

education

Department of Education

 REPUBLIC OF SOUTH AFRICA
SENIOR CERTIFICATE EXAMINATION - 2006

MATHEMATICS P2
STANDARD GRADE
OCTOBER/NOVEMBER 2006

MARKS: 150
TIME: 3 hours

This question paper consists of $\mathbf{1 1}$ pages, a formula sheet and $\mathbf{5}$ diagram sheets.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions:

1. This question paper consists of 9 questions, a formula sheet and 5 diagram sheets.
2. Use the formula sheet to answer this question paper.
3. Detach the diagram sheets from the question paper and place them inside your ANSWER BOOK.
4. The diagrams are not drawn to scale.
5. Answer ALL the questions.
6. Number ALL the answers correctly and clearly.
7. ALL the necessary calculations must be shown.
8. Non-programmable calculators may be used, unless otherwise stated.
9. The number of decimal digits to which answers must be rounded off will be stated in the question where necessary.

ANALYTICAL GEOMETRY

NOTE: - USE ANALYTICAL METHODS IN THIS SECTION. - CONSTRUCTION AND MEASUREMENT METHODS MAY NOT BE USED.

QUESTION 1

In the diagram alongside, $\mathrm{A}(2 ; 1)$,
$\mathrm{C}(-6 ;-3)$ and B are the
vertices of $\triangle \mathrm{ABC}$.
D ($-5 ; 2$) is the midpoint of BC.
Straight line BC makes an
angle θ with the x-axis.

1.1 Calculate the length of AC , without using a calculator.

1.2 Determine:

1.2.1 The gradient of DC
1.2.2 The size of θ, rounded off to ONE decimal digit
1.2.3 The value of k if D, C and $\mathrm{E}(-3 ; \mathrm{k})$ are collinear
1.2.4 The co-ordinates of B
1.3 1.3 Prove that the equation of the locus of point $\mathrm{P}(x ; y)$, which is
equidistant from points A and C , is given by $2 x+y+5=0$
1.3.2 Determine whether point $(1 ;-3)$ lies on the straight line $2 x+y+5=0$

QUESTION 2

In the diagram alongside, $\mathrm{A}(\sqrt{12} ; 2)$
is a point on the circle
with centre $\mathrm{O}(0 ; 0)$.
The circle cuts the x-axis and y-axis
at P and T respectively.
Straight line RO intersects
the circle at R .
RO || TP

2.1 Show that the equation of the circle is given by $x^{2}+y^{2}=16$
2.2 Write down the co-ordinates of P and T .
2.3 Hence, write down the equation of the tangent to the circle at T .
2.4 Determine:
2.4.1 The gradient of RO
2.4.2 The equation of RO

TRIGONOMETRY

QUESTION 3

3.1 If $\hat{A}=121^{\circ}$ and $\hat{B}=61^{\circ}$, calculate the values of the following (rounded off to TWO decimal digits):
3.1.1 $\operatorname{cosec} A-\tan B$
3.1.2 $\cos ^{2}(\mathrm{~A}+2 \mathrm{~B})$
3.2 If $12 \operatorname{cosec} \theta=13$ and $\theta \in\left[90^{\circ} ; 270^{\circ}\right]$, by using a sketch and without using a calculator, calculate the values of the following:
3.2.1 $\cot \theta$
3.2.2 $\tan \theta-\sec \theta$
3.3 Simplify to a single trigonometric ratio of x :

$$
\begin{equation*}
\frac{\sin \left(180^{\circ}+x\right) \cdot \tan 135^{\circ}}{\operatorname{cosec}\left(90^{\circ}-x\right) \cdot \cos \left(360^{\circ}-x\right)} \tag{6}
\end{equation*}
$$

QUESTION 4

Sketch graphs of the curves of f and g are shown in the diagram below:
Given: $\mathrm{f}(x)=-2 \cos x$ and $\mathrm{g}(x)=\cos 2 x$ for $x \in\left[0^{\circ} ; 180^{\circ}\right]$

4.1 Determine the numerical values of a, b, c, d and e.
4.2 Determine the value(s) of x, for which:
4.2.1 $\mathrm{g}(x)-\mathrm{f}(x)=3$ for $x \in\left[0^{\circ} ; 180^{\circ}\right]$
4.2.2 $\mathrm{f}(x)<0 \quad$ for $\quad x \in\left[0^{\circ} ; 180^{\circ}\right]$
4.2.3 $\mathrm{f}(x) . \mathrm{g}(x)>0 \quad$ for $x \in\left[0^{\circ} ; 135^{\circ}\right]$

QUESTION 5

5.1 Use fundamental trigonometric identities and NOT a sketch to simplify the following:

$$
\begin{equation*}
\left(\tan ^{2} \theta+1\right)\left(1-\sin ^{2} \theta\right) \tag{4}
\end{equation*}
$$

5.2 Solve for α, rounded off to TWO decimal digits if

$$
\begin{equation*}
\sin 2 \alpha=-0,4 \text { for } 2 \alpha \in\left[0^{\circ} ; 270^{\circ}\right] \tag{4}
\end{equation*}
$$

QUESTION 6

6.1 In the diagram alongside, $\triangle \mathrm{PQR}$ is an acute-angled triangle.

Use the diagram on the diagram sheet, or redraw the diagram in your answer book to prove that:
$p^{2}=q^{2}+r^{2}-2(q)(r) \cos \mathrm{P}$

6.2 In $\Delta \mathrm{DEF}, \quad d=5$ units, $e=8$ units and $f=12$ units.
6.2.1 Calculate the size of \hat{F}, rounded off to TWO decimal digits.
6.2.2 Hence, calculate the area of $\triangle \mathrm{DEF}$, rounded off to TWO decimal digits.
6.3 In the diagram alongside,
$\mathrm{A}, \mathrm{B}, \mathrm{P}$ and C are the positions of four players on a sports field.
B, P and C are in a straight
 line.
$\mathrm{A} \hat{\mathrm{P}} \mathrm{C}=x$
$\hat{\mathrm{A}}=y$
6.3.1 Express, without reasons, APB in terms of x.
6.3.2 Prove that the distance between players A and B is given by

$$
\begin{equation*}
\mathrm{AB}=\frac{\mathrm{BP} \cdot \sin x}{\sin y} \tag{4}
\end{equation*}
$$

6.3.3

If $\mathrm{BP}=50 \mathrm{~m}, x=150^{\circ}$ and $\hat{\mathrm{B}}=30^{\circ}$, calculate, without using a calculator, the distance $A B$. (Leave the answer in surd form.)

EUCLIDEAN GEOMETRY

NOTE: - DIAGRAMS FOR PROVING THEORY MAY BE USED ON THE DIAGRAM SHEETS OR REDRAWN IN YOUR ANSWER BOOK.
 - DETACH THE DIAGRAM SHEETS FROM THE QUESTION PAPER AND PLACE THEM IN YOUR ANSWER BOOK.
 - GIVE A REASON FOR EACH STATEMENT, UNLESS OTHERWISE STATED.

QUESTION 7

7.1 In the diagram alongside, AB is a chord of a circle with centre O .

Use the diagram on the diagram sheet, or redraw the diagram in your answer book to prove the theorem which states that:

If M is the midpoint of $A B$
then $\mathbf{O M} \perp \mathbf{A B}$.

7.2 In the diagram alongside, O is the centre of circle NAM and

OPA \perp MPN.
$\mathrm{MN}=48$ units
$\mathrm{OP}=7$ units

Calculate, with reasons, the length of PA.
7.3 In the diagram alongside,

TR is a chord of circle PQRST.

QAT \perp PAS
$\hat{\mathrm{Q}}_{1}=30^{\circ}$
$\hat{\mathrm{P}}=\hat{S}_{1}$

In the following questions, give a reason for each statement:
7.3.1 Name THREE angles each equal to 60°.
7.3.2 Calculate the size of $\hat{Q R S}$.
7.3.3 Prove that $\mathrm{PS} \| \mathrm{QR}$.
7.3.4 Prove that TR is a diameter of the circle.

QUESTION 8

8.1 In the diagram alongside, M and N are points on sides $A B$ and $A C$ respectively of $\triangle \mathrm{ABC}$.

Use the diagram on the diagram sheet or redraw the diagram in your answer book to prove the theorem which states that:

If $\mathrm{MN} \| \mathrm{BC}$, then $\frac{\mathrm{AM}}{\mathrm{MB}}=\frac{\mathrm{AN}}{\mathrm{NC}}$

8.2 In the diagram below, XYT is a triangle with Q the midpoint of YT .
P is a point on $X Y$ such that $X Q$ and $P T$ intersect at S.
SR \| XY with R on YT.
$\mathrm{XS}: \mathrm{XQ}=1: 3$

Determine, with reasons, the numerical value of:
8.2.1 $\frac{\mathrm{YR}}{\mathrm{RQ}}$
8.2.2 $\quad \frac{\mathrm{TS}}{\mathrm{TP}}$

QUESTION 9

In the diagram below, PQ is a tangent to circle QRBAT .
RT is produced to meet tangent QP at P .
TA and RB are produced to meet at S.
SP || BA.

Let $\hat{S}_{1}=\boldsymbol{x}$
9.1 Name, with reasons, TWO other angles each equal to \boldsymbol{x}.

9.2 Prove that Δ PTS ||| Δ PSR.

9.3 9.3.1 Prove that $\triangle \mathrm{PQT}||\mid \quad \triangle \mathrm{PRQ}$.
9.3.2 Hence, show that $\mathrm{PQ}^{2}=\mathrm{PR}$. PT
9.4 Hence, show that $\mathrm{PQ}=\mathrm{PS}$

Mathematics Formula Sheet (HG and SG)

Wiskundeformuleblad (HG en SG)

$$
\mathbf{x}=\frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^{2}-\mathbf{4 a c}}}{\mathbf{2 a}}
$$

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

$$
\mathbf{y}=\mathbf{m x}+\mathbf{c}
$$

$$
\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right)
$$

$$
\mathbf{m}=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}
$$

$$
\mathbf{m}=\boldsymbol{\operatorname { t a n }} \theta
$$

$$
\left(\mathbf{x}_{3} ; \mathbf{y}_{3}\right)=\left(\frac{\mathbf{x}_{1}+\mathbf{x}_{2}}{2} ; \frac{\mathbf{y}_{1}+\mathbf{y}_{2}}{2}\right)
$$

$$
\mathbf{x}^{2}+\mathbf{y}^{2}=\mathbf{r}^{2}
$$

$$
(\mathbf{x}-\mathbf{p})^{2}+(\mathbf{y}-\mathbf{q})^{2}=\mathbf{r}^{2}
$$

$$
\text { In } \triangle \mathrm{ABC}: \quad \frac{\mathrm{a}}{\sin \mathrm{~A}}=\frac{\mathrm{b}}{\sin \mathrm{~B}}=\frac{\mathrm{c}}{\sin \mathrm{C}}
$$

$$
\mathbf{a}^{2}=\mathbf{b}^{2}+\mathbf{c}^{2}-\mathbf{2 b} \cdot \cdot \cos \mathbf{A}
$$

$$
\text { area } \triangle \mathrm{ABC}=\frac{1}{2} \mathbf{a b} \cdot \sin \mathrm{C}
$$

$$
\begin{aligned}
& T_{n}=\mathbf{a}+(\mathbf{n}-\mathbf{1}) \mathbf{d} \\
& \mathbf{S}_{\mathrm{n}}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}+\mathbf{T}_{\mathrm{n}}\right) \quad \mathbf{S}_{\mathrm{n}}=\frac{\mathbf{n}}{\mathbf{2}}(\mathbf{a}+\ell) \\
& S_{n}=\frac{\mathbf{n}}{\mathbf{2}}[2 a+(n-1) d] \\
& T_{n}=\mathbf{a . r}{ }^{\mathrm{n}-1} \\
& S_{n}=\frac{\mathbf{a}\left(1-\mathbf{r}^{\mathrm{n}}\right)}{1-\mathbf{r}} \quad(\mathrm{r} \neq 1) \\
& S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \quad(r \neq 1) \\
& \mathbf{S}_{\infty}=\frac{\mathbf{a}}{\mathbf{1 - r}} \quad(|\mathbf{r}|<\mathbf{1}) \\
& \begin{array}{l}
A=P\left(1+\frac{r}{100}\right)^{n} \\
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{array}
\end{aligned}
$$

