1 | Identify the circuit illustrated in <b>Figure 3</b> . | (2)                  |
|-------|-------------------------------------------------------|----------------------|
| 6.4.2 | Where is this type of amplifier commonly used?        | (2)                  |
| 6.4.3 | What is the function of $TF_1$ ?                      | (2)                  |
| 6.4.4 | What is the function of TF <sub>2</sub> ?             | (2)<br>[ <b>28</b> ] |

P.T.O.

QUESTION 7 SWITCHING AND CONTROL CIRCUITS



7.1

Figure 4

|     | 7.1.1             | Identify the circuit in <b>Figure 4</b> .                                                                | (2)                |
|-----|-------------------|----------------------------------------------------------------------------------------------------------|--------------------|
|     | 7.1.2             | Give the name and function of each of the components marked 1 to 4.                                      | (8)                |
| 7.2 | Draw a<br>voltage | circuit diagram of a series regulator that can be used to keep the output<br>of a power supply constant. | (8)                |
| 7.3 | Draw a and off    | circuit diagram to show how a transistor can be used to switch a light on .                              | (4)<br><b>[22]</b> |

### QUESTION 8 OSCILLATORS

8.1

8.1.1

8.1.2



# Figure 5

Identify the circuit in Figure 5.
Give the name and function of each of the following components in Figure 5:
(a) L<sub>2</sub>

- (b) C<sub>3</sub> (2)
- (c)  $C_2$  (2)
- (d)  $L_1$  with  $C_1$  (2)
- (e) R<sub>1</sub> and R<sub>2</sub> (2) [12]

### QUESTION 9 OPERATIONAL AMPLIFIERS

| 9.1 | Show, with the aid of a diagram, how an operational amplifier can be connected to operate as a bistable multivibrator. | (5)                |
|-----|------------------------------------------------------------------------------------------------------------------------|--------------------|
| 9.2 | Give the output curves of the diagram in Question 9.1.                                                                 | (2)                |
| 9.3 | Name the characteristics of an ideal operational amplifier.                                                            | (3)<br><b>[10]</b> |

(2)

(2)

### QUESTION 10 COMPUTER PRINCIPLES

- 10.1 Design a logic circuit by using two 2-input NOR-gates and 2 input AND-gates to switch OFF the electrical supply to a lift under the following circumstances:
  - When the lift (H) is too heavy (H = 1) and the door is open (D = 1)

# ALSO WHEN (OR)

• When the lift moves (B = 1) and the door is open (D = 1)10.1.1 Sketch the logic circuit. (6) 10.1.2 Draw the truth table. (4)10.1.3 Give the Boolean equation for this circuit. (2) 10.2 Draw the logic circuit of a clocked RS latch consisting of NAND-gates. (4) 10.3 Draw a logic circuit for a half-adder by using only TWO logic gates. (4) 10.4 Give the symbols and truth tables for the following logic gates: 10.4.1 NAND-gate 10.4.2 **Exclusive OR-gate** (4)

P.T.O.

[24]

### QUESTION 11 MEASURING INSTRUMENTS

11.1 Complete the open spaces in the following block diagram of the digital capacitance meter. Write the letters **A** to **E** in your answer book and the appropriate label next to each.



Figure 6

(5)

11.2 Study the circuit below and answer the questions that follow:



Figure 7

| 11.2.1 | What is the voltage between <b>B</b> and <b>C</b> when <b>S</b> is closed? | (2)                |
|--------|----------------------------------------------------------------------------|--------------------|
| 11.2.3 | What is the voltage between <b>A</b> and <b>C</b> when <b>S</b> is open?   | (2)                |
| 11.2.4 | What is the voltage between <b>A</b> and <b>B</b> when <b>S</b> is closed? | (2)<br><b>[13]</b> |

### QUESTION 12 OCCUPATIONAL SAFETY

| 12.1 | A register must be kept by the person who is responsible for safety in the workplace. Name FIVE things that he must look out for and report. | (5)                |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 12.2 | Name FOUR safety precautions to prevent HIV.                                                                                                 | (4)                |
| 12.3 | What is the name of the illness you can develop after you have been infected with the HI-virus?                                              | (1)<br><b>[10]</b> |

#### QUESTION 13 PRACTICAL

- 13.1 Design a battery charger using the following components:
  - Transformer
  - Main switch
  - Fuse
  - Diode bridge
  - Filter capacitor

NOTE: (Not a block diagram but a circuit diagram)

[10]

**TOTAL: 300** 

FORMULES / FORMULAE

 $X_L = 2 \pi LF$  $Z = \frac{V}{I}$  $V_R = IR$  $X_{\rm C} = \frac{1}{2 \pi FC}$  $V_L = LX_L$  $P = I x V x Cos\theta$  $V_{c} = I.X_{c}$  $Z = \sqrt{R^2 + (X_L - X_C)^2}$ Iwgk = Imax x 0,707 $Q = \frac{X_L}{R}$  $Q = Cos^{-1} \frac{VR}{VT}$  $F_{\rm R} = \frac{1}{2 \pi \sqrt{LC}}$  $\cos \Theta = \frac{\mathbf{R}}{\mathbf{Z}}$  $\mathbf{F}_{\mathrm{R}} = \frac{1}{2 \pi} \sqrt{\frac{1}{\mathrm{LC}} - \frac{\mathrm{R}^2}{\mathrm{L}^2}}$  $\mathbf{P} = \mathbf{I} \mathbf{x} \mathbf{V}$  $Vt^{2} = V_{R}^{2} + V_{L}^{2}$  $f = \frac{1}{T}$  $I_{\rm C} = V \cdot \sqrt{\frac{C}{L}}$  $kVA = I \times V$  $I = \frac{V}{Z}$  $Ns = \int_{n}^{f}$  $f = \frac{W}{2\pi}$ Z = LC.R t = R.CSter/Star Delta  $I_{\rm L} = I_{\rm P} \sqrt{3}$  $V_{\rm L} = V_{\rm P} \sqrt{3}$  $I_L = I_P$  $V_{L} = V_{P}$ Ir = I sin  $\Theta$ Ia = I  $\cos \Theta$  $P = \sqrt{3}$ .  $V_1$ .  $I_1$ . Cos  $\Theta$  $\frac{\mathbf{N}_{\mathrm{P}}}{\mathbf{N}_{\mathrm{S}}} = \frac{\mathbf{V}_{\mathrm{P}}}{\mathbf{V}_{\mathrm{S}}} = \frac{\mathbf{I}_{\mathrm{S}}}{\mathbf{I}_{\mathrm{P}}}$  $\cos \Theta = \underline{P}$  $N_r = N_s - S$ P<sub>Skynbaar/Apparent</sub> Rendement/Efficiency = <u>Uitset/Output</u>  $\mathbf{S} = \underline{\mathbf{N}_{s} - \mathbf{N}_{r}}_{\mathbf{N}_{s}}$ Inset/Input  $Ns = \frac{f}{P}$  $I_E = I_B + I_C$  $\frac{N_{\rm P}}{N_{\rm S}} = \sqrt{\frac{Z_{\rm P}}{Z_{\rm S}}}$  $I = \underline{V}cc$ R  $\beta = \underline{I}_{C} \\ \underline{I}_{B}$  $N = 10 \text{ Log } \underline{P}_2$ P.

#### END / EINDE

13