SENIOR CERTIFICATE EXAMINATION - 2005

PHYSICAL SCIENCE P2 CHEMISTRY

HIGHER GRADE

FEBRUARY/MARCH 2005

This question paper consists of 15 pages, a data sheet of 4 pages and 1 multiple-choice answer sheet.

GENERAL INSTRUCTIONS

1. Write your examination number (and centre number if applicable) in the appropriate spaces on the answer book.
2. Answer ALL the questions.
3. Non-programmable calculators may be used.
4. Appropriate mathematical instruments may be used.
5. A data sheet is attached for your use.
6. Marks may be forfeited if instructions are not followed.

QUESTION 1

INSTRUCTIONS

1. Answer this question on the specially printed ANSWER SHEET. [NOTE: The answer sheet may be either a separate sheet provided as part of your question paper, or printed as part of the answer book.] Write your EXAMINATION NUMBER (and centre number if applicable) in the appropriate spaces if a separate answer sheet is used.
2. Four possible answers, indicated by A, B, C and D, are supplied with each question. Each question has only ONE correct answer. Choose only that answer, which in your opinion, is the correct or best one and mark the appropriate block on the answer sheet with a cross.
3. Do not make any other marks on the answer sheet. Any calculations or writing that may be necessary when answering this question should be done in the answer book and must be deleted clearly by means of a diagonal line drawn across the page.
4. If more than one block is marked, no marks will be awarded for that answer.

PLACE THE COMPLETED ANSWER SHEET INSIDE THE FRONT COVER OF YOUR
ANSWER BOOK, IF A SEPARATE ANSWER SHEET HAS BEEN USED.

EXAMPLE:

QUESTION: The symbol for the SI unit of time is ...

A	t.
B	h.
C	s.
D	m.

ANSWER:

1.1 The boiling points of helium and argon are $-269^{\circ} \mathrm{C}$ and $-186^{\circ} \mathrm{C}$ respectively. This difference in boiling point is due to the presence of stronger ...
A ionic bonds between argon atoms.
B covalent bonds between helium atoms.
C hydrogen bonds between helium atoms.
D Van der Waals forces between argon atoms.
1.2 An experiment was done with separate samples of oxygen and neon gas. The following graphs of pressure (p) versus the reciprocal of the volume ($1 / v$) were obtained in each case:

If the same number of moles of gas were used in each experiment, which ONE of the following statements concerning the temperature of the gases is TRUE?

A The temperature of both gases was the same.
B The temperature of the neon was lower than that of the oxygen gas.
C The temperature of the neon was higher than that of the oxygen gas.
D No deductions about the temperature can be made from the graph.
1.3 The reaction that occurs when $\mathrm{H}_{2} \mathrm{~S}$ gas is bubbled through an iron (III) chloride solution is:

$$
2 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{S}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq})
$$

Which ONE of the following statements about this reaction is NOT correct?
A A yellow precipitate forms.
B The Fe^{3+} ions are reduced.
C The pH of the solution increases.
D The $\mathrm{H}_{2} \mathrm{~S}$ acts as a reducing agent.
1.4 An unknown salt solution is added to a solution of silver nitrate and to a solution of sulphuric acid. A white precipitate forms in each case. The unknown salt solution is probably ...

A barium chloride.
B lead nitrate.
C copper (II) chloride.
D barium nitrate.
1.5 In which ONE of the following industrial processes is nitrogen oxide (NO) formed at some stage in the process?

A Fractional distillation of air
B Haber process
C Ostwald process
D Contact process
1.6 A gas X is placed in a sealed container at $t=0 \mathrm{~s}$. The gas decomposes into gases Y and Z. A chemical equilibrium between the three gases is reached at $t=t_{x}$. The following graph of concentration versus time shows the changes that occurred during the reaction:

The equation for this reaction is:
A $\quad 3 X \equiv 2 Y+Z$
B $\quad X \equiv Y+Z$
C $\quad X \equiv 2 Y+Z$
D $\quad 2 X \equiv 2 Y+Z$
1.7 Which ONE of the following graphs of rate of reaction versus time is typical of a reaction between an excess of hydrochloric acid and a sample of powdered magnesium?

A

B

C

D
1.8 A mixture of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{I}_{2}(\mathrm{~g})$ is sealed in a gas syringe.

The mixture is then allowed to reach equilibrium at a constant temperature according to the equation:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{l}_{2}(\mathrm{~g}) \equiv 2 \mathrm{HI}(\mathrm{~g})
$$

What will happen to the concentration and yield of HI if the piston is moved inwards while the temperature remains constant?

	[HI]	Yield of HI
A	Increases	Decreases
B	Decreases	Stays the same
C	Decreases	Increases
D	Increases	Stays the same

1.9 Dilute nitric acid is gradually added to a flask of distilled water at $25^{\circ} \mathrm{C}$.

How does this affect the hydrogen ion concentration $\left[\mathrm{H}^{+}\right]$and the ionisation constant $\left(\mathrm{K}_{\mathrm{w}}\right)$ of water?

	$\left[\mathbf{H}^{+}\right]$	$\mathbf{K}_{\mathbf{w}}$
A	Increases	Increases
B	Increases	Decreases
C	Increases	Stays the same
D	Stays the same	Stays the same

1.10 Consider the following reversible reaction:

$$
\mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \equiv \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

The compounds HPO_{4}^{2-} and OH^{-}in this reaction can be described as ...
A a conjugate acid-base pair.
B Lowry-Brönsted bases.
C Lowry-Brönsted acids.
D polyprotic acids.
1.11 Which ONE of the following equations best explains why a solution of copper sulphate should not be stored in an aluminium container?
$\mathrm{A} \quad 2 \mathrm{Al}^{3+}+3 \mathrm{Cu} \rightarrow 3 \mathrm{Cu}^{2+}+2 \mathrm{Al}$
$\mathrm{B} \quad \mathrm{Al}^{3+}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Al}^{2+}+\mathrm{Cu}^{3+}$
C $\quad 2 \mathrm{Al}+3 \mathrm{Cu}^{2+} \rightarrow 2 \mathrm{Al}^{3+}+3 \mathrm{Cu}$
D $\mathrm{Al}^{3+}+\mathrm{Cu}^{+} \rightarrow \mathrm{Al}^{2+}+\mathrm{Cu}^{2+}$
1.12 The cell notation of an electrochemical cell is:

$$
\mathrm{Mg}(\mathrm{~s})\left|\mathrm{Mg}^{2+}(\mathrm{aq})\right|\left|\mathrm{Cu}^{2+}(\mathrm{aq})\right| \mathrm{Cu}(\mathrm{~s})
$$

The emf of the cell under standard conditions is $2,71 \mathrm{~V}$.
However, when a learner set up this cell, he/she found that the emf was only $1,20 \mathrm{~V}$. Which ONE of the following factors most probably affected his/her results?

A The volume of the $\mathrm{Cu}^{2+}(\mathrm{aq})$ solution.
B The concentration of the $\mathrm{Cu}^{2+}(\mathrm{aq})$ solution.
C The size of the copper electrode.
D The concentration of the solution in the salt bridge.
1.13 The half-reactions taking place in a certain hypothetical electrochemical cell are:

$$
\begin{array}{ll}
\mathrm{X}^{2+}+2 \mathrm{e}^{-} \equiv \mathrm{X} & \mathrm{E}^{\circ}=+0,80 \mathrm{~V} \\
\mathrm{Y}^{+}+\mathrm{e}^{-} \equiv \mathrm{Y} & \mathrm{E}^{\circ}=-0,76 \mathrm{~V}
\end{array}
$$

Which ONE of the following acts as the reducing agent?
A X^{2+}
B $\quad Y^{+}$
C $\quad X$
D $\quad \mathrm{Y}$
1.14 Which ONE of the following compounds has the molecular formula $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$?

A Methanoic acid
B Ethanol
C Ethyl methanoate
D Ethanoic acid
1.15 Consider the compound below:

This compound can be prepared by the oxidation of an ...
A ester.
B alkene.
C alcohol.
D alkane.

ANSWER QUESTIONS 2-10 IN THE ANSWER BOOK.

INSTRUCTIONS

1. Start each question on a new page in your answer book.
2. Leave one line between subsections, for example between QUESTIONS 2.1. and 2.2.
3. Give ALL formulae used and show your workings (this includes substitutions).
4. Number your answers in the same way that the questions are numbered.

QUESTION 2

2.1 Consider the following list of chemical substances:
A. $\mathrm{KNO}_{3}(\mathrm{~s})$
B. $\mathrm{CO}_{2}(\mathrm{~s})$
C. $\mathrm{C}(\mathrm{s})$
D. $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
E. $\mathrm{Cu}(\mathrm{s})$

Select from the above list a substance which:
(Write only the letter representing the substance.)

2.1.1 Has allotropes

2.1.2 Has Van der Waals forces between its particles
2.1.3 Is a solid that can dissolve in a polar liquid
2.1.4 Has metallic bonding between its atoms
2.1.5 Can sublime at room temperature (undergoes sublimation)
2.2 Explain why a real gas deviates from ideal gas behaviour at low temperatures.
$2.3 \quad 5,60 \mathrm{~g}$ of a diatomic gas occupies a volume of $3,00 \times 10^{-3} \mathrm{~m}^{3}$ at a temperature of $25^{\circ} \mathrm{C}$ and a pressure of 165 kPa .
2.3.1 Calculate the molar formula mass of the gas.
2.3.2 Give the name or formula of the gas.

QUESTION 3 (START ON A NEW PAGE)

Sulphur dioxide gas is produced in the laboratory, through the reaction between sodium sulphite and dilute hydrochloric acid.
3.1 Write the balanced chemical equation for this reaction.

The sulphur dioxide gas is bubbled through an acidified solution of potassium dichromate. The solution changes green in colour.

3.2 Write the formula of the ion responsible for the green colour.
3.3 Use the Table of Standard Reduction Potentials to write down the balanced equation for this reaction. This equation can be left in ionic form.
3.4 Identify the oxidising agent in this reaction.

QUESTION 4 (START ON A NEW PAGE)

4.1 Equal quantities of ammonium chloride crystals and a calcium compound are mixed together and placed in a test tube.

The test tube is then heated and a piece of wet litmus paper is placed at the mouth of the test tube.

After a few seconds, a strong smell is noticed and small droplets of
 water form on the sides of the test tube.
4.1.1 Write the NAME of the calcium compound.
4.1.2 Write the colour of the litmus paper after the reaction took place.
4.1.3 Write the NAME of the product responsible for the colour change in QUESTION 4.1.2.
4.1.4 Explain, with the aid of a balanced equation, why water droplets form on the side of the test tube.
4.2 A round bottomed flask is filled with ammonia gas.

The flask is sealed with a stopper which has a glass tube through it.

The flask is then inverted and placed over a beaker of water as shown in the sketch.

It is observed that water rises up in the tube and forms a fountain in the flask.

Explain why the water rises up the tube into the flask.

QUESTION 5 (START ON A NEW PAGE)

Chlorine gas is prepared in the school laboratory by using potassium permanganate and hydrochloric acid.
5.1 Write a balanced equation for this reaction.
(The equation may be in ionic form without spectator ions.)
5.2 Chlorine gas $\left(\mathrm{Cl}_{2}\right)$ is bubbled through an aqueous solution of KBr in a test tube.
The solution changes colour.
5.2.1 Write balanced equation that will explain this colour change.

Some chloroform is then added to this test tube.

The test tube is carefully shaken.

The solution separates into two layers.

The aqueous layer becomes colourless, while the chloroform

layer takes on a colour.
5.2.2 Give the FORMULA of the solute (dissolved substance) in the aqueous layer (top layer).
5.2.3 Give the FORMULA of the solute (dissolved substance) in the chloroform layer (bottom layer).
5.3 A learner decides to prepare chlorine using another method.

She takes some MnO_{2} and adds it to a 1 mol. $\mathrm{dm}^{-3} \mathrm{HCl}$ solution in a test tube. No reaction takes place. Use the Table of Standard Reduction Potentials and explain why she was not successful in preparing chlorine in this way.

QUESTION 6 (START ON A NEW PAGE)

Nitrogen and oxygen gases react in a sealed container according to the following equation:

$$
\mathrm{O}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \equiv 2 \mathrm{NO}(\mathrm{~g})
$$

After the reaction reaches equilibrium, certain changes are made. The following graph of rate of reaction versus time illustrates the situation.

6.1 Write the equation of the reaction represented by the dashed line (- -) on this graph.
6.2 What is represented by the section of the graph between the $10^{\text {th }}$ and $15^{\text {th }}$ minute? Explain your answer.
6.3 A temperature change takes place at $\mathrm{t}=15$ minutes.
6.3.1 Was the temperature increased or decreased at $t=15$ minutes?
6.3.2 Explain whether the forward reaction is exothermic or endothermic.
6.3.3 What effect does this temperature change have on the equilibrium constant (Kc)? (Write only INCREASES, DECREASES or NO EFFECT.)
6.4 A pressure change is introduced at $\mathrm{t}=20$ minutes.
6.4.1 Was the pressure increased or decreased?
6.4.2 Explain how this change in pressure affects the amounts of each gas at equilibrium.

QUESTION 7 (START ON A NEW PAGE)

Consider the hypothetical reaction that takes place between gases A_{2} and B in a closed container:

$$
\begin{array}{ccc}
\mathrm{A}_{2}(\mathrm{~g}) \\
\text { colourless }
\end{array}+\underset{\text { colourless }}{2 \mathrm{~B}(\mathrm{~g})} \underset{\text { dark red }}{\equiv 2 \mathrm{AB}(\mathrm{~g})} \quad \Delta \mathrm{H}>0
$$

X mol of gas A_{2} and $2,0 \mathrm{~mol}$ of gas B are sealed in a $1,0 \mathrm{dm}^{3}$ container.
After a few minutes equilibrium is established and the contents of the container turns light red.
7.1 At equilibrium it is found that 0,40 mol of gas $A B$ is present in the container. The value of K_{c} is 0,50 .
Determine X, the quantity (in mol) of gas A_{2} that was originally sealed in the container.
7.2 More moles of B are added to the container. Will the value of K_{c} be

GREATER THAN, LESS THAN or EQUAL to 0,50 ?
7.3 The container and its contents are now heated. What effect will this have on the colour of the contents of the container?

QUESTION 8 (START ON A NEW PAGE)

8.1 Eight grams ($8,0 \mathrm{~g}$) of sodium hydroxide are dissolved in $350 \mathrm{~cm}^{3}$ of distilled water. $15 \mathrm{~cm}^{3}$ of this solution neutralises $20 \mathrm{~cm}^{3}$ of a sulphuric acid solution.
The balanced equation for this reaction is:

$$
\begin{equation*}
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \tag{7}
\end{equation*}
$$

Calculate the concentration of the sulphuric acid solution.
8.2 An environmental disaster threatens the small town of Bafanaville.

There has been a large spillage of concentrated hydrochloric acid (HCl) into the town's only water storage dam.
The pH of the water has decreased to 4.
8.2.1 Explain, with the aid of a chemical equation, why the pH of the dam water decreased.

The Municipality decides to add quantities of soda ash $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ to the water of the dam, hoping that the pH will be restored to a value close to 7 .
8.2.2 Calculate the mass of soda ash $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ required to neutralise each $1 \mathrm{dm}^{3}$ of the acidified dam water.
8.2.3 Besides neutralisation, what other effect will the addition of the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ have on the water in the dam?

QUESTION 9 (START ON A NEW PAGE)

9.1 A standard electrochemical cell is set up using the following half-reactions:

$$
\begin{array}{lll}
\mathrm{Ce}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Ce} & \mathrm{E}^{0}=-2,30 \mathrm{~V} \\
\mathrm{Pd}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd} & \mathrm{E}^{0}=+0,99 \mathrm{~V}
\end{array}
$$

9.1.1 Write the oxidation half-reaction for this cell.
9.1.2 Write the balanced equation for the nett overall cell reaction.
9.1.3 Calculate the emf of this cell.
9.2 Metals A, B and C form only divalent ions (ions with a valency of 2).

Metal A can displace B^{2+} ions from its aqueous solutions.
Metal C can displace A^{2+} ions from its aqueous solutions.
9.2.1 Which ONE of the three ions is the strongest oxidising agent?
9.2.2 Which TWO of the metals would you use to construct a standard electrochemical cell with the highest potential difference?

QUESTION 10 (START ON A NEW PAGE)

10.1 Consider the following list of organic compounds:

A: $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

C:

B:

D: $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
E:

F:

G:

10.1.1 Using STRUCTURAL FORMULAE, write an equation for the preparation of an ester. Choose the reactants from the above list.
10.1.2 Write the letters representing TWO compounds in this list
that are isomers of each other.
10.1.3 Write the IUPAC name of compound C.
10.1.4 Write the IUPAC name of compound D.
10.2 A bottle of wine, which contains ethanol, is opened and left to stand for a few days. After a while it begins to turn sour, and to smell like vinegar. A chemical reaction has taken place.
10.2.1 Is this reaction an ADDITION, OXIDATION, ACID-BASE or ESTERIFICATION reaction?
10.2.2 Give the IUPAC name and STRUCTURAL FORMULA of the product responsible for the smell.

DEPARTMENT OF EDUCATION DEPARTEMENT VAN ONDERWYS

SENIOR CERTIFICATE EXAMINATION SENIORSERTIFIKAAT-EKSAMEN

DATA FOR PHYSICAL SCIENCE PAPER 2 (CHEMISTRY)

GEGEWENS VIR NATUUR- EN SKEIKUNDE VRAESTEL 2 (CHEMIE)

TABEL 1: FISIESE KONSTANTE
TABLE 1: PHYSICAL CONSTANTS

Avogadro-konstante Avogadro's constant	N_{A} of/or L	$6,02 \times 10^{23} \mathrm{~mol}^{-1}$
Molêre gaskonstante Molar gas constant	R	$8,31{\mathrm{~J} . \mathrm{K}^{-1} . \mathrm{mol}^{-1}}^{\|$ Standaarddruk Standard pressure $}$
Molêre gasvolume by STD Molar gas volume at STP	p^{θ}	$1,013 \times 10^{5} \mathrm{~Pa}$
Standaardtemperatuur Standard temperature	V_{m}	$22,4 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$

TABEL 2: FORMULES
TABLE 2: FORMULAE

$$
\begin{aligned}
& \frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}} \\
& p V=n R T \\
& n=\frac{m}{M} \\
& c=\frac{n}{V} \\
& c=\frac{m}{M V}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{c_{a} V_{a}}{\boldsymbol{c}_{\boldsymbol{b}} \boldsymbol{V}_{\boldsymbol{b}}}=\frac{\boldsymbol{n}_{\boldsymbol{a}}}{\boldsymbol{n}_{\boldsymbol{b}}} \\
& \boldsymbol{K}_{\boldsymbol{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathbf{1 0}^{-14} \text { by/at } 298 \mathrm{~K} \\
& p \boldsymbol{H}=-\log \left[\mathrm{H}^{+}\right] \\
& \boldsymbol{E}_{\text {sel }}^{\theta}=\boldsymbol{E}_{\text {oksideermiddel }}^{\theta}-\boldsymbol{E}_{\text {reduseermiddel }}^{\theta} \\
& \boldsymbol{E}_{\text {cell }}^{\theta}=\boldsymbol{E}_{\text {oxidising agent }}^{\theta}-\boldsymbol{E}_{\text {reducing agent }}^{\theta} \\
& \boldsymbol{E}_{\text {sel }}^{\theta}=\boldsymbol{E}_{\text {katode }}^{\theta}-\boldsymbol{E}_{\text {anode }}^{\theta} \\
& \boldsymbol{E}_{\text {cell }}^{\theta}=\boldsymbol{E}_{\text {cathode }}^{\theta}-\boldsymbol{E}_{\text {anode }}^{\theta}
\end{aligned}
$$

TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE
TABLE 3: THE PERIODIC TABLE OF ELEMENTS

TABEL 4A: STANDAARD REDUKSIEPOTENSIALE
TABLE 4A: STANDARD REDUCTION POTENTIALS
Increasing oxidising ability / Toenemende oksideervermoë

Halfreaksie /	Half-reaction	$\mathrm{E}^{\circ} / \mathrm{volt}$
$\mathrm{F}_{2}+2 \mathrm{e}^{-}$	- $2 \mathrm{~F}^{-}$	+2,87
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	- $2 \mathrm{H}_{2} \mathrm{O}$	+1,77
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}$	- $\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	+1,51
$\mathrm{Au}^{3+}+3 \mathrm{e}^{-}$	- Au	+1,42
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-}$	- $2 \mathrm{Cl}^{-}$	+1,36
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-}$	- $2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$	+1,33
$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$	- $2 \mathrm{H}_{2} \mathrm{O}$	+1,23
$\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	- $\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$	+1,21
$\mathrm{Pt}^{2+}+2 \mathrm{e}^{-}$	- Pt	+1,20
$\mathrm{Br}_{2}+2 \mathrm{e}^{-}$	- 2 Br	+1,09
$\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-}$	- $\mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$	+0,96
$\mathrm{Ag}^{+}+\mathrm{e}^{-}$	- Ag	+0,80
$\mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{e}^{-}$	- $\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$	+0,80
$\mathrm{Hg}^{2+}+2 \mathrm{e}^{-}$	- Hg^{2+}	+0,79
$\mathrm{Fe}^{3+}+\mathrm{e}^{-}$	- Fe^{2+}	+0,77
$\mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	- $\mathrm{H}_{2} \mathrm{O}_{2}$	+0,68
$\mathrm{l}_{2}+2 \mathrm{e}^{-}$	- 21	+0,54
$\mathrm{SO}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$	- $\mathrm{S}+2 \mathrm{H}_{2} \mathrm{O}$	+0,45
$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}^{-}$	- $4 \mathrm{OH}^{-}$	+0,40
SO ${ }^{2-} \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$	- $\mathrm{Cu}^{-} \mathrm{SO}_{2}+2 \mathrm{H}_{2}$	+0,34
$\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	- $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	+0,17
$\mathrm{Cu}^{2+}+\mathrm{e}^{-}$	- Cu^{+}	+0,16
$\mathrm{Sn}^{4+}+2 \mathrm{e}^{-}$	- Sn^{2+}	+0,15
$\mathrm{S}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	- $\mathrm{H}_{2} \mathrm{~S}$	+0,14
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	- H_{2}	0,00
$\mathrm{Fe}^{3+}+3 \mathrm{e}^{-}$	- Fe	-0,04
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-}$	- Pb	-0,13
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-}$	- Sn	-0,14
$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-}$	- Ni	-0,25
$\mathrm{Co}^{2+}+2 \mathrm{e}^{-}$	- Co	-0,28
$\mathrm{Cd}^{2+}+2 \mathrm{e}^{-}$	- Cd	-0,40
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$	- Fe	-0,44
$\mathrm{Cr}^{3+}+3 e^{-}$	- Cr	-0,74
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$	- Zn	-0,76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$	- $\mathrm{H}_{2}+2 \mathrm{OH}^{-}$	-0,83
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-}$	- Mn	-1,18
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-}$	- Al	-1,66
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$	- Mg	-2,37
$\mathrm{Na}^{+}+\mathrm{e}^{-}$	- Na	-2,71
$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$	- Ca	-2,87
$\mathrm{Sr}^{2+}+2 \mathrm{e}^{-}$	- Sr	-2,89
$\mathrm{Ba}^{2+}+2 \mathrm{e}^{-}$	- Ba	-2,90
$\mathrm{Cs}^{+}+\mathrm{e}^{-}$	- Cs	-2,92
$\mathrm{K}^{+}+\mathrm{e}^{-}$	- K	-2,93
$\mathrm{Li}^{+}+\mathrm{e}^{-}$	- Li	-3,05

TABEL 4B: STANDAARD REDUKSIEPOTENSIALE
TABLE 4B: STANDARD REDUCTION POTENTIALS
Increasing oxidising ability / Toenemende oksideervermoë

Halfreaksie / Half-reaction		$\mathrm{E}^{\circ} / \mathrm{volt}$
$\mathrm{Li}^{+}+\mathrm{e}^{-}$	Li	-3,05
$\mathrm{K}^{+}+\mathrm{e}^{-}$		-2,93
$\mathrm{Cs}^{+}+\mathrm{e}^{-}$	Cs	-2,92
$\mathrm{Ba}^{2+}+2 \mathrm{e}^{-}$	Ba	-2,90
$\mathrm{Sr}^{2+}+2 \mathrm{e}^{-}$	Sr	-2,89
$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$	Ca	-2,87
$\mathrm{Na}^{+}+\mathrm{e}^{-}$	Na	-2,71
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$	Mg	-2,37
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-}$	Al	-1,66
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-}$	Mn	-1,18
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$	$\mathrm{H}_{2}+2 \mathrm{OH}^{-}$	-0,83
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$	Zn	-0,76
$\mathrm{Cr}^{3+}+3 \mathrm{e}^{-}$	Cr	-0,74
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$	Fe	-0,44
$\mathrm{Cd}^{2+}+2 \mathrm{e}^{-}$	Cd	-0,40
$\mathrm{Co}^{2+}+2 \mathrm{e}^{-}$	Co	-0,28
$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-}$	Ni	-0,25
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-}$	Sn	-0,14
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-}$	Pb	-0,13
$\mathrm{Fe}^{3+}+3 \mathrm{e}^{-}$	Fe	-0,04
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	H_{2}	0,00
$\mathrm{S}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\xrightarrow{\mathrm{H}_{2} \mathrm{~S}}$	+0,14
$\mathrm{Sn}^{4+}+2 \mathrm{e}^{-}$	Sn^{2+}	+0,15
$\mathrm{Cu}^{2+}+\mathrm{e}^{-}$	Cu^{+}	+0,16
$\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	+0,17
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$	Cu	+0,34
$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}^{-}$	$4 \mathrm{OH}^{-}$	+0,40
$\mathrm{SO}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$	$\mathrm{S}+2 \mathrm{H}_{2} \mathrm{O}$	+0,45
$\mathrm{l}_{2}+2 \mathrm{e}^{-}$	$2{ }^{2}$	+0,54
$\mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\mathrm{H}_{2} \mathrm{O}_{2}$	+0,68
$\mathrm{Fe}^{3+}+\mathrm{e}^{-}$	Fe^{2+}	+0,77
$\mathrm{Hg}^{2+}+2 \mathrm{e}^{-}$	Hg	+0,79
$\mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{e}^{-}$	$\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$	+0,80
$\mathrm{Ag}^{+}+\mathrm{e}^{-}$	Ag	+0,80
$\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-}$	$\mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$	+0,96
$\mathrm{Br}_{2}+2 \mathrm{e}^{-}$	$2 \mathrm{Br}^{-}$	+1,09
$\mathrm{Pt}^{2+}+2 \mathrm{e}^{-}$	Pt	+1,20
$\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$	+1,21
$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$	$2 \mathrm{H}_{2} \mathrm{O}$	+1,23
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-}$	$2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$	+1,33
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-}$	$2 \mathrm{Cl}^{-}$	+1,36
$\mathrm{Au}^{3+}+3 \mathrm{e}^{-}$	Au	+1,42
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}$	$\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	+1,51
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$2 \mathrm{H}_{2} \mathrm{O}$	+1,77
$\mathrm{F}_{2}+2 \mathrm{e}^{-}$	$2 \mathrm{~F}^{-}$	+2,87

ANTWOORDBLAD ANSWER SHEET

NATUUR- EN SKEIKUNDE HG (TWEEDE VRAESTEL) PHYSICAL SCIENCE HG (SECOND PAPER)

| Eksamennommer |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Examination number |\quad| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

DEPARTEMENT VAN ONDERWYS DEPARTMENT OF EDUCATION
SENIORSERTIFIKAAT-EKSAMEN/SENIOR CERTIFICATE EXAMINATION
NATUUR- EN SKEIKUNDE HOËR GRAAD TWEEDE VRAESTEL (CHEMIE) PHYSICAL SCIENCE HIGHER GRADE SECOND PAPER (CHEMISTRY)

1.1	A	B	C	D
1.2	A	B	C	D
1.3	A	B	C	D
1.4	A	B	C	D
1.5	A	B	C	D
1.6	A	B	C	D
1.7	A	B	C	D
1.8	A	B	C	D
1.9	A	B	C	D
1.10	A	B	C	D
1.12	A	B	C	D
1.13	A	B	C	D
1.14 1.15	A	B	C	D

MULTIPLE CHOICE/ MEERVOUDIGE KEUSE VRAE

1.1	D	1.2	B	1.3	C	1.4	A	1.5	C
1.6	D	1.7	B	1.8	D	1.9	C	1.10	B
1.11	C	1.12	B	1.13	D	1.14	D	1.15	C
							$4 \times 15=[60]$		

QUESTION 2/VRAAG 2

2.1.1 C YY
2.1.2 B YY
2.1.3 A YY
2.1.4 E YY
2.1.5 B YY
2.2 At low temperature the intermolecular forces in real gases becomes stronger (plays a larger role) resulting in a decrease in pressure/volume. [OR gas tends to liquify] Y
By lae temperature word intermolekulêre kragte in ware gasse sterker (speel 'n belangriker rol) wat 'n verlaging in druk/volume veroorsaak[OF gas neig om te vervloei.
2.3.1 $\mathrm{T}=298 \mathrm{~K}$
$\mathrm{V}=3 \times 10^{-3} \mathrm{~m}^{3}$
$\mathrm{p}=165 \times 10^{3} \mathrm{~Pa}$
$\mathrm{m}=5,6 \mathrm{~g}$
$\mathrm{pV}=\stackrel{\mathrm{nRT}}{\mathrm{Y}} \quad \therefore \mathrm{n}=\frac{\mathrm{pV}}{\mathrm{RT}}=\frac{165 \times 10^{3} \times 3 \times 10^{-3}}{8,31 \times \underset{\mathrm{Y}}{\mathrm{Y}}}=0,2 \mathrm{~mol}$
$M=\frac{m}{n}=\frac{5,6}{0,2}=28 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \quad Y$
2.3.2 Nitrogen $\left(\mathrm{N}_{2}\right)$ YY Stikstof $\left(\mathrm{N}_{2}\right)$

QUESTION 3/ VRAAG 3

$3.1 \quad \mathrm{Na}_{2} \mathrm{SO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{YO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad$ (1 balancing/ balansering) Y
$3.2 \quad \mathrm{Cr}^{3+} \mathrm{YY}$
$3.3 \quad \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}(\mathrm{x} 3) \quad \mathrm{YY}$ $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \quad \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{YY}$

$$
\begin{equation*}
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{SO}_{2}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \mathrm{YY} \tag{6}
\end{equation*}
$$

$3.4 \quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ OR $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ OR/OF potassium dicromatel KYYiumdichromaat (2)

QUESTION 4/ VRAAG 4

YY
4.1.1 calcium hydroxide/ kalsiumhidroksied $\quad\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]$ (1 onlyl alleenlik)
4.1.2 blue/ blou Y
4.1.3 ammonial \bar{Y} ammoniak
$\left(\mathrm{NH}_{3}\right) \quad \mathrm{Y}$
$\mathrm{Y} \quad \mathrm{Y} \quad \mathrm{Y}$
4.1.4 $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$ (1 balancing/ balansering) Water is product of this reaction. YY Water is 'n produk van die reaksie
4.2 As ammonia dissolves in water, the pressure in the flask decreased and the water is forced up the tube.
Soos die ammoniak in die water oplos, sal die druk in die fles verlaag en water in die buisie opgeforseer word.

QUESTION 5/ VRAAG 5

$$
\begin{array}{ll}
5.1 & \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-} \\
5 \mathrm{ClO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} & \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{MnO}_{4}^{-} & \mathrm{Y} \\
2 \mathrm{MnO}_{4}^{-}+10 \mathrm{Cl}+16 \mathrm{H}^{+} & \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{Cl}_{2}+8 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{YY} \\
\text { OR/OF } 2 \mathrm{KMnO}_{4}+16 \mathrm{HCl} \rightarrow 5 \mathrm{Cl}_{2}+2 \mathrm{MnCl}_{2}+2 \mathrm{KCl}+8 \mathrm{H}_{2} \mathrm{O} \tag{4}
\end{array}
$$

5.2.1 $\mathrm{Cl}_{2} \underset{\mathrm{Y}}{\mathrm{Y}} 2 \mathrm{KBr} \rightarrow 2 \mathrm{KCl} \stackrel{\mathrm{YY}}{+} \mathrm{Br}_{2}$ (1 balancing/balansering) $\quad \mathrm{Y}$
5.2.2 KCl YY [potassium chloridelkaliumchloried Y]
5.2.3 Br_{2} YY [bromine/ broom]
[15]

QUESTION 6/ VRAAG 6

$6.12 \mathrm{NO} \rightarrow \mathrm{O}_{2}+\mathrm{N}_{2} \mathrm{YY}$
6.2 Equilibrium is reached. The rates of the forward and reverse reactions are equal. (3)
Ewewig is bereik. Die tempo van die voorwaartse reaksie is gelyk aan die tempo
van die terugewaartse reaksie
6.3.1 decreased/ afgeneem

YY Y
6.3.2 exothermic At 15 min the rate of the forward reaction is greater than the rate of the reverse reaction, i.e. a decrease in temperature favoured the forward reaction.
Eksotermies. By 15 min is die tempo van die voorwaartse reaksie groter as die tempo van die terugwaartse reaksie, d.i. 'n afname in temperatuur bevoordeel die voorwaartse reaksie
6.3.3 Increases/ neem toe YY
6.4.1 Increased/toe geneem Y
6.4.2 Increase in pressure increased both rates. As the number of moles of gas molecules of the reactant and product is equal, the quantity of each gas will be the same. Y
Toename in druk verhoog beide reaksietempos. Aangesien die aantal mol van gasmolekules van die reagense en produkte dieselfde is, sal die hoeveelheid van elke gas dieselfde wees.

QUESTION $7 /$ VRAAG 7

7.1

(8)

If table or calculations were shown but is wrong, carry that to the substituition.
No mark for the answer (Max: 4/8)
Astabel orbord ma ,ongef, draoor ma substitusie.
Geen punt vir antwoord. (Maks: 4/8)

7.2 equal/ gelyk ${ }^{Y Y}$

YY
7.3 turns darker/deeper red/ word donkerder rooi

QUESTION 8 /VRAAG 8

$8.1[\mathrm{NaOH}]=\frac{\mathrm{m}}{\mathrm{MxV}}=\frac{8}{40 \times 0,35}$ YF $0,57 \mathrm{~mol} . \mathrm{dm}^{-3} \mathrm{Y} Y$
$n(\mathrm{NaOH})=\mathrm{cV}=0,57 \times 15 \times 10^{-3}=0,0085 \mathrm{~mol}$
2 mol NaOH neutralises $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{Y}$
$\therefore \mathrm{n}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=1 / 2 \times 0,0085=4,3 \times 10^{-3} \mathrm{~mol}$
$\therefore\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=\frac{n}{V}=\frac{4,3 \times 10^{-3}}{20 \times 10^{-3}} \mathrm{Y}=0,21 \mathrm{~mol} . \mathrm{dm}^{-3} \mathrm{Y}$

$$
\text { OR } \begin{align*}
& \frac{\mathrm{c}_{\mathrm{a}} \mathrm{~V}_{\mathrm{a}}}{\mathrm{c}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}}} \frac{\mathrm{Y}}{2} \tag{7}\\
& \therefore \frac{\mathrm{c}_{\mathrm{a}} \times 20}{0,57 \times 15} \mathrm{Y}=\frac{1}{2} \mathrm{Y} \\
& \therefore \mathrm{c}_{\mathrm{a}}=0,21 \text { mol. } \mathrm{dm}^{-3}
\end{align*}
$$

OR/OF	
	$\therefore 2 \stackrel{Y}{\mathrm{Y}} 20 \stackrel{\mathrm{Y}}{\mathrm{xc}_{\mathrm{a}}}=1 \times 15 \stackrel{\mathrm{Y}}{\mathrm{Y}} \times 0,57$
	$\therefore c_{a}=0,21 \mathrm{~mol} . \mathrm{dm}^{\mathrm{Y}_{3}}$

8.2.1 $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl} \quad \mathrm{YY} \quad$ orlof $\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}$

HCl ionises/dissociates to form $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}^{+}$in water.
Increase in $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}^{+}$results in decrease in $\mathrm{pH} \quad \mathrm{YY}$
HCl ioniseer/dissosieer om $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}^{+}$in water te vorm
Toename in $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}^{+}$veroorsaak ' n afname in pH
8.2.2 $\mathrm{pH}=4$
$\left[\mathrm{H}^{+}\right]=1 \times 10^{-4} \mathrm{~mol} . \mathrm{dm}^{-3} \quad \mathrm{YY}$
$2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
2 mol of HCl neutralises/neutraliseer $1 \mathrm{~mol}_{\mathrm{Na}_{2} \mathrm{CO}_{3} \quad \mathrm{YY}}$
no. of mol of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ required to neutralise $\mathrm{HCl} / \mathrm{Y}$
aantal $\mathrm{mol}_{\mathrm{Na}}^{2} \mathrm{CO}_{3}$ benodig om HCl te neutraliseer
$\therefore=1 / 2 \times 1 \times 10^{-4} \mathrm{~mol}$
$\therefore=0,5 \times 10^{-4} \mathrm{~mol} \mathrm{Y}$
Mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ required: $\mathrm{m}=\stackrel{\mathrm{YY}}{\mathrm{nXM}}=0,5 \times 10^{-4} \times 106 \mathrm{~g}=5,3 \times 10^{-3} \mathrm{~g}$
Massa $\mathrm{Na}_{2} \mathrm{CO}_{3}$ benodig:
8.2.3 Increase salinity/ More NaCl in water YY
Verhoog soutgehalte van water/ Meer NaCl in water

QUESTION 9/VRAAG 9

9.1.1 $\mathrm{Ce} \rightarrow \mathrm{Ce}^{3+}+3 \mathrm{e}^{-} \quad \mathrm{YY}$
(2)
9.1.2 $\quad \frac{\mathrm{Pd}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}}{2 \mathrm{Ce}+3 \mathrm{Pd}^{2+} \rightarrow 2 \mathrm{Ce}^{3+}}+3 \mathrm{Pd} \mathrm{YYY}$
9.1.3 $\mathrm{E}^{\circ}{ }_{\text {cell/sel }}=\mathrm{E}^{\circ}{ }_{\mathrm{OA}}-\mathrm{E}^{\circ}{ }_{R A} \quad \mathrm{YY} \quad \mathrm{OR} \quad \mathrm{E}^{\circ}{ }_{\text {cell/sel }}=\mathrm{E}^{\circ}{ }_{\mathrm{CAT}}-\mathrm{E}^{\circ}{ }_{\mathrm{AN}}$

$$
\begin{align*}
& =Y Y, 99-Y(-2,3) \\
& =3,29 \mathrm{VYY} \tag{4}
\end{align*}
$$

9.2.1 $\mathrm{B}^{2+} \mathrm{YY}$
(2)
9.2.2 B and/en C YY

QUESTION 10/ VRAAG 10

10.1.1

10.1.2 A and/en F YY
10.1.3 ethylmethanoate / etielmetanoaat YY
10.1.4 but-2-ene YY
10.2.1 Oxidation/ Oksidasie YY
10.2.2 Ethanoic acid/ Etanoësuur

YY

(2)
[16]

