

education

Department: Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY

MEMORANDUM

EXEMPLAR 2008

- - - - - - - -

TIME: 3 hours

1

MARKS: 200

This memorandum consists of 21 pages

Please turn over

QUESTION 1: MULTIPLE CHOICE QUESTIONS

(Learning Outcome 3: Assessment Standards 1 – 9)

			TOTAL	(20)
1.20	В	\checkmark		(1)
1.19	C	\checkmark		(1)
1.18	A	\checkmark		(1)
1.17	D	\checkmark		(1)
1.16	D	\checkmark		(1)
1.15	С	\checkmark		(1)
1.14	Α	\checkmark		(1)
1.13	В	\checkmark		(1)
1.12	С	\checkmark		(1)
1.11	D	\checkmark		(1)
1.10	A	\checkmark		(1)
1.9	В	\checkmark		(1)
1.8	D	\checkmark		(1)
1.7	В	\checkmark		(1)
1.6	С	\checkmark		(1)
1.5	A	\checkmark		(1)
1.4	D	\checkmark		(1)
1.3	В	\checkmark		(1)
1.2	C	\checkmark		(1)
1.1	A	\checkmark		(1)

QUESTION 2: FORCES AND SYSTEMS AND CONTROL

(Learning Outcome 3: Assessment Standards 6 and 8)

 $\sqrt{}$

 $\sqrt{}$

2.1.1 STRESS AND STRAIN

=

2.1

Area =
$$\frac{\pi d^2}{4}$$

= $\frac{\pi x (0,024)^2}{4}$
= 4,525x10⁻⁴m²

$$Stress = \frac{Force}{Area}$$
$$= \frac{60x10^3}{4,525x10^{-4}}$$
$$= 132,579x10^6 Pa$$

2.1.4 Young's' Modulus on softer materials will decrease or be lower than harder materials $\sqrt{\sqrt{}}$

(2)

(3)

(2)

2.2 BELT DRIVES

2.2.1 Belt length in an open belt drive

$$Length = \frac{\pi (D+d)}{2} + \frac{(D-d)^2}{4C} + 2C$$

= $\frac{\pi (600+300)}{2} + \frac{(600-300)^2}{4(850)} + 2(850)$ \checkmark
= $\frac{\pi (900)}{2} + \frac{(90000)}{3400} + 1700$ \checkmark
= $3139,47 \ mm$ \checkmark (3)

2.2.2

For maximum power transmission the belt drive will have to be shorter \checkmark

Belt length in an cross belt drive

$$Length = \frac{\pi (D+d)}{2} + \frac{(D+d)^2}{4C} + 2C$$
$$= \frac{\pi (600+300)}{2} + \frac{(600+300)^2}{4(850)} + 2(850)$$
$$= \frac{\pi (900)}{2} + \frac{(810000)}{3400} + 1700$$
$$= 3351,24 \ mm$$

I would therefore recommend the open belt drive

(3)

2.3 **TORQUE**

 $\sqrt{}$

 $\sqrt{}$

The motor that is available will satisfy the requirements of Mrs Realeboga because it is producing a torque of 40 Nm which is slightly more than the required torque $\sqrt{}$

5

NSC- Memorandum

2.4 HYDRAULICS

2.4.1 **APPLIED FORCE AT POINT A**

First calculate pressure. Note pressure at point A = pressure at B

Pressure at B (P_B) =
$$\frac{Load(F)}{A_B}$$

= $\frac{800}{0.16}$ \checkmark
= 5 000 Pa \checkmark
= 5 kPa
NOTE P_A = P_B
F_A = P_A x A_A
= 5000 x 0.015 \checkmark
= 75N \checkmark

2.4.2 TO CALCULATE THE STROKE LENGTH IN POINT A

Note volume in cylinder A is equal to the volume in cylinder B.

$=A_B x L_B$	
$=0,16 \ x \ 8 \ x \ 10^{-3}$	\checkmark
$=0,00128 m^3$	\checkmark
$=1.28x10^{-3} m^{3}$	
	$= A_B x L_B$ = 0,16 x 8 x 10 ⁻³ = 0,00128 m ³ = 1.28x10 ⁻³ m ³

NOTE: $V_A = V_B$

(5)

(4)

2.4.3 **EFFECT OF CHANGE IN LENGTH**

If the length is increased there will no effect on the system $\sqrt{}$ The pressure will still be the same throughout the system and the same volume will be induced meaning the distance "x" will still be the same $\sqrt{}$

(2)

2.4.4

DoE/Exemplar

EXAMPLE WITH ANOTHER SYSTEM

The hydraulic jack of a motor car is another example of this type of layout $\sqrt{\sqrt{}}$

(2)

2.5 WHEEL AND AXLE

2.5.1 To calculate the magnitude of the effort (F)

2.5.2 To calculate the velocity ratio (VR)

$$VR = \frac{2D}{(d_1 - d_2)}$$

= $\frac{2 \times 210}{160 - 130}$ \checkmark
= $\frac{420}{30}$
= 14:1 \checkmark

2.5.3 To calculate efficiency of the system

The efficiency of the system will remain the same because pulley A is a lever and does not affect the operation of the differential wheel and axle machine \checkmark

(2)

(2)

7

2.6 **THREE-START SCREW THREAD**

To calculate the helix angle 2.6.1

$$\tan \phi = \frac{Lead}{Pitch circumference}$$
But, Lead = pitch x number of starts
=10 x 3
=30 nm $\sqrt{$
And, Pitch diameter = Outside diameter $-\frac{1}{2}$ pitch
=55 $-\frac{1}{2} \times 10$]
=55 -5
=50 nm $\sqrt{$
Tan $\phi = \frac{Lead}{Pitch circumference}$
= $\frac{30}{3.142 \times 50}$ $\sqrt{$
=0,191
 ϕ =10,81° $\sqrt{$ (4)
2.6.2 Leading tool angle = 90° - (helix angle + clearance angle)
=90° - (10,81° + 3°) $\sqrt{$
=90° - 13.81°
=76.19° $\sqrt{$ (2)

2.6.3 The farmer could use the four start square thread \checkmark It is stronger $\sqrt{}$ Can be made smaller to save space $\sqrt{}$ They have more travel than a three start square thread $\sqrt{}$ (4)

2.7 FRICTION CLUTCH

Oil in the clutch plate $\sqrt{}$ Friction plate worn out $\sqrt{}$ Clutch plate spring lost its tension $\sqrt{}$

(3)

TOTAL (50)

QUESTION 3: TOOLS AND EQUIPMENT

(Learning Outcome 3: Assessment Standards 2)

3.1 **BRINELL HARDNESS TESTER**

1 - Hand pump	\checkmark	
2 – Plunger	\checkmark	
3 – Cylinder	\checkmark	
4 – Ball	\checkmark	
5 – Screw	\checkmark	
6 – Material under test	\checkmark	
7 – Ram	\checkmark	
8 – Force measure	\checkmark	(8 x ½ = 4)

(4)

3.2 **GAS ANALYSER**

Switch on the analyser and permit it to warm up for at least five minutes, then zero both meter needle indicators $\sqrt{}$

Allow the engine to attain its normal operating temperature and attach the sample probe well into the tail pipe $\sqrt{}$

 $\sqrt{}$ Connect the tachometer to the engine's distributor

Increase the engine speed to 2500 rpm and maintain it for at least 30 seconds then take both carbon monoxide (CO) and hydrocarbon (HC) readings $\sqrt{}$

Reduce the speed to idling for 10-20 seconds to enable readings to stabilise and then observe CO and HC readings $\sqrt{}$

If necessary adjust the mixture and idle speed screws to give the correct percentage CO exhaust content at a specified idle speed $\sqrt{}$

If emission readings still exceed the specifications, check the fuel supply system, ignition system and engine condition for the cause of high readings $\sqrt{}$

$$(7 \times 1 = 7) \tag{7}$$

3.3 **PRESSURE TESTER** is used to determine the test pressure of pressure vessels $\sqrt{}$

If there is a pressure drop after 20-30 minutes it means that there is a leakage in the valves or seams $\sqrt{}$

(6)

The tests are carried on vessels containing either air or fluids $\sqrt{}$

CYLINDER LEAKAGE TESTER is used to determine any leak through air intake valve, an exhaust valve, head or block and excessive leakage past the piston rings $\sqrt{}$

If there the tester shows a $\,$ pressure drop after 20-30 minutes it means that there is a leakage in the cylinder $\sqrt{}$

The tests are carried out only on internal combustion engines $\sqrt{}$

3.4 USE OF MULTIMETERS

ANY THREE OF THE FOLLOWING

- Check that the measuring leads are inserted into the correct sockets for the measurement you wish to perform $$\sqrt{$}$$
- If you do not know what size of reading to expect, it is good practice to always first switch to the highest range in that function $\sqrt{}$
- Connect the metres' measuring lead probes to the correct points in the circuit to be tested $$\sqrt{}$$

(3)

TOTAL (20)

QUESTION 4: MATERIALS

(Learning Outcome 3: Assessment Standards 3)

4.1 PROPERTIES OF MATERIALS

	Non-ferrous metal	Composition	Properties	Uses	Marks
4.1.1	Phosphor bronze	Tin and phosphorous √	Corrosion resistant $$	hot, wet and corrosive conditions √	(3)
4.1.2	Duralumin	Copper and manganese √	high tensile strength √	Forgings and stampings √	(3)
4.1.3	Solder	Tin and lead $$	Low melting point √	Soldering √	(3)
4.1.4	Silver solder	Copper and silver √	Low melting point	unions of petrol pipes for aircraft engines √	(3)

4.2 **TEFLON PROPERTIES**

		Any three (3 x 1 = 3)	(3)
4.2.5	It is non-magnetic	\checkmark	
4.2.4	It provides a smooth surface	\checkmark	
4.2.3	It is easy to handle	\checkmark	
4.2.2	It is very light in weight	\checkmark	
4.2.1	It has a high friction resistance	\checkmark	

12

4.4

4.3 NYLON PROPERTIES

	TOTAL	(20)
Polyvinyl Chloride	$\sqrt{}$	(2)
	Any three (3 x 1)	(3)
Can withstand a lot of shock		
Easily machineable		
Very light in weight	\checkmark	
Low cost	\checkmark	
Maintenance free	\checkmark	
Maintenance free	\checkmark	
No need for a lubricant	\checkmark	

QUESTION 5: SAFETY, TERMINOLOGY AND JOINING METHODS

(Learning Outcome 3: Assessment Standards 1,4 and 5)

5.1 **GRINDING MACHINE**

Never use the machine without safety goggles	\checkmark
Never use the machine without the guards being correctly fitted	
See that there is on oil or grease on the floor around the machine	
Check that the tool rest is not more than 3 mm from the grinding wheel	
When setting the machine in motion, never stand in front of the wheels	
Before grinding operation takes place, let it run idle for few seconds	
Unbalanced wheel to be dressed by an emery wheel dresser	
Never grind on the side of a straight wheel. Use various wheels only for purpose for which they are made	the √
Never jab grinding matter on wheel, but approach with care for best results	; √
Never force grind so that the motor stops or slowed down excessively	
Never adjust the tool rest while the machine is running	
Work pieces and clamps should always be clamped safely and firmly	
Never let the wheel stand in cutting fluid as this will cause the whee become out of balance	l to √
Make sure that the plug is fitted properly	
Check the wire connections regularly to prevent electrical short circuits	
(Any four 4 x 1 :	= 4)

(4)

5.3

5.4

5.2 POWER SAW

Burrs burrs	on cut pieces are sharp. Use special care when handling pieces	with √	
Do no mach	ot clean chips from the machine with your hands. Use a brush. Stor ine before attempting to clean it	o the √	
Кеер	your hands clear of moving parts	\checkmark	
Stop	the machine before making adjustments	\checkmark	
Have	any cuts and scratches, even though minor, treated promptly	\checkmark	
	(Any four 4 x	1=4)	(4)
OIL	OR GREASE NEAR OXY-ACETYLENE CYLINDERS		
Oil ar	nd grease are flammable and may cause fire	$\sqrt{}$	(2)
INDE	XING		
•	Simple indexing	\checkmark	
•	Rapid indexing	\checkmark	
•	Angular indexing	\checkmark	
•	Differential indexing		(4)

(2)

(4)

(6)

5.5

INDEXING

	INDEX PLATE HOLE CIRCLES										
Side 1	24	25	28	30	34	37	38	39	41	42	43
Side 2	46	47	49	51	53	54	57	58	59	62	66

STANDARD CHANGE GEARS											
	24 x 2	28	32	40	44	48	56	64	72	86	100

Simple indexing: Use N = 120 $=\frac{40}{120}$ $\sqrt{}$ Indexing $=\frac{8}{24}$ $\sqrt{}$

i.e. No full turns and eight holes in a twenty four hole circle but three divisions more were chosen

 $=(N-n) x \frac{40}{N}$ The following gear ratio $= (120 - 117)x\frac{40}{120}$ $\sqrt{}$ $=3x\frac{40}{120}$ $=\frac{1}{1}$ $=\frac{24}{24}$ $\sqrt{}$ 0 fullturns of the crank handle, 8 holes \sqrt{in} a twenty four hole \sqrt{circle} plate with a gear ratio of $\frac{24}{24}\sqrt{and}$ the hole circle plate turning

(4) in the same direction \sqrt{as} the crank handle.

5.6 **GEAR TOOTH - LABEL**

A – Addendum	\checkmark
B – Dedendum	\checkmark
C – Total depth	\checkmark
D – Pitch circle	\checkmark
E – Clearance	\checkmark
F- Working depth	\checkmark
	D I (

Copyright reserved

Please turn over

5.7.1 INCOMPLETE PENETRATION

	Faulty joint design	\checkmark	
	Welding speed too rapid	\checkmark	
	Insufficient welding current or nozzle size	\checkmark	
	Too large an electrode or filler rod	\checkmark	
		(Any two 2 x 1 = 2)	(2)
	CORRECTION METHOD FOR INCOMPLETE PENET	RATION	
	Check root gap and root face	\checkmark	(1)
5.7.2	UNDERCUTTING		
	Current too high or nozzle too large	\checkmark	
	Incorrect manipulation	\checkmark	
	Arc length too long	\checkmark	
	Welding speed too rapid	\checkmark	
		(Any two 2 x 1 = 2)	(2)
	CORRECTION METHOD FOR UNDERCUTTING		
	Check angle so that arc force is used to fill undercut	\checkmark	(1)
5.7.3	CAUSE OF SLAG INCLUSION IN WELD		
	Joint design continues to narrow an included angle	\checkmark	
	High viscosity of molten metal	\checkmark	
	Rapid chilling	\checkmark	
	Too low a weld temperature	\checkmark	
		(Any two 2 x 1 = 2)	(2)
	CORRECTION METHOD FOR SLAG INCLUSION		
	Use preheat	\checkmark	
	Remove slag from previous weld in multi-run welds	\checkmark	
Copyrigh	it reserved	(Any one 1 x 1 = 1) Please turn over	(1)

5.8	Nick break test is breaking the weld open to examine internal defects		
	Nick bend test is used to test the skill of the welder in fusion, slag inclusion and severe porosity.		(4)
5.9	LIQUID DYE PENETRANT INSPECTION		
	The liquid dye penetrant is sprayed onto the surface being inspected	\checkmark	
	The liquid is allowed to penetrate for a short time	\checkmark	
	The excess amount of dye is removed with a cleaner	\checkmark	
	The surface is washed with water and allowed to dry	\checkmark	
	After the surface is thoroughly dry, a developer is sprayed on the surface which brings out the colour in the dye penetrant that has penetrated into cracks or pin-holes	ace, any √	
	Should the dye penetrant come up from the crack, it means there are weld flaws on the joint	ling √	
	If the dye penetrant does not come up, it means the welded joint is good	\checkmark	
	(7 :	x 1)	(7)

TOTAL (50)

DoE/Exemplar

QUESTION 6: MAINTENANCE AND TURBINES

(Learning Outcome 3: Assessment Standards 7 and 9)

6.1	VISCOSITY		(2)
	Viscosity is the thickness and fluidity of oil or resistance of oil to flow	$\sqrt{}$	
6.2	BEARING FAILURES		
	Insufficient lubrication	\checkmark	
	Excessive lubrication	\checkmark	
	Grease liquefaction	\checkmark	
	Foaming oil	\checkmark	
	Abrasive or corrosive contaminants in bearing	\checkmark	
	Raceway turning on shaft or in housing	\checkmark	
	Inadequate bearing clearances caused by being too tight on shaft housing	or on $$	
	Excessive clearance	\checkmark	
	Contamination/dirt	\checkmark	
	(Any 4 x	1 = 4)	(4)
6.3	OIL SEALS		
	Oil seals are fitted to ensure that there are no oil leaks as different parts engine are being lubricated	s of an √√	(2)

6.4 OIL GRADES

6.4.1	SAE 30/40	$\sqrt{}$	(2)
6.4.2	SAE 80/90	$\sqrt{}$	(2)
6.4.3	ATF (Automatic transmission fluid) SAE 75-250 HD or EP	$\sqrt{}$	(2)

6.5 CUTTING FLUID

	To keep the workpiece cool	\checkmark	
	To keep the cutting tool cool	\checkmark	
	To obtain a higher cutting speed	\checkmark	
	It gives the cutting tool a longer lifespan	\checkmark	
	There is a better finish on the workpiece when being machined	\checkmark	
	Does not rust the machine	\checkmark	
	Helps to wash away the chips of the metal being removed workpiece, thus keeping the cutting edge of the cutting tool clean	from the $$	
	(Any two	o 2 x 1 = 2)	(2)
6.6	OIL CHANGE		(2)
	Due to heat and friction the oil becomes weak and contaminated particles	d by metal $\sqrt[]{}$	(2)
6.7	PROCEDURE OF CHANGING THE OIL IN A CAR		
	engine must be in normal operating temperature	\checkmark	
	place an oil drainage container	\checkmark	
	remove the oil filter cap	\checkmark	
	remove the drain plug and allow oil to drain into container	\checkmark	
	use a filter wrench and remove the old oil filter	\checkmark	
	allow all oil to be drained out completely	\checkmark	
	apply a film of oil on the oil seal of the filter and fit filter using hand	\checkmark	
	fit drain plug with new washer and fill oil according to specification filter cap	on, replace √	
	Any 7	(7 x 1 = 7)	(7)

6.8 THE PURPOSE AND FUNCTION OF THE ROOT BLOWER

	It cleans the cylinder by forcing out exhaust gases. This operation scavenging	n is known as $$	
	It provides clean air to help with the cooling of the cylinder, piston valves	crown and $$	
	It fills the cylinder with an air charge higher than atmospheric pres	ssure √	
		(3 X 1 = 3)	(3)
6.9	ENGINE AND BLOWER		
6.9.1	Four stroke petrol engine equipped with a turbocharger	\checkmark	(1)
6.9.2	1 = Air inlet		
	2 = Turbocharger		
	3 = Compressed air		
	4 = Carburettor		
	5 = Exhaust gases		
	6 = Exhaust turbine	\checkmark	
		(6 X 1 = 6)	(6)

6.9.3 ADVANTAGES OF TURBOCHARGER

	(Any 2 x 1 = 2)	(2)
•	The effect of height above sea level on power is eliminated \checkmark	
•	Less fuel is used in proportion to engine capacity $$	
•	Engines with superchargers are more economical per given kilowatt output \surd	
•	More power is obtained from an engine with the same engine capacity \surd	

6.10 OPERATION OF VANE TYPE BLOWER

		()
	TOTAL	(40)
Any	3(3 x 1)	(3)
As a result of the eccentric mounting of the rotor, the space is reduced is pushed out under pressure	and air $$	
Air is then carried between the vanes and the housing to the outlet por	t √	
By creating a vacuum air is taken in through the inlet port	\checkmark	

GRAND TOTAL

[200]
