

education

Department: Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATION - 2005

MATHEMATICS P2

HIGHER GRADE

OCTOBER/NOVEMBER 2005

Marks: 200

Time: 3 Hours

This question paper consists of 11 pages, 1 information sheet and 6 diagram sheets.

Copyright reserved

INSTRUCTIONS

- 1. This question paper consists of **9** questions, a formula sheet and diagram sheets.
- 2. Use the formula sheet to answer this question paper.
- 3. Detach the diagram sheets from the question paper and place them inside your **ANSWER BOOK.**
- 4. The diagrams are not drawn to scale.
- 5. Answer **ALL** the questions.
- 6. Number **ALL** the answers correctly and clearly.
- 7. **ALL** the necessary calculations must be shown.
- 8. Non-programmable calculators may be used, unless otherwise stated.
- 9. The number of decimal digits to which answers must be rounded off will be stated in the question where necessary.

ANALYTICAL GEOMETRY

NOTE : – USE ANALY TICAL METHODS IN THIS SECTION. – CONSTRUCTION AND MEASUREMENT METHODS MAY NOT BE USED

QUESTION 1

1.1 A(-2;4), B(-6;2) and C(3;p) are points in the Cartesian plane. Calculate the value of p if AB \perp AC

1.2.1	Calculate the size of \hat{R} , rounded off to TWO decimal digits.	(6)
1.2.2	Determine the equation of PN.	(4)
1.2.3	Determine the coordinates of L, the midpoint of PQ.	(5)
1.2.4	Determine the coordinates of A, the point of intersection of the medians of ΔPRQ .	(6) [26]

Copyright reserved

(5)

QUESTION 2

- 2.1.2 Determine the equation of the circle in terms of b and c. (2)
- 2.1.3 Hence, determine the numerical values of b and c. (8)
- 2.1.4 Hence, determine the equation of the tangent to the circle at Q . (2)
- 2.2 A circle with equation $x^2 + y^2 + 2x 6y 6 = 0$ is given. P is a locus point in the Cartesian plane such that the length of the tangent line drawn from P to the circle is equal to the length of the radius of the circle.
 - 2.2.1 Determine:
 - (a) the length of the radius of the circle. (3)
 - (b) the equation of the locus of P. (4)
 - 2.2.2 Describe fully the locus obtained in QUESTION 2.2.1(b). (3)
 - [24]

Copyright reserved

TRIGON OMETRY

QUESTION 3

3.1 In the diagram alongside,

Determine	e the coordinates of P, rounded off to TWO decimal digits.	(4)
If sin 54°	p = p, express the following in terms of p, with out using a calculator:	
3.2.1	sin 594°	(2)
3.2.2	cos 18°	(6)
3.2.3	$\tan 27^{\circ} + \cot 63^{\circ}$ 1 + ($\tan 207^{\circ}$)($\cot 117^{\circ}$)	(6)

QUESTION 4

3.2

Given : $f(x) = \cos x - \frac{1}{2}$ and $g(x) = \sin (x + 30^{\circ})$

4.1 Use the set of axes provided on the diagram sheet to draw sketch graphs of the curves of f and g for $x \in [-120^{\circ}; 60^{\circ}]$. Show clearly all intercepts with the axes, coordinates of all turning points and coordinates of all end points of both curves. (9)

[18]

4.2	Use the graphs drawn in QUESTION 4.1 to determine for which value(s) of
	$x \in [-120^{\circ}; 60^{\circ}]$ is:

4.2.3	g(x) undefined? f(x)	(2) [16]
4.2.2	$\mathbf{f}(x) - \mathbf{g}(x) > 0$	(2)
4.2.1	$\cos\left(60^\circ - x\right) < 0$	(3)

QUESTION 5

- 5.1 5.1.1 Give an expression for $\cos(A + B)$ in terms of the sines and the cosines of A and B. (1)
 - 5.1.2 Hence or otherwise, prove without using a calculator that

$$\sin 15^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4}$$
(6)

5.2 Given the identity: $\cot 2x + \csc 2x = \cot x$

- 5.2.1 Prove the identity. (7)
- 5.2.2 Determine the values of x for which the identity is undefined. Give the answer as a general solution. (5)
- 5.3 Solve the equation :

sec
$${}^{2}A - 3 \tan A - 5 = 0$$
, for $A \in [-90^{\circ}; 0^{\circ}]$. (6)

[25]

QUESTION 6

6.2.1 Prove that
$$\cos L = \frac{5 - x^2}{4x}$$
 (4)

6.2.2 Give the restrictions for
$$\cos L$$
 if \hat{L} is obtuse. (2)

$$6.2.3 Is it possible for x to be equal to 6? (1)$$

6.2.4 If
$$x = 3$$
, calculate the area of Δ LMN, rounded off to ONE decimal digit. (5)

6.3.1	Give the size of ARB in terms of β .	(1)
6.3.2	Prove that $AB = 2 h. \cos \beta . \csc \alpha$	(5)

6.3.3 Calculate the height of the tower, rounded off to the nearest unit, if AB = 5,4 units, $\alpha = 51^{\circ}$ and $\beta = 65^{\circ}$ (3) [25]

NOTE:	_	DIAGRAMS FOR PROVING THEORY MAY BE USED ON
		THE DIAGRAM SHEETS OR REDRA WN IN THE ANSWER BOOK.
	_	DETACH THE DIAGRAM SHEETS FRO M THE QUESTION PAPER
		AND PLACE THEM IN YOUR ANSWER BOOK.
	_	GIVE A REASON FOR EACH STATEMENT, UNLESS OTHERWISE
		STATED

QUESTION 7

7.1	In the diagram alongside, circle PQS is drawn.	\backslash
	Use the diagram on the diagram sheet or redraw the diagram in your answer book to prove the theorem which states that:	
	If M is the centre of circle PQS, then $\dot{M} = 2\dot{P}$ Q	/ S (6)
7.2	In the diagram alongside, circles ACBN and AMBD intersect at A and B. CB is a tangent to the bargen single at P.	
	M is the centre of the smaller circle. $\frac{4}{3}$	
	CAD and BND are straight lines.	
	Let $A_3 = x$ B	
	7.2.1 Determine the size of \hat{D} in terms of x.	(4)
	7.2.2 Prove that:	
	(a) CB AN	(7)
	(b) AB is a tan gent to circle ADN.	(4)

[21]

QUESTION 8

8.1 In the diagram alongside, M and N as two points on AB and AC respectively of ? ABC .

> Use the diagram on the diagram sheet or redraw the diagram in your answer book to prove the theorem which states that :

If
$$\frac{AM}{MB} = \frac{AN}{NC}$$
, then MN || BC.

8.2.1 Prove that:

- (a) $RT \parallel QK$ (4)
- (b) TKQS is a cyclic quadrilateral. (5)
- (c) $\Delta QRT \parallel \Delta KTS$ (4)

8.2.2 If $PS = \sqrt{32}$ units, calculate stating reasons and without using a calculator, the length of :

- (a) ST (6)
- (b) KT (5)
 - [31]

QUESTION 9

In the diagram below, $A \stackrel{\circ}{B} C$ is bisected by BK with K on AC.

AP and BK intersect at H with P on BC so that AH = AK

9.1 Prove that
$$\frac{AB}{BC} = \frac{AK}{KC}$$
 (7)

9.2 If it is further given that AKPB is a cyclic quadrilateral and that H is
the centre of the inscribed circle of
$$\triangle$$
 ABC, calculate the size of $B \stackrel{\circ}{A} C$,
stating reasons. (7)

[14]

TOTAL 200

---0000000----

	<u>Mathematics Form</u> <u>Wiskunde Form</u>	ula Sheet (HG and So uleblad (HG en SG)	<u>(</u>)	
$\mathbf{x} = \frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4\mathbf{ac}}}{2\mathbf{a}}$				
$\mathbf{T}_{\mathbf{n}} = \mathbf{a} + (\mathbf{n} - 1)\mathbf{d}$	$\mathbf{S}_{n} = \frac{n}{2} \left(\mathbf{a} + \mathbf{T}_{n} \right)$	$S_n = \frac{n}{2} (a + l)$	$S_n = \frac{n}{2} \left[2a + \right]$	(n -1)d]
$\mathbf{T}_{n} = \mathbf{a.r}^{n-1}$	$\mathbf{S}_{n} = \frac{\mathbf{a} \left(1 - 1 \right)}{1 - 1}$	$ \begin{pmatrix} \mathbf{r}^n \end{pmatrix} $ (r 1)	$S_n = \frac{a(r^n - 1)}{r - 1}$	(r 1)
$\mathbf{S}_{\infty} = \frac{\mathbf{a}}{1-\mathbf{r}} (\mathbf{r} < \mathbf{a})$	1)			
$\mathbf{A} = \mathbf{P} \left(1 + \frac{\mathbf{r}}{100} \right)^{\mathbf{n}}$	OR / OF	$\mathbf{A} = \mathbf{P} \left(1 - \frac{\mathbf{r}}{100} \right)^{\mathbf{n}}$		
$\mathbf{f'}(\mathbf{x}) = \lim_{\mathbf{h} \to 0} \frac{\mathbf{f}(\mathbf{x} + \mathbf{h}) - \mathbf{h}}{\mathbf{h}}$	f(x)			
$\mathbf{d} = \sqrt{(\mathbf{x}_2 - \mathbf{x}_1)^2 + (\mathbf{y}_2)^2}$	$(-y_{1})^{2}$			
$\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{c}$				
$\mathbf{y} - \mathbf{y}_1 = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$				
$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1}$				
$\mathbf{m} = \mathbf{tan}\boldsymbol{\theta}$				
$(\mathbf{x}_3 \; ; \; \mathbf{y}_3) = \begin{pmatrix} \mathbf{x}_1 + \\ 2 \end{pmatrix}$	$\begin{pmatrix} \mathbf{x}_2 & \mathbf{y}_1 + \mathbf{y}_2 \\ \mathbf{z} & \mathbf{z} \end{pmatrix}$			
$\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{r}^2$				
$(x-p)^2 + (y-q)^2 =$	\mathbf{r}^2			
In ∆ ABC: a sin	$A = \frac{b}{\sin B} = \frac{c}{\sin C}$			
a ² =	$= \mathbf{b}^2 + \mathbf{c}^2 - 2\mathbf{b}\mathbf{c}.\mathbf{cos}\mathbf{A}$			

area $\triangle ABC = \frac{1}{2}ab.sinC$

 $Copyright\ reserved$

