

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFIC ATE EXAMINATION - 2005

PHYSIC AL SCIENCE P2 CHE MISTRY
 STAND ARD GR ADE OCTOBER/NOVEMBER 2005

Marks: 150
2 Hours

This paper consists of 14 pages and a datasheet of 4 pages.

GENERAL INSTRUCTIONS

1. Write your examination number (and centre number if applicable) in the appropriate spaces on the answer book.
2. Answer ALL the questions.
3. Non-programmable calculators may be used.
4. Appropriate mathematical instruments may be used.
5. Data sheets are attached for your use.
6. Marks may be forfeited if instructions are not followed.

QUESTION 1

INSTRUCTIONS

1. Answer this question on the specially printed ANSWER SHEET. [NOTE: The answer sheet may be either a separate sheet provided as part of your question paper, or printed as part of the answer book.]
Write your EXAMINATION NUMBER (and centre number if applicable) in the appropriate spaces if a separate answer sheet is used.
2. Four possible answers, indicated by A, B, C and D, are supplied with each question. Each question has only ONE correct answer. Choose only that answer, which in your opinion, is the correct or best one and mark the appropriate block on the answer sheet with a cross.
3. Do not make any other marks on the answer sheet. Any calculations or writing that may be necessary when answering this question should be done in the answer book and must be deleted clearly by means of a diagonal line drawn across the page.

4 If more than one block is marked, no marks will be awarded for that answer.

PLACE THE COMPLETED ANSWER SHEET INSIDE THE FRONT COVER OF YOUR ANSWER BOOK IF A SEPARATE ANSWER SHEET HAS BEEN USED.

EXAMPLE:

QUESTION: The SI unit of time is ...

A	t.
B	h.
C	s.
D	m.

ANSWER:

QUESTION 1

1.1 Which one of the graphs below shows the correct relationship between pressure and volume for an enclosed gas at constant temperature?

1
A

λ
C
p

B
\wedge
D

1.2 Which one of the following statements about the properties of hydrogen sulphide gas $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ is INCORRECT?

A $\mathrm{H}_{2} \mathrm{~S}$ can be collected by the upward displacement of air.
B $\quad \mathrm{H}_{2} \mathrm{~S}$ is a reducing agent when it reacts with SO_{2}.
C $\mathrm{H}_{2} \mathrm{~S}$ forms a black precipitate when it is bubbled through a solution of zinc sulphate.

D $\mathrm{H}_{2} \mathrm{~S}$ smells like rotten eggs.
1.3 Which one of the following statements about chlorine is CORRECT?

A Chlorine is a strong reducing agent.
B Chlorine is a reddish gas at room temperature.
C Chlorine is prepared industrially through the electrolysis of sodium chloride.
D Chlorine is prepared in the laboratory by adding a solution of AgNO_{3} to a solution of sodium chloride.
1.4 Which one of the following is a CORRECT reason why F_{2} has a lower boiling point than Cl_{2} ?

A $\quad F_{2}$ has hydrogen bonding between its molecules.
$B \quad F_{2}$ has strong Van der Waals forces between its molecules.
C F_{2} is polar and Cl_{2} is non-polar.
D $\quad \mathrm{F}_{2}$ has a smaller molecular mass than Cl_{2}.
1.5 Which one of the reactions below best explains why nitrate compounds are used in the manufacture of fire works?

A $2 \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \ddagger 2 \mathrm{HNO}_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
B $\mathrm{Cu}+4 \mathrm{HNO}_{3} \ddagger \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
C $2 \mathrm{KNO}_{3} \ddagger 2 \mathrm{KNO}_{2}+\mathrm{O}_{2}$
D $\mathrm{KNO}_{3} \ddagger \mathrm{~K}^{+}+\mathrm{NO}_{3}^{-}$
1.6 Hydrochloric acid and zinc pellets are allowed to react in an open conical flask.

Which one of the following will NOT increase the reaction rate?
A Increasing the temperature
B Adding a suitable catalyst
C Increasing the concentration of the hydrochloric acid
D Closing the flask with a stopper
1.7 The following reaction is in equilibrium in a closed container:

$$
2 \mathrm{HI}(\mathrm{~g}) ? \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

If the pressure in the container is increased by decreasing its volume, which one of the statements below is INCORRECT?

A The rate of the forward reaction increases.
B The rate of the reverse reaction increases.
C Both the rate of the forward and reverse reactions remain unchanged.
D Both the rate of the forward and reverse reactions increase.
1.8 Consider the reversible reaction below:

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{~S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) ? \mathrm{ZnS}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}<0
$$

Which one of the graphs below will be the CORRECT representation of the change in E_{p} for the forward reaction?

1.9 If base \mathbf{X} is titrated against acid \mathbf{Y}, the pH of the solution at the endpoint is 8 . The base \mathbf{X} and acid \mathbf{Y} can respectively be identified as:

	Base \mathbf{X}	Acid \mathbf{Y}
A	Strong base	Weak acid
B	Weak base	Weak acid
C	Weak base	Strong acid
D	Strong base	Strong acid

1.10 Consider the following acid-base equilibrium

$$
\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} ? \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-}
$$

A conjugate acid-base pair in this reaction is ...
A $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$
B $\mathrm{H}_{2} \mathrm{CO}_{3}$ and OH^{-}
C $\mathrm{H}_{2} \mathrm{O}$ and OH^{-}
D $\mathrm{H}_{2} \mathrm{O}$ and HCO_{3}^{-}
1.11 Which one of the following 0,1 mol. dm^{-3} solutions contains the lowest $\left[\mathrm{H}^{+}\right]$?

A HCl
B $\mathrm{CH}_{3} \mathrm{COOH}$
C $\mathrm{H}_{2} \mathrm{SO}_{4}$
D NaOH
1.12 When a standard Zn -Cu electrochemical cell is in operation, oxidation occurs at the anode. Which one of the following statements concerning the anode half cell is CORRECT?

A The solution turns from blue to colourless.
B There is an increase in the mass of the anode.
C The anode donates electrons.
D A precipitate is formed.
1.13 Which one of the following is a stronger reducing agent than H_{2} ?

A Al
B $\mathrm{H}_{2} \mathrm{~S}$
C Fe^{2+}
D Cu
1.14 Which one of the following compounds has isomers?

A $\mathrm{C}_{2} \mathrm{H}_{6}$
B $\mathrm{C}_{2} \mathrm{H}_{4}$
C $\mathrm{C}_{3} \mathrm{H}_{2}$
D $\mathrm{C}_{4} \mathrm{H}_{8}$
1.15 The structural formula for chloroform is:
A

B

C

D

ANSWER QUESTIONS 2-8 IN YOUR ANSWER BOOK.

INSTRUCTIONS

1. Start each question on a new page in your answer book.
2. Leave one line between subsections, for example between QUESTIONS 2.1 and 2.2.
3. Give all formulae used and show your workings (this includes substitutions).
4. Number your answers in the same way that the questions are numbered.

QUESTION 2

2.1 The relationship between the volume and pressure of an enclosed gas was investigated in the school laboratory. The temperature of the container and its contents were kept constant. The results were used to obtain a graph of pressure (p) versus the reciprocal of volume $\binom{1}{v}$, shown below.

2.1.1 Write down the mathematical relationship between pressure and volume of the enclosed gas.
2.1.2 Calculate the value of X in the graph above. (Note that X is the reciprocal of the volume.)

The relationship above is only true if it is ass umed that the gas under investigation is an ideal gas.
2.1.3 Under what conditions will the behaviour of a real gas deviate from that of an ideal gas?
2.2 Consider the boiling points of the hydrogen compounds of the halogens with their respective molar masses. The boiling points of the compounds are determined by their intermolecular forces.

NAME	MOLAR MASS $\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$	BOILING POINT $\left({ }^{\circ} \mathrm{C}\right)$
HF	20,01	19,5
HCl	36,46	$-84,9$
HBr	80,92	$-67,0$
HI	127,90	$-35,4$

2.2.1 What is the trend in the boiling points with an increase in molar mass from HCl to HI ?
2.2.2 Give a reason for the trend in boiling points with an increase in molar mass as observed in QUESTION 2.2.1.
2.2.3 Name the intermolecular force that causes HF to have a higher boiling point than the other halides.

QUESTION 3 (START ON A NE W PAGE)

Hydrogen sulphide gas $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ can be prepared through the reaction of FeS and hydrochloric acid.
3.1 Write the balanced equation for the preparation of hydrogen sulphide by this method.

The $\mathrm{H}_{2} \mathrm{~S}$ gas is now bubbled through two test tubes A and B . Testtube A contains a solution of FeCl_{3} and test tube B contains a solution of CuCl_{2}

Test tube A

Test tube B
3.2 A redox reaction takes place in test tube A. Write down the colour change that will be observed as a result of this redox reaction.
3.3 Does $\mathrm{H}_{2} \mathrm{~S}$ act as an oxidising or reducing agent in test tube A ?
3.4 Write down the equation of a half reaction to support your answer in QUESTION 3.3.
3.5 Write down two observations that will be made in test tube B when $\mathrm{H}_{2} \mathrm{~S}$ reacts with CuCl_{2}.
3.6 Write the balanced equation for the reaction that takes place in test tube B.
3.7 What type of reaction takes place in test tube B? Write only REDOX or ION EXCHANGE.

QUESTION 4 (START ON A NE W PAGE)

4.1 Consider the flow diagram that represents an important industrial process. This process consists of two steps. In Step 1, N_{2} is obtained from air. In Step $2 \mathrm{~N}_{2}$ is reacted with H_{2}.

Air | $\sqrt{\text { Step 1 }}$ |
| :---: |
| $\mathrm{H}_{2(\mathrm{~g})}$ |
| $\mathrm{N}_{2(\mathrm{~g})} \mid$ Step 2 |

4.1.1 Name the method that is used to obtain $\mathrm{N}_{2}(\mathrm{~g})$ from air in Step 1.
4.1.2 Write down the balanced equation for the reaction that takes place between N_{2} and H_{2} in Step 2 of the process.
4.1.3 Give the NAME of Gas X produced in Step 2.
4.2 Susan is provided with a salt that is said to be potassium iodide. She conducts a test by adding a silver nitrate solution $\left(\mathrm{AgNO}_{3}(\mathrm{aq})\right)$ to a solution of the salt. She makes an observation that confirms that the salt is potassium iodide (KI).

Salt solution
4.2.1 Write down the balanced equation for the reaction between potassium iodide and silver nitrate.
4.2.2 Write down the observation that Susan made in the reaction in QUESTION 4.2.1 that confirmed that the salt was KI.

QUESTION 5 (START ON A NEW PAGE)

5.1 A series of experiments were carried out to compare the reactions of zinc foil, zinc powder, copper powder and a mixture of zinc powder and copper pieces with diluted sulphuric acid with a concentration of $1 \mathrm{~mol}^{\mathrm{dm}}{ }^{-3}$.

If a reaction occurs, hydrogen gas is produced. The number of gas bubbles in the test tubes indicate the rate of the reactions taking place.
5.1.1 In one of the test tubes no reaction is observed. Refer to the relative strength of oxidising agents and reducing agents to explain the reason for the observation.
5.1.2 Arrange the test tubes in order of increasing rate of reaction. (From the lowest to the highest rate.) (Use only the symbols A, B, C and D.)
5.1.3 Give a reason for the difference between the rate of the reaction in test tube B and test tube D.

Test tube A is now placed in a beaker with hot water and allowed to stand.
5.1.4 Write down how the observation in test tube A will now change.
5.2 Consider the following reaction at equilibrium in a closed container:

$$
\begin{equation*}
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad ? \quad 2 \mathrm{SO}_{3}(\mathrm{~g})+\text { heat } \tag{1}
\end{equation*}
$$

5.2.1 Is the heat of reaction $(\Delta \mathrm{H})$ positive or negative for the above reaction?
5.2.2 Is the forward reaction endothermic or exothermic?
5.2.3 Will the number of moles of $\mathrm{SO}_{3}(\mathrm{~g})$ INCREASE, DECREASE or STAY

THE SAME when the pressure in the container is increased by decreasing the volume?

The temperature of the system is now increased.
5.2.4 How will this change affect the rate of the forward reaction?
(Write only INCREASES, DECREASES or NO EFFECT.)
5.2.5 How will this change affect the yield of SO_{3} ?
(Write only INCREASES, DECREASES or NO EFFECT.)

QUESTION 6 (START ON A NEW PAGE)

6.1 Write down:

6.1.1 The meaning of the term diprotic acid.
6.1.2 The formula of a diprotic acid.
6.2 Magnesium hydroxide is often used as medicine to relieve an upset stomach. The pH of the $\mathrm{HCl}(\mathrm{aq})$ in the stomach is approximately 1 . The balanced equation for the reaction that takes place in the stomach is:

$$
\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{HCl} \ddagger \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

6.2.1 Will the pH in the stomach INCREASE, DECREASE or STAY THE SAME after taking a dose of $\mathrm{Mg}(\mathrm{OH})_{2}$?

During a titration a sample of $\mathrm{Mg}(\mathrm{OH})_{2}$ is neutralised by $23 \mathrm{~cm}^{3}$ of HCl with a concen tration of 0,1 mol.dm ${ }^{-3}$.
6.2.2 Calculate the number of moles of HCl needed to neutralise the $\mathrm{Mg}(\mathrm{OH})_{2}$.
6.2.3 Calculate the number of moles of $\mathrm{Mg}(\mathrm{OH})_{2}$ present in the sample.
6.2.4 Calculate the mass of the $\mathrm{Mg}(\mathrm{OH})_{2}$ sample.
6.3 Plaster of paris which is used to support fractured bones, consists of calcium sulphate $\left(\mathrm{CaSO}_{4}\right)$. The fracture is covered with cotton and linen material that is totally submerged in wet plaster of paris (calcium sulphate). This bandage quickly hardens.

Having a lot of calcium hydroxide powder, Nelson and Rosemary decided to make their own calcium sulphate.
6.3.1 Write down the NAME of the acid that they should use to make calcium sulphate.
6.3.2 Write down the balanced equation for the reaction that takes place between the $\mathrm{Ca}(\mathrm{OH})_{2}$ and the acid.

Nelson spilled some of the acid on the table. He wants to wipe it off with a cloth, wet with ammonium hydroxide. When he opens the bottle of ammonium hydroxide, Rosemary immediately complains about a sharp pungent smell.
6.3.3 Write down the balanced equation of the reaction that explains the formation of the compound that has a sharp pungent smell.

QUESTION 7 (START ON A NEW PAGE)

Consider the following sketch of a Zn -Cu electrochemical cell.

7.1 Provide labels for:
7.1.1 component A
7.1.2 electrode B
7.1.3 electrolyte (salt solution) C
7.2 Write down one function of component A.
7.3 Write down the formula of a suitable electrolyte (salt solution) that can be used in A .
7.4 In which direction does the positive ions move in A? (Towards the anode half cell or the cathode half cell?)
7.5 Write down the formula of the oxidising agent in this cell.
7.6 Write down the equation for the half reaction occurring at the negative electrode.

QUESTION 8 (START ON A NEW PAGE)

8.1 Give the general formula of the homologous series to which hexane belongs.
8.2 Write down the balanced equation for the complete combustion of hexane.
8.3 Complete the table below in your answer book. Only write down the question number and the correct answer.

Example	Functional group
Tetrachloromethane	8.3 .1
$\mathrm{CH}_{3} \mathrm{COOH}$	8.3 .2

8.4 Write down the systematic (IUPAC) name of each of the following organic compounds:
8.4.1 $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
8.4.2

DEPARTMENT OF EDUCATION
 DEPARTE MENT VAN ONDER WYS

SENIOR CERTIFICATE EXAMINATION SENIORSERTIFIKAAT-EKSAMEN

DATA FOR PHYSICAL SCIE NCE
 PAPER 2 (CHEMISTRY)

GEGEWENS VIR NATUUR-EN SKEIKUNDE
VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICALCONSTANTS
TABEL 1: FISIESE KONSTANTES

Avogadro-konstante Avogadro's constant	N_{A} of/or L	$6,02 \times 10^{23} \mathrm{~mol}^{-1}$
Molêre gaskonstante Molar gas constant	R	$8,31 \mathrm{J.K}^{-1} \cdot \mathrm{~mol}^{-1}$
Standaarddruk Standard pressure	p^{θ}	$1,013 \times 10^{5} \mathrm{~Pa}$
Molêre gasvolume by STD Molar gas volume at STP	V_{m}	$22,4 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$
Standaardtemperatuur Standard temperature	T^{θ}	273 K

TABLE 2: FORMULAE
TABEL 2: FORMULES

$\begin{gathered} \mathbf{p}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}} \\ \mathbf{T}_{\mathbf{1}} \end{gathered}=\frac{\mathbf{p}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}}{\mathbf{T}_{\mathbf{2}}}$	$\begin{aligned} & \mathbf{c}_{\mathrm{a}} \mathbf{V}_{\mathrm{a}}=\mathbf{n}_{\mathrm{a}} \\ & \mathbf{c}_{\mathrm{b}} \mathbf{V}_{\mathrm{b}}=\mathbf{n}_{\mathrm{b}} \end{aligned}$
$\mathbf{p N}=\mathbf{n R T}$	$\mathbf{K}_{\mathbf{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$ by/at 298 K
$\mathbf{n}=\begin{aligned} & \mathbf{m} \\ & \mathbf{M} \end{aligned}$	pH $=-\log \left[\mathrm{H}^{+}\right.$]
$\mathbf{c}=\stackrel{\mathbf{n}}{\mathbf{v}}$	$\left\{\begin{array}{l} \mathbf{E}^{\theta} \text { sel }=\mathbf{E}_{\text {oksideemiddel }}^{\theta}-\mathbf{E}^{\theta} \text { reduseemiddel } \\ \mathbf{E}^{\theta} \text { cell }=\mathbf{E}_{\text {oxidising agent }}^{\theta}-\mathbf{E}_{\text {reducing agent }}^{\theta} \end{array}\right.$
$\mathbf{c}=\begin{gathered} \mathbf{m} \\ \mathbf{M V} \end{gathered}$	$\mathbf{E}^{\theta}{ }_{\text {sel }}=\mathbf{E}^{\theta} \text { katode }-\mathbf{E}^{\theta} \text { anode }$
	\mathbf{E}^{θ} cell $=\mathbf{E}^{\theta}$ cathode $-\mathbf{E}^{\theta}$ anode

TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKETABEL VAN ELEMENTE

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD REDUKSIEPOTENSIALE
Increasing oxidising ability / Toenemende oksideervermoë

Halfreaksie / Half-reaction		E° /volt
$\mathrm{F}_{2}+2 \mathrm{e}^{-}$? $2 \mathrm{~F}^{-}$	+2,87
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$? $2 \mathrm{H}_{2} \mathrm{O}$	+1,77
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}$? $\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	+1,51
$\mathrm{Au}^{3+}+3 \mathrm{e}^{-}$? Au	+1,42
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-}$? $2 \mathrm{Cl}^{-}$	+1,36
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-}$? $2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$	+1,33
$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$? $2 \mathrm{H}_{2} \mathrm{O}$	+1,23
$\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$? $\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$	+1,21
$\mathrm{Pt}^{2+}+2 \mathrm{e}^{-}$? Pt	+1,20
$\mathrm{Br}_{2}+2 \mathrm{e}^{-}$? $2 \mathrm{Br}^{-}$	+1,09
$\mathrm{NO}_{3}{ }^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-}$? $\mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$	+0,96
$\mathrm{Ag}^{+}+\mathrm{e}^{-}$? Ag	+0,80
$\mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{e}^{-}$? $\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$	+0,80
$\mathrm{Hg}^{2+}+2 \mathrm{e}^{-}$? Hg	+0,79
$\mathrm{Fe}^{3+}+\mathrm{e}^{-}$? Fe^{2+}	+0,77
$\mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$? $\mathrm{H}_{2} \mathrm{O}_{2}$	+0,68
$\mathrm{I}_{2}+2 \mathrm{e}^{-}$? 21^{-}	+0,54
$\mathrm{SO}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$? $\mathrm{S}+2 \mathrm{H}_{2} \mathrm{O}$	+0,45
$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}^{-}$? $4 \mathrm{OH}^{-}$	+0,40
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$? Cu	+0,34
$\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$? $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	+0,17
$\mathrm{Cu}^{2+}+\mathrm{e}^{-}$? Cu^{+}	+0,16
$\mathrm{Sn}^{4+}+2 \mathrm{e}^{-}$? Sn^{2+}	+0,15
$\mathrm{S}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$? $\mathrm{H}_{2} \mathrm{~S}$	+0,14
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$? $\quad \mathrm{H}_{2}$	0,00
$\mathrm{Fe}^{3+}+3 \mathrm{e}^{-}$? Fe	-0,04
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-}$? Pb	-0,13
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-}$? Sn	-0,14
$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-}$? Ni	-0,25
$\mathrm{Co}^{2+}+2 \mathrm{e}^{-}$? Co	-0,28
$\mathrm{Cd}^{2+}+2 \mathrm{e}^{-}$? Cd	-0,40
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$? Fe	-0,44
$\mathrm{Cr}^{3+}+3 e^{-}$? Cr	-0,74
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$? Zn	-0,76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$? $\mathrm{H}_{2}+2 \mathrm{OH}^{-}$	-0,83
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-}$? Mn	-1,18
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-}$? Al	-1,66
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$? Mg	-2,37
$\mathrm{Na}^{+}+\mathrm{e}^{-}$? Na	-2,71
$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$? Ca	-2,87
$\mathrm{Sr}^{2+}+2 \mathrm{e}^{-}$? Sr	-2,89
$\mathrm{Ba}^{2+}+2 \mathrm{e}^{-}$? Ba	-2,90
$\mathrm{Cs}^{+}+\mathrm{e}^{-}$? Cs	-2,92
$\mathrm{K}^{+}+\mathrm{e}^{-}$? K	-2,93
$\mathrm{Li}^{+}+\mathrm{e}^{-}$? Li	-3,05

Increasing reducing ability / Toenemende reduseervermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARDREDUKSIEPOTENSIALE
Increasing oxidising ability / Toenemende oksideervermoë

Half-reaction / Halfreaksie			E ${ }^{\circ}$ /volt
$\mathrm{Li}^{+}+\mathrm{e}^{-}$?	Li	-3,05
$\mathrm{K}^{+}+\mathrm{e}^{-}$?	K	-2,93
$\mathrm{Cs}^{+}+\mathrm{e}^{-}$?	Cs	-2,92
$\mathrm{Ba}^{2+}+2 \mathrm{e}$?	Ba	-2,90
$\mathrm{Sr}^{2+}+2 \mathrm{e}$?	Sr	-2,89
$\mathrm{Ca}^{2+}+2 \mathrm{e}$?	Ca	-2,87
$\mathrm{Na}^{+}+\mathrm{e}^{-}$?	Na	-2,71
$\mathrm{Mg}^{2+}+2 \mathrm{e}$?	Mg	-2,37
$\mathrm{Al}^{3+}+3 \mathrm{e}$?	Al	-1,66
$\mathrm{Mn}^{2+}+2 \mathrm{e}$?	Mn	-1,18
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}$?	$\mathrm{H}_{2}+2 \mathrm{OH}^{-}$	-0,83
$\mathrm{Zn}^{2+}+2 \mathrm{e}$?	Zn	-0,76
$\mathrm{Cr}^{3+}+3 \mathrm{e}$?	Cr	-0,74
$\mathrm{Fe}^{2+}+2 \mathrm{e}$?	Fe	-0,44
$\mathrm{Cd}^{2+}+2 \mathrm{e}$?	Cd	-0,40
$\mathrm{Co}^{2+}+2 \mathrm{e}$?	Co	-0,28
$\mathrm{Ni}^{2+}+2 \mathrm{e}$?	Ni	-0,25
$\mathrm{Sn}^{2+}+2 \mathrm{e}$?	Sn	-0,14
$\mathrm{Pb}^{2+}+2 \mathrm{e}$?	Pb	-0,13
$\mathrm{Fe}^{3+}+3 \mathrm{e}$?	Fe	-0,04
$\mathbf{2 H}{ }^{+}+\mathbf{2 e}$?	H_{2}	0,00
$\mathrm{S}+2 \mathrm{H}^{+}+2 \mathrm{e}$?	$\mathrm{H}_{2} \mathrm{~S}$	+0,14
$\mathrm{Sn}^{4+}+2 \mathrm{e}$?	Sn^{2+}	+0,15
$\mathrm{Cu}^{2+}+\mathrm{e}^{-}$?	Cu^{+}	+0,16
$\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}$?	$\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	+0,17
$\mathrm{Cu}^{2+}+2 \mathrm{e}$?	Cu	+0,34
$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}$?	$4 \mathrm{OH}^{-}$	+0,40
$\mathrm{SO}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}$?	$\mathrm{S}+2 \mathrm{H}_{2} \mathrm{O}$	+0,45
$\mathrm{l}_{2}+2 \mathrm{e}$?	21^{-}	+0,54
$\mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}$?	$\mathrm{H}_{2} \mathrm{O}_{2}$	+0,68
$\mathrm{Fe}^{3+}+\mathrm{e}^{-}$?	Fe^{2+}	+0,77
$\mathrm{Hg}^{2+}+2 \mathrm{e}$?	Hg	+0,79
$\mathrm{NO}_{3}{ }^{-}+2 \mathrm{H}^{+}+\mathrm{e}^{-}$?	$\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$	+0,80
$\mathrm{Ag}^{+}+\mathrm{e}^{-}$?	Ag	+0,80
$\mathrm{NO}_{3}{ }^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}$?	$\mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$	+0,96
$\mathrm{Br}_{2}+2 \mathrm{e}$?	$2 \mathrm{Br}^{-}$	+1,09
$\mathrm{Pt}^{2+}+2 \mathrm{e}$?	Pt	+1,20
$\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}$?	$\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$	+1,21
$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}$?	$2 \mathrm{H}_{2} \mathrm{O}$	+1,23
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}$?	$2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$	+1,33
$\mathrm{Cl}_{2}+2 \mathrm{e}$?	$2 \mathrm{Cl}^{-}$	+1,36
$\mathrm{Au}^{3+}+3 \mathrm{e}$?	Au	+1,42
$\mathrm{MnO}_{4}{ }^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}$?	$\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	+1,51
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}$?	$2 \mathrm{H}_{2} \mathrm{O}$	+1,77
$\mathrm{F}_{2}+2 \mathrm{e}$?	$2 \mathrm{~F}^{-}$	+2,87

[^0]
ANSWER SHEET
 ANTWOORDBLAD

PHYSICAL SCIENCE SG (SECOND PAPER)NATUUR- EN SKEIKUNDE SG (TWEEDE VRAESTEL)

Examination number Eksamennommer										

DEPARTMENT OF EDUCATION
DEPARTEME NT VAN ONDERWYS

SENIOR CERTIFICATE EXAMINATION SENIORSERTIFIKAAT-EKSAMEN
PHYSICAL SCIENCE STANDARD GRADE SECOND PAPER (CHEMISTRY) NATUUR- EN SKEIKUNDE STANDAARD GRAAD TWEEDE VRAESTEL (CHEMIE)

Vir die gebruik van die nasiener For the use of the marker	
Punte behaal Marks obtained	
Nasiener se paraaf Marker's initials	
Nasiener se nommer Marker's	
number	

[^0]: \longrightarrow

