

education

Department:

Education

REPUBLIC OF SOUTH AFRICA

NATIONAL

 SENIOR CERTIFICATE
GRADE 12

MARKS: 150
TIME: 3 hours

This marking guidelines consist of $\mathbf{1 4}$ pages.

QUESTION 1		
1.1.1	Difference in amounts spent on education in 2005/6 and 2002/3 $=$ amount spent on education in 2005/6 - amount spent on education in 2002/3 $=\mathrm{R} 62$ billion -R 44 billion = R18 billion So R18 billion more was spent on education in 2005/6 than in 2002/3	Substitution 1 Subtraction 1 Correct value 1
1.1.2	The amount spent on all three of them has increased over the years. The amount spent on social development has increased by R21 billion The amount spent on health has increased by R10 billion The amount spent on education has increased by R18 billion. This means that spending on social development has increased far more than the spending on health and on education.	Description of trend 1 Reason for trend 4

NSC - Memorandum

	1. INCOME RECEIVED AND/OR ACCRUED	Rand only	
1.2.1	$\begin{aligned} & \text { Gross annual salary } \\ & =12 \times \text { R10 } 560+\text { R10 } 560 \\ & =\text { R126 } 720 \checkmark+\text { R10 } 560 \checkmark \\ & =\text { R137 } 280 \checkmark \\ & \text { OR } \\ & \text { Gross annual salary } \\ & =13 \times \text { R10 } 560=\text { R137 } 280 \end{aligned}$	R137 280	Method Substitution Correct value
1.2.2(a)	Interest received from South African banks $\begin{aligned} & i=\frac{7,2 \%}{2}=3,6 \%=\frac{3,6}{100}=0,036 \text { per half-year } \\ & n=1 \text { year }=2 \text { half-years } \quad \checkmark \\ & \begin{aligned} \boldsymbol{A} & =\boldsymbol{P}(1+\boldsymbol{i})^{n} \\ & =\mathrm{R} 150000(1+0,036)^{2} \quad \checkmark \\ & =\mathrm{R} 160994,40 \quad \checkmark \\ \text { Interest } & =\boldsymbol{A}-\boldsymbol{P} \\ & =\mathrm{R} 160994,40-\mathrm{R} 150000 \quad \checkmark \\ & =\mathrm{R} 10994,40 \quad \checkmark \end{aligned} \end{aligned}$		Calculating i Calculating n Substitution Correct value Substitution Correct value
1.2.2(b)	Taxable interest	Nil or R0 \checkmark	Correct conclusion (1)
1.2.3	SUB-TOTAL = Total income on which tax must be paid	R137280 \checkmark	Correct value
	2. MEDICAL AID AND PENSION FUND		
1.2.4(a)	Annual medical aid contributions $=12 \times \mathrm{R} 495$ $=\text { R5 } 940 \quad \checkmark$	R5 940	Multiplication Correct value
1.2.4(b)	Annual pension fund contributions $\begin{aligned} & =12 \times \mathrm{R} 792 \\ & =\mathrm{R} 9504 \end{aligned}$	R9 504	Multiplication Correct value
1.2.4(c)	SUB-TOTAL B = Medical aid + pension fund contributions	$\checkmark \quad$ R15 444	Correct value
	3. TAXABLE INCOME		
1.2.4(d)	SUB-TOTAL A - SUB-TOTAL B	$\begin{array}{cc} \hline \checkmark & \text { R137280 } \\ & - \text { R15 444 } \\ & \text { R121 836 } \\ \hline \end{array}$	Subtraction Correct value
	4. TOTAL TAX PAYABLE (use tax tables for calculation)		
1.2.5(a)	$\begin{aligned} & \text { Tax on R121 } 836 \\ & =\text { Tax on R100 000 + tax on R21 } \quad \text { 836 } \\ & =\text { R18 000 + 25\% of R21 836 } \\ & =\text { R18 000 + R5 } 459 \\ & =\text { R23 459 } \quad \checkmark \\ & \text { SUB-TOTAL C }=\text { Total tax payable } \end{aligned}$	R23 459	Method Percentage Addition Correct value (4)
	5. PAYE$\begin{array}{r} 13 \times \mathrm{R} 1918,77=\mathrm{R} 24944,01 \\ \text { SUB-TOTAL } \mathrm{D}=\text { Annual PAYE deductions } \end{array}$		
1.2.5(b)		R24 944	Multiplication Correct value
1.2.5(c)	6. TOTAL AMOUNT PAYABLE BY/TO YOU (The difference between SUB-TOTAL C AND SUBTOTAL D)	$\begin{array}{rr} \\ \checkmark & \begin{array}{r} \text { R24 } 944 \\ \\ \checkmark \\ \\ \checkmark \end{array} \text { R23 } 459 \\ \hline \text { R } 1485 \end{array}$	Subtraction Correct value
1.2.6	Patsy's PAYE deductions were more than her total tax payable. This means that more than enough PAYE tax was subtracted fro salary and she will get a rebate of R1 485.	Patsy's gross	Answer reason (2)
			[36]

	N 2	
2.1.1	Arrange the heights in ascending order: $$ (There are 12 data items, so the median lies midway between the $6^{\text {th }}$ and $7^{\text {th }}$ data item.) $\begin{aligned} \text { Median height } & =\frac{1,81+1,85}{2} \checkmark \checkmark \\ & =\frac{3,66}{2} \\ & =1,83 \mathrm{~m} \checkmark \end{aligned}$	Correct formula 1 Correct order 1 Substitution 1 Calculation 1
2.1.2	$\begin{array}{ccc\|cc\|cccccc} 1,68 & 1,70 & 1,74 & 1,78 & 1,80 & 1,81 & 1,85 & 1,90 & 1,95 & 1,98 & 2,00 \end{array} \quad 2,020 \text { (1) } \begin{array}{cc} \text { Lower } \\ \text { quartile } \end{array}$ (The lower quartile is midway through the lower half of the data items.) $\begin{aligned} \text { Lower quartile }\left(\mathrm{Q}_{1}\right) & =\frac{1,78+1,74}{2} \\ & =\frac{3,52}{2} \\ & =1,76 \mathrm{~m} \checkmark \end{aligned}$	Calculation 1 Correct value 1
2.1.3	1,68 1,70 1,74 1,78 1,80 1,81 1,85 1,90 1,95 1,98 2,00 2,02 Lower (The upper quartile is midway through the upper half of the data items.) $\begin{aligned} \text { Upper quartile }\left(\mathrm{Q}_{3}\right) & =\frac{1,95+1,98}{2} \checkmark \\ & =\frac{3,93}{2} \\ & =1,965 \mathrm{~m} \checkmark \end{aligned}$	Calculation 1 Correct value 1
2.1.4	$\begin{aligned} \text { Interquartile range } & =\text { Upper quartile }- \text { Lower quartile } \\ & =1,965 \mathrm{~m}-1,76 \mathrm{~m} \\ & =0,205 \mathrm{~m} \quad \checkmark \\ & =20,5 \mathrm{~cm} \quad \checkmark \end{aligned}$	Calculation 1 Conversion 1

2.2.1	NOTE: Depending on the method used, two slightly different answers are possible. METHOD 1 There are 12 data items. \checkmark 75% of 12 items $=\frac{3}{4} \times 12=9^{\text {th }}$ item. The $9^{\text {th }}$ item $=1,95 \mathrm{~m}$. So the height at Lerato's $75^{\text {th }}$ percentile $=1,95 \mathrm{~m} \checkmark$ METHOD 2 The $75^{\text {th }}$ percentile $=$ the upper quartile. Lerato's $75^{\text {th }}$ percentile $=1,965 \mathrm{~m} \checkmark$ So, the height at Lerato's $75^{\text {th }}$ percentile $=1,95 \mathrm{~m} . \checkmark$	METHOD 1 12 items Item number 2 Height 1 METHOD 2 Equivalence of percentile and quartile 2 Height 1 Conclusion
2.2	Charles $1,94 \mathrm{~m}$ Lebo $1,80 \mathrm{~m}$ Mohamed $1,95 \mathrm{~m}$ Siyabonga $2,00 \mathrm{~m}$ Lerato $\mathbf{1 , 9 5} \mathbf{m}$ or $\mathbf{1 , 9 6 5 ~ m}$ Charles and Lebo did not qualify to take part as the heights at their $75^{\text {th }}$ percentile were less than $1,95 \mathrm{~m}$.	Correct names 1 Reason 1

QUESTION 3 [26]		
3.1	The fixed cost is R800 ${ }^{\checkmark}$	1A Correct value (1)
3.2	METHOD 1 10% discount, means he paid 90% New cash price $=\frac{90}{100} \times$ R100 $=$ R90,00 METHOD 2 $10 \% \text { discount }=\frac{10}{100} \times \mathrm{R} 100=\mathrm{R} 10$ New price $=$ R100 - R10 $=$ R90	METHOD 1 1M percentage 1CA correct value METHOD 2 1 M percentage 1CA correct value
3.3.1	$\begin{aligned} \mathrm{A} & =\mathrm{R} 800+\mathrm{R} 90 \times 80 \quad \checkmark \\ & =\text { R } 8000 \checkmark \\ \text { B } & =\text { R } 800+\mathrm{R} 90 \times 100 \checkmark \\ & =\text { R } 9800 \quad \checkmark \end{aligned}$	1M substitution 1 A correct value 1M substitution 1 A correct value

3.3.3(a)	He must sell 20 packs to break even. \checkmark	1A Correct value (1)
3.3.3(b)	$\begin{aligned} \text { Profit } & =\text { Income }- \text { Expenses } \\ & =\text { R14 } \begin{array}{r} \\ \\ \\ \end{array}=\text { R4 } 200 \checkmark \text { R9 } 800 \end{aligned}$	1A income 1A expenses 1CA Correct value (3)
3.4.1	$\begin{align*} \text { Profit } & =\text { Income from } 80 \text { packs }- \text { Expenses from } 100 \text { packs } \\ & =\text { R11 } 200-\text { R9 } 800 \\ & =\text { R1 } 400 \quad \checkmark \tag{4} \end{align*}$	1M method 1 A income 1A expenses 1CA Correct value
3.4.2	The wholesaler will buy the pack at $\frac{80}{100} \times \mathrm{R} 90=\mathrm{R} 72,00$ Mr. Ndlovu would receive $20 \times \mathrm{R} 72,00=\mathrm{R} 1440$ extra New total profit $=$ R1 $400+$ R1 $440=$ R2 840	1M percentage 1 A correct value 1CA amount 1CA new profit
		[24]

4.3.4	METHOD 1 Six machinists are used to produce 1800 jerseys. One machinist would have to produce 300 jerseys. From the table or from the graph one machinist would take 150 hours. So 150 hours would be needed for 6 machinist to produce 1800 jerseys. METHOD 2 Time taken for 1 machinist to make 1 Jersey $=\frac{1}{2}$ hour Time taken for 6 machinist to make 1 Jersey $=\frac{1}{12}$ hour Time taken for 6 machinist to make 1800 jerseys $=1800 \times \frac{\checkmark_{1}}{12}=\frac{1800}{12}=150 \text { hours }$ METHOD 3 From the table: Time taken for six machinists to make 300 jerseys $=25$ hours Time taken for six machinists to make 1800 jerseys $=\frac{1800}{300} \times 25$ hours $\begin{aligned} & =6 \times 25 \text { hours } \\ & =150 \text { hours } \end{aligned}$	1 Proportion 1 Substitution 1 Correct Value
4.4.1	$\begin{aligned} \text { Area of outer circle } & =\pi \times \mathrm{r}^{2} \\ & =3,14 \times(8 \mathrm{~cm})^{2} \\ & =200,96 \mathrm{~cm}^{2} \end{aligned}$	1A Substitution 1CA Answer 1A Correct unit
4.4.2	Radius of inner circle: $\mathrm{r}=\frac{12 \mathrm{~cm}}{2}=6 \mathrm{~cm}$ $\begin{aligned} \text { Area of circle } & =\pi \times \mathrm{r}^{2} \\ & =3,14 \times(6 \mathrm{~cm})^{2} \\ & =113,04 \mathrm{~cm}^{2} \end{aligned}$ $\begin{aligned} \text { Area of checked part of logo } & =(200,96-113,04) \mathrm{cm}^{2} \\ & =87,92 \mathrm{~cm}^{2} \quad \checkmark \end{aligned}$	1A Calculating r 1CA Substitution 1 Method 1 Solution
		[35]

QUESTION 5

5.1.1	Area of northern wall to be painted with blue gloss paint $=$ area of bottom half of the wall - area of the bottom portion of the door $\begin{aligned} & =(12 \mathrm{~m} \times 1,5 \mathrm{~m})-1,5 \mathrm{~m} \times 0,9 \mathrm{~m} \\ & =18 \mathrm{~m}^{2}-1,35 \mathrm{~m}^{2} \\ & =16,65 \mathrm{~m}^{2} \quad \end{aligned}$	Method 1 Correct dimensions 1 Simplification 1 solution 1 (4)
5.1.2	Area of the northern wall to be painted with white PVA $=$ area of top half of wall - area of the windows - area of top portion of the door $\begin{aligned} & =(12 \mathrm{~m} \times 1,5 \mathrm{~m})-3 \times(0,45 \mathrm{~m} \times 1,2 \mathrm{~m})-(0,9 \mathrm{~m} \times 1 \mathrm{~m})^{\checkmark} \\ & =18 \mathrm{~m}^{2}-3 \times 0,54 \mathrm{~m}^{2}-0,9 \mathrm{~m}^{2} \\ & =18 \mathrm{~m}^{2}-1,62 \mathrm{~m}^{2}-0,9 \mathrm{~m}^{2} \\ & =15,48 \mathrm{~m}^{2} \quad \checkmark \end{aligned}$	Method 1 Correct dimensions 2 Simplification 1 Solution
5.2.1	Area of western wall to be painted with blue paint $\begin{aligned} & =\text { area of bottom half of the wall }-\begin{array}{l} \text { area of the bottom half of the } \\ \text { chalkboard } \end{array} \\ & =(8 \mathrm{~m} \times 1,5 \mathrm{~m})-\left(0,5 \mathrm{~m}^{\checkmark} \times 4 \mathrm{~m}\right) \\ & =12 \mathrm{~m}^{2}-2 \mathrm{~m}^{2} \\ & \checkmark \\ & =10 \mathrm{~m}^{2} \end{aligned}$	Method 1 Correct dimensions 1 Simplification 1 Solution 1
5.2.2	Area of the western wall to be painted with white PVA $\begin{aligned} & =\text { area of top half of the wall }- \text { area of top half the chalkboard } \\ & =(8 \mathrm{~m} \times 1,5 \mathrm{~m})-(4 \mathrm{~m} \times 0,5 \mathrm{~m}) \\ & =12 \mathrm{~m}^{2}-2 \mathrm{~m}^{2} \\ & =10 \mathrm{~m}^{2} \end{aligned}$	Method 1 Solution 1

5.3.1	Total area of the classroom to be painted with blue gloss paint $=$ Area of northern wall + Area of the western wall + Area of the southern wall + Area of the eastern wall	Method 1 Area of southern wall 1 Area of western wall 1 Solution 1
		(4)
5.3.2	Total area to be painted with white PVA paint$\begin{aligned} = & \text { Area of northern wall }+ \text { Area of the western wall }+ \text { Area of the } \\ & \text { southern wall }+(\text { Area of the eastern wall }- \text { Area of Pin Board }) \\ = & 15,48 \mathrm{~m}^{2}+10 \mathrm{~m}^{2}+(12 \mathrm{~m} \times 1,5 \mathrm{~m})+[(8 \mathrm{~m} \times 1,5 \mathrm{~m})-(6 \mathrm{~m} \times 1 \mathrm{~m})] \\ = & 15,48 \mathrm{~m}^{2}+10 \mathrm{~m}^{2}+18 \mathrm{~m}^{2}+12 \mathrm{~m}^{2}-6 \mathrm{~m}^{2} \\ = & 49,48 \mathrm{~m}^{2} \quad \checkmark \end{aligned}$	Method Area of southern wall 1 Area of western wall Area of pin board 1 Solution 1
		(5)
5.4.1	BLUE GLOSS PAINT: $8 \mathrm{~m}^{2}$ is covered by 1ℓ So $1 \mathrm{~m}^{2}$ is covered by $\frac{1}{8} \ell$ Then $56,65 \mathrm{~m}^{2}$ will be covered by $\frac{1}{8} \times 56,65 \quad \ell=7,08125 \ell$ $\approx 8 \ell$	Proportion 1 Solution 1 Rounding up 1 (3)
5.4.2	PVA: $6 \mathrm{~m}^{2}$ is covered by 1ℓ So $1 \mathrm{~m}^{2}$ is covered by $\frac{1}{6} \ell$ Then $49,48 \mathrm{~m}^{2}$ will be covered by $\frac{1}{6} \times 49,48 \mathrm{~m}^{2}$ $\begin{aligned} & =8,246666666 \ell \\ & \approx 9 \ell \end{aligned}$	Proportion 1 Solution 1 Rounding up 1 (3)

5.5	$5 \times$ cost of 1ℓ of blue gloss paint or white PVA	
	$=5 \times \mathrm{R} 92,00=\mathrm{R} 460,00$	
	So it is cheaper to buy one 5ℓ tin of blue gloss paint or white PVA than to buy five 1 -litre tins.	Concept that it
		is cheaper to
	Cost of buying 8ℓ of blue gloss paint	buy one 5ℓ tin
	$=$ cost of buying one 5ℓ tin + three 1ℓ tins	than to buy four
	$=1 \times \mathrm{R} 289,00+3 \times \mathrm{R} 99,00 \quad \checkmark$	1ℓ tins 1
	$=\mathrm{R} 289,00+\mathrm{R} 297,00$	
	$=\mathrm{R} 586,00 \quad \checkmark$	Solution 2
	$4 \times$ cost of 1ℓ of white PVA $=4 \times \mathrm{R} 92,00=\mathrm{R} 368,00$.	Concept that it
		is cheaper to
	It is cheaper to buy one 5ℓ tin of white PVA paint than to buy four 1ℓ tins of paint. So, it is cheaper to buy two 5ℓ tins of white PVA paint	buy two 5ℓ tins than to buy one
	than to buy $5 \ell+(4 \times 1 \ell)$ of paint. $\quad \checkmark$	5ℓ and four 1ℓ tins 1
	Cost of buying 9ℓ of white PVA	
	$=$ cost of buying 10ℓ of paint	Solution 2
	$\begin{aligned} & =2 \times R 220,00 \\ & =\text { R } 440,00 \end{aligned}$	
	Total cost of painting the classroom .	Method 1
	$=$ cost of buying 7ℓ of blue gloss paint + cost of buying 10ℓ of white PVA	
	+ cost of 4 mohair rollers sets \checkmark	Substitution 1
	$=\mathrm{R} 586,00+\mathrm{R} 440,00+(4 \times \mathrm{R} 30,00) \quad \checkmark$	
	$=\mathrm{R} 586,00+\mathrm{R} 440,00+\mathrm{R} 120,00$	Answer 1
	$=\text { R1 146,00 }$	(9)

TOTAL: 150

