GAUTENG DEPARTMENT OF EDUCATION

SENIOR CERTIFICATE EXAMINATION

PLUMBING AND SHEET METALWORK SG

POSSIBLE A NSWERSOCT / NOV 2006

QUESTION 1 WATER PURIFICATION

1.2

- Inlet valve
- Sieve
- Centrifugal pump
- Coagulant dosing tank
- Inlet valve
- Outlet for backwash water
- Filter
- Draining valve
- Venturi-air inlet
- Chlorinating apparatus
- Pressure valve
- Inspection hole

(10)

[25]

QUESTION 2 DRAINAGE

2.1

- Sewerage should be laid according to the approved plan.
- The sewerage system should be laid in a straight line, on a reliable level.
- The sewerage should be laid to the approved slope.
- The sewerage should be laid on solid ground.
- The minimum sewerage depth of 600 mm should not be exceeded.
- The necessary provision should be made to make the system accessible.
- The necessary concrete reinforcement is provided according to regulation.

Any 6–2 marks each (12)

2.2

- Clay
- Cast iron
- P.V.C.

2.3

- The exit should protrude 100 mm above the caves
- Where the vent pipe does not penetrate the caves, the top section should be correctly anchored.
- The pipe opening should be provided with a grid.
- The exit should protrude at least 2 metres above any door, window or any ventilation hole, in the same building.
- The exit should be at least 6 metres away from the ventilation opening.
- At all outbuildings, the exit should be at least 2,5 metres above floor level.

(6)

(3)

2.4 2.4.1 Soil vent pipe. S. V. P

- 2.4.2 Cast iron CI
- 2.4.3 Inspection eye IE
- 2.4.4 Water closet WC (4) [25]

QUESTION 3 DRAINAGE

3.1	Storage tank with centrifugal pump Sewerage water diverter			(2)
3.2	New drains: Existing drains:	Brown Black		(2) (2)

3.3 A labelled sectional drawing of a sub-soil drain.

Proportion	-	2
Design	_	2
Measurements	_	2
		6

(6)

(5)

(6)

(2)

[25]

3.4

- Open the inspection eyes to find the position of the blocked section.
- Make use of cleaning rods.
- Push the cleaning rod into the inspection eye opening nearest to the blockage.
- Push the rod in and out until you can feel the drain is unblocked.
- Close the inspection eye.

3.5

- Check the cold water pipe system in the roof, to see if there are any pipes not properly fixed.
- Make use of pipe clamps and repair all the loose cold water pipes
- Test the system by opening the cold water tap, to make sure the problem is solved.

3.6

- The water will flow too rapidly, leaving some of the heavier solids behind.
- This can block the drain.

QUESTION 4 TESTING OF DRAINS

4.1

- Lengthy drainage systems cannot be tested as a whole. Each system must be tested separately.
- The lower portion and all other openings must be sealed off by means of expanding plugs.
- A hose pipe is used to fill the drain with water.
- The above opening is sealed by means of an expanding plug to which a 12 mm pipe is attached, which protrudes 600 mm above the drain. A funnel is attached to the upper section of the pipe.
- The drain is filled with water to the section of the funnel.
- The water level should remain constant. Should the water continually drop, it indicates a leakage in the system, which can easily be detected by looking for leakages.
- 4.2 The air pressure test, where the drain is filled with air to a pressure of 200 Pa. (2)

4.3

- The drain is cleanly flushed.
- The leakage can easily be identified by inspection of the pipe.
- It is cheap.

(3)

(12)

- 4.4
 - Sub-soil drainage is used to dispose of undesired water.
 - Where the ground is water-logged, or the underground water is high
 - Perforated pipes are used to intercept the undesired water and to carry it to the gully,
 - from where it is pumped to a suitable storm water drain.

QUESTION 5 SANITARY FITMENTS

5.1

- Manually controlled
- Electronically controlled
- Pressure controlled

5.2

- Men's cloakrooms
- Public buildings

(2)

(8)

(3)

5.3 Draw a labelled sectional sketch of a stopcork. The drawing must show all the components of the stopcork.

5.4 By setting the tap slower or faster, the intervals are lengthened or shortened. (4)

QUESTION 6 CENTRAL HEATING

6.1

•	One pipe system Two pipe system		(2)
6.2.1	booster pump –	speeds up the circulation of water in the system.	
6.2.2	flow pipe –	conveys the warm water from the boiler to the heater.	
6.2.3	return pipe –	water that has cooled down is conveyed in return pipes to the boiler to be re-heated.	(2) (2) (2)
6.2.4	expansion tank –	it allows for the expansion of water when it is heated.	(2)
6.3 •	A higher temperatu A uniform temperat	re is maintained throughout. ure is maintained by various heaters.	(2)

QUESTION 7 VENTILATION AND CENTRAL AIR-CONDITIONING

7.1

- Oxygen
- Carbonic acid
- Nitrogen

7.2 0,12%

7.3

Advantages of natural ventilation:

- It is a simple method.
- It is inexpensive.

Disadvantages of natural ventilation:

- It can only be applied successfully in houses, hospitals and schools.
- It is impossible to control and regulate the supply of fresh air effectively under changing weather conditions.
- "Fresh air" is not always completely pure, because it is subjected to the prevailing local conditions.

(10)

(3)

(1)

710-2/0 U

(1)

QUESTION / VRAAG 8 PATTERN DEVELOPMENT / PATROONONTWKKELING

Front View / Vooraansig4Plan / Plan4Developing / Ontvouing12Measurements / Afmetings3Line work / Lynwerk2

[25] 200