

DEPARTMENT OF EDUCATION REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATION - 2005

MATHEMATICS P1

STANDARD GRADE

FEBRUARY/MARCH 2005

Marks: 150

3 Hours

This question paper consists of 8 pages and 1 information sheet.

Copyright reserved

Please turn over

INSTRUCTIONS

Read the following instructions carefully before answering the questions.

- 1. This paper consists of **EIGHT** questions. Answer **ALL** the questions.
- 2. Clearly show **ALL** calculations, diagrams, graphs, et cetera you have used in determining the answers.
- 3. An approved calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 4. If necessary, answers should be rounded off to **TWO** decimal places, unless stated otherwise.
- 5. Graph paper is **NOT** required in this question paper.
- 6. Number the answers **EXACTLY** as the questions are numbered.
- 7. Diagrams are not necessarily drawn to scale.
- 8. It is in your own interest to write legibly and to present the work neatly.
- 9. An information sheet with formulae is included at the end of this question paper.

3 SENIOR CERTIFICATE EXAMINATION - MARCH 2005

QUESTION 1

1.1 Given: f(x) = x(x+2) - 4

Determine:

1.1.1
$$f(-1)$$
 (2)

1.1.2 x if f(x) = 0 (Give your answer correct to **TWO** decimal places.) (7)

1.2 For which values of *p* will the following equation have non-real roots:

$$3x^2 + 2x + 2 + p = 0 \tag{7}$$

1.3 Senami calculated the discriminant of a quadratic equation and determined the following:

$$\Delta = (2k - 9)(2k - 1)$$

Describe the nature of the roots of the equation if k = 6. (3)

1.4 Solve for x and y if they satisfy the following equations simultaneously:

$$y + 7 = 2x x2 + xy + y2 = 21$$
(8)

QUESTION 2

- 2.1 If $f(x) = ax^3 5x^2 2x + 5$ is divided by (x 2), the remainder is -3. Find the value of *a*. (5)
- 2.2 Solve the following equation: $2x^{3}-3x^{2}-5x+6=0$ (6)
 [11]

[27]

4 SENIOR CERTIFICATE EXAMINATION - MARCH 2005

(2)

QUESTION 3

3.1	Given:	$f(x) = -x^2 + 4x - 3$	
	3.1.1	Calculate the x - and y -intercepts of the graph of f .	(4)
	3.1.2	Calculate the co-ordinates of the turning point of f .	(5)
	3.1.3	What is the largest possible value of $-x^2 + 4x - 3$?	(1)
	3.1.4	Make a neat sketch graph of f . Indicate the co-ordinates of the intercepts on the axes and of the turning point of the graph.	(5)
	3.1.5	On the same system of axes, draw a straight line which will help you to solve the equation $-x^2 + 4x - 3 = -1$.	(2)
	3.1.6	Use the graph to determine the values of x for which $-x^2 + 4x - 3 \ge 0$.	(2)
3.2	The graph	s of a straight line f and the semi-circle h are sketched below. A and	

B(-3; 0) are intercepts of the graphs on the co-ordinate axes.

3.2.1	Determine the equation of <i>h</i> .	(2)

3.2.2 Determine the equation of f. (2) [25]

QUESTION 4

4.1 **Without using a calculator**, calculate the value of each of the following in its simplest form:

4.1.1
$$(3^{-1} + 2^{-1})^{-1}$$
 (3)

4.1.2
$$\frac{9^{n-1} \cdot 27^{3-2n}}{81^{2-n}}$$
(6)

4.1.3
$$2\log 2 + \log 25$$
 (3)

4.1.4
$$\frac{\sqrt{98} - \sqrt{8}}{\sqrt{50}}$$
 (4)

4.2 Solve for *x*, **without using a calculator:**

4.2.1
$$2x^{\frac{3}{4}} = 16$$
 (4)

4.2.2
$$3^x - 3^{x-2} = 24$$
 (6)

4.2.3
$$\log x = \frac{\log 625}{\log 25}$$
 (4)

6 SENIOR CERTIFICATE EXAMINATION - MARCH 2005

QUESTION 5

5.1	The following arithmetic sequence is given: -1 ; 6; 13;			
	Determine:			
	5.1.1	The 49 th term		(3)
	5.1.2	The sum of the first 87 term	S	(3)
5.2	20; 16; is a geometric sequence.			
	Calculate the sum of the first ten terms.			(4)
5.3	The following are three consecutive terms of a geometric sequence:			
	3x-2; 2	4x + 2; $4x + 1$	(<i>x</i> is a natural number)	
	Calculate	the value of x .		(6)

5.4 Tiles are arranged as shown below. The first arrangement has 5 tiles, the second arrangement has 9 tiles, the third arrangement has 13 tiles and the fourth arrangement has 17 tiles. The arrangements continue in this pattern.

Derive, in terms of n, a formula for the number of tiles in the n^{th} arrangement. (3) [19]

QUESTION 6

Read the advertisement below carefully and then answer the question that follows. Round off your answer correct to **TWO** decimal places.

In 3 years' time Thembi needs R12 500 for a vacation. How much money does he need to deposit now into **SOUTH AFRICAN BANK** in order to be able to withdraw that amount at the end of the 3 years?

QUESTION 7

7.1 Use **first principles** to determine the derivative of
$$f(x)$$
 if $f(x) = 4x^2$ (5)

7.2 Use differentiation rules to determine the derivatives of the following functions:

7.2.1
$$y = 4x^3 + 12x^2 + 9x$$
 (3)

7.2.2
$$f(x) = -\frac{1}{x^4} + \sqrt{x}$$
 (4)

[5]

7.3 The graph below, not drawn to scale, represents the function given by:

7.3.3	Determine the gradient of the tangent to the graph of f at the <i>y</i> -intercept B.	(5) [27]
7.3.2	Use the graph to solve for x if $f'(x) \le 0$.	(2)
7.3.1	Determine the co-ordinates of the turning points A and C.	(8)

QUESTION 8

A biologist states that when a certain type of antibacterium is introduced into a culture of bacteria, the number of bacteria present is given by the formula where b(t), in millions, is the number of bacteria present at time *t*, measured in hours:

 $b(t) = -4t^2 + 60t + 1500$

8.1	How many bacteria were present at the beginning?	(3)
8.2	At what moment was the maximum number of bacteria present?	(3) [6]

TOTAL: 150

Information Sheet (HG and SG) Inligtingsblad (HG en SG)

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $T_n = a + (n-1)d$ $S_n = \frac{n}{2}(a+l)$ $S_n = \frac{n}{2}[2a + (n-1)d]$ $T_n = a \cdot r^{n-1}$ $S_n = \frac{a(1-r^n)}{1-r}$ $S_n = \frac{a(r^n-1)}{r-1}$ $S_{\infty} = \frac{a}{1-r}$ $A = P \left(1 + \frac{r}{100} \right)^n \qquad \qquad A = P \left(1 - \frac{r}{100} \right)^n$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ y = mx + c $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$ $\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$ $x^2 + y^2 = r^2$ $(x-p)^2 + (y-q)^2 = r^2$ In $\triangle ABC$: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cdot \cos A$ area $\triangle ABC = \frac{1}{2}ab.\sin C$