

DEPARTMENT OF EDUCATION REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATION - 2005

MATHEMATICS P2

STANDARD GRADE

FEBRUARY/MARCH 2005

Marks: 150

3 Hours

This question paper consists of 12 pages, 1 formula sheet and 4 diagram sheets.

Copyright reserved

Please turn over

INSTRUCTIONS

- 1. This question paper consists of **NINE** questions, a formula sheet and diagram sheets.
- 2. Use the formula sheet to answer this question paper.
- 3. Detach the diagram sheets from the question paper and place them inside your **ANSWER BOOK**.
- 4. The diagrams are not drawn to scale.
- 5. Answer **ALL** the questions.
- 6. Number **ALL** the answers correctly and clearly.
- 7. **ALL** the necessary calculations must be shown.
- 8. Non-programmable calculators may be used, unless otherwise stated.
- 9. The number of decimal digits to which answers must be rounded off will be

stated in the question where necessary.

ANALYTICAL GEOMETRY

NOTE: – USE ANALYTICAL METHODS IN THIS SECTION.

- CONSTRUCTION AND MEASUREMENT METHODS MAY NOT BE USED.

QUESTION 1

In the diagram below E(-2; 4), K(2; -2) and N(p; 7)

are three points in a Cartesian plane.

Determine:

1.4	The value of p if KE \perp KN	(5) [17]
1.3	The size of θ , the angle of inclination of KE (rounded off to ONE decimal digit)	(3)
1.2	The length of ED, if D is the y-intercept of KE (leave the answer in surd form)	(4)
1.1	The equation of straight line KE	(5)

QUESTION 2

Determine:

2.1.1	The coordinates of A	(7)
2.1.2	The coordinates of midpoint M of OC	(2)
2.1.3	Hence, the equation of the straight line parallel to AB and passing through M	(4)
In each of each case	f the following determine the equation of the locus of point $P(x; y)$ and in also sketch the locus:	

- 2.2.1 P is 3 units from the circle $x^2 + y^2 = 4$ (4)
- 2.2.2 P is two units to the left of the y-axis (4)

[21]

2.2

TRIGONOMETRY

QUESTION 3

Answer this question without the use of a calculator.

3.1 If $7 \sin \theta - 5 = 0$ and $\cos \theta < 0$, calculate, with the aid of a diagram, the value of $\cot \theta \cdot \cos \theta$ (6)

3.2 Simplify:
$$\frac{\sin(180^\circ - x) \cdot \sec(360^\circ - x) \cdot \cos(180^\circ + x) \cdot \tan 300^\circ}{\cos(90^\circ - x)}$$
 [14]

QUESTION 4

4.1 Given: $f(x) = \cos 2x$ and $g(x) = \tan x$

4.1.1	Use the system of axes provided on the diagram sheet to sketch the curves of f and g for $x \in [0^\circ; 180^\circ]$. Clearly show ALL intercepts with the axes and ALL turning points. Clearly indicate any asymptotes using a dotted line(s).		(8)
4.1.2	Use y x ∈ [your graphs in QUESTION 4.1.1 to answer the following if 0° ; 180°]:	
	(a)	For which value of x is $\tan x$ undefined?	(1)
	(b)	What is the period of f ?	(1)
	(c)	Determine the value(s) of x for which $f(x) - g(x) = 1$	(3)
	(d)	For which value(s) of x is $f(x) \ge g(x)$ for $x \in [45^\circ; 180^\circ]$?	(3)
Given the	three p	oints (0°; 0), (90°; -2) and (180°; 0).	

On which **ONE** of the following curves would ALL of the above three points lie:

f:	$y = -2 \cos x$
<i>h</i> :	$y = -\cos 2x$
g:	$y = -2 \sin x$
<i>k</i> :	$y = -\sin 2x$

(2) [**18**]

4.2

QUESTION 5

5.1 Use fundamental trigonometric identities and not a diagram to prove the following identity:

$$(\cot x + \tan x)\cos x = \csc x \tag{6}$$

5.2 Given: $3 \cos x = 2,151$ for $x \in [0^{\circ}; 360^{\circ}]$ 5.2.1 Solve for *x*, rounded off to TWO decimal digits. (3) 5.2.2 Hence determine the value of $\cot \frac{1}{2}x$ if $x > 90^{\circ}$ (rounded off to TWO decimal digits). (2)

QUESTION 6

(4)

[11]

Copyright reserved

6.2 The diagram below represents a triangular piece of land ABC on Robben Island which the Heritage Foundation wants to use for a memorial site.

Determine the following (rounded off to TWO decimal digits):

6.2.1	The distance AC	(4)
6.2.2	The size of $\stackrel{\wedge}{ACB}$	(3)
6.2.3	The area of $\triangle ABC$	(3)
6.2.4	Hence, the distance DC	(3) [17]

EUCLIDEAN GEOMETRY

NOTE : - DIAGRAMS FOR PROVING THEORY MAY BE USED ON THE DIAGRAM SHEETS, OR REDRAWN IN YOUR ANSWER BOOK. - DETACH THE DIAGRAM SHEETS FROM THE QUESTION PAPER AND PLACE THEM IN YOUR ANSWER BOOK. - GIVE A REASON FOR EACH STATEMENT.

QUESTION 7

7.1 In the diagram below, ABCD is a cyclic quadrilateral of the circle with centre O.

Use the diagram on the diagram sheet or redraw the diagram in your answer book

to prove the theorem which states that

 $\stackrel{\wedge}{B} + \stackrel{\wedge}{D} = 180^{\circ}$

(5)

O is the centre of circle ADBC

$$\stackrel{\wedge}{\mathrm{B}_2} = 40^{\circ}$$

7.2.1 Determine, stating reasons, the size of D_2 (6)

		\wedge	
7.2.2	If AO DB, determine, stating reasons,	the size of OAD.	(1)

- 7.3 Complete the following statements, by only writing the appropriate missing word, to make the statement TRUE:
 - 7.3.1 If a chord of a circle subtends a right angle on the circumference, then the chord is a ...
 - 7.3.2 If a line is drawn through the end point of a chord making with the chord an angle equal to an angle in the alternate segment, then the line is a ...to the circle.

(1)

(1)

Let $\stackrel{\wedge}{P}_2 = x$

7.4.1	Name, stating a reason, ONE other angle equal to x.	(2)
7.4.2	Prove that PT is a diameter of circle PQT.	(3)
7.4.3	If it is further given that S is the midpoint of chord QN, prove that RN is a diameter of circle RSN.	(3)
7.4.4	Hence, prove that TR is a tangent to circle RSN.	(2) [24]

DoE/2005/EC1

Μ

11

SENIOR CERTIFICATE EXAMINATION - MARCH 2005

QUESTION 8

8.1 In the diagram alongside , PQ || BC with P on AB and Q on AC. Use the diagram on the diagram sheet or redraw the diagram in your answer book to prove the theorem which states that

$$\frac{AP}{PB} = \frac{AQ}{QC}$$

8.2 In the construction of roofs, architects design trusses to support roofs.A symmetrical truss known as the 'scissors truss' is shown in the diagram alongside.

$$AB = 7,5$$
 metres

$$XB = 5$$
 metres

AC = 6 metres

YC = 4 metres

8.2.1 Determine the numerical value of the following:

(a)	AX	
	XB	(1)

$$\frac{AY}{YC} \tag{1}$$

$$\begin{array}{c} \text{(c)} & \underline{AX} \\ & \overline{AB} \end{array} \tag{1}$$

8.2.2 Prove that XY || MN. (3)

[12]

D

QUESTION 9

In the diagram alongside, AB is a diameter

of the circle with centre O.

AB is produced to P.

PR is a tangent to the circle at C.

RO intersects AC at T.

 $\mathrm{RO} \perp \mathrm{AC}$

Let
$$\hat{C}_1 = x$$

9.1	Give, sta	Give, stating reasons, TWO other angles each equal to x .	
9.2	Determine the following in terms of <i>x</i> :		
	9.2.1	PCA	(3)
		A	

```
9.2.2 CBP (3)
```

9.3 Prove that:

9.3.1 T is the midpoint of AC (2)

- 9.3.2 Δ PCB ||| Δ PAC (2)
- 9.4 Hence, prove that 2 AT. $PC = CB \cdot AP$ (3)
 - [16]

TOTAL: 150

<u>Mathematics Formula Sheet (HG and SG)</u> <u>Wiskunde Formuleblad (HG en SG)</u>

$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
$T_n = a + (n-1)d$ $S_n = \frac{n}{2}(a+l)$	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$
$T_n = a.r^{n-1}$ $S_n = \frac{a(1-r^n)}{1-r}$, $r \neq 1$ $S_n = \frac{a(r^n-1)}{r-1}$, $r \neq 1$	$S_{\infty} = \frac{a}{1-r}$, $r \neq 1$
$A = P \left(1 + \frac{r}{100} \right)^n \qquad \qquad A = P \left(1 - \frac{r}{100} \right)^n$	
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
y = mx + c	
$y - y_1 = m(x - x_1)$	
$m = \frac{y_2 - y_1}{x_2 - x_1}$	
$m = \tan \Theta$	
$\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$	
$x^{2} + y^{2} = r^{2}$ $(x - p)^{2} + (y - q)^{2} = r^{2}$	
In $\triangle ABC$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	
$a^2 = b^2 + c^2 - 2bc \cdot \cos A$	
$area \Delta ABC = \frac{1}{2}ab.\sin C$	