FUNCTIONAL MATHEMATICS SG			
(First Paper)	303-2/1 L	2	

GAUTENG DEPARTMENT OF EDUCATION

SENIOR CERTIFICATE EXAMINATION

FUNCTIONAL MATHEMATICS SG (First Paper: Algebra)

FEB / MAR 2006

TIME: 3 hours

MARKS: 150

INSTRUCTIONS:

- Answer ALL questions.
- All relevant calculations must be shown.
- Pocket calculators may be used, unless otherwise stated.
- Final answers must be rounded off to TWO decimal digits, unless otherwise stated.
- Consult the information sheet at the back of the question paper.
- One sheet of graph paper is provided at the end of the question paper. Use it for Question 3.

QUESTION 1

1.1 Simplify, without using a calculator.

1.1.1
$$(27)^{\frac{2}{3}} + 16$$
 (3)
1.1.2 $4\sqrt{8} + 3\sqrt{18} - \sqrt{50}$ (6)
1.1.3 $\frac{32^{x} \cdot 16^{1-x}}{2^{x-1}}$ (5)
1.1.4 $\frac{5^{x+2} - 5^{x}}{5^{x-1}}$ (4)

1.2 Solve for x, without using a calculator.

1.2.1 $2^x = 0.25$ (3)

 $1.2.2 16^{2x-1} = 8^{3x-6} (6)$

QUESTION 2

2.1 Solve for x , without using a calculator.			
	2.1.1	$\log 5x = 3$	(3)
	2.1.2	$\log_2(x-1) = 3$	(3)
2.2	Use a calculator and solve for x . Round the answer off to 2 decimal digits.		
	$3^{x} = 18$		(3)
2.3	2.3 Simplify, without using a calculator.		
	2.3.1	\log_3 ?	(2)
	2.3.2	$\log 8 + \log 20 - \log 16$	(4)
	2.3.3	$3\log_4 2 - 2\log_2 4 + \log 10$	(6)
2.4	If log 2	= a and $\log 3 = b$ express log 18 in terms of a and b.	(3)

QUESTION 3

3.1 Draw on the same set of axes graphs of $f(x) = 3^x$, $g(x) = {\binom{1}{3}}^x$ and $h(x) = 2.3^x$ by first completing the following table:

x	-1	0	1	2	3
3 ^{<i>x</i>}					
1 ^x					
3					
2.3^{x}					

(12)

[24]

- 3.2 Draw on the same set of axes the graph of $k(x) = \log_3 x$ making use of symmetry. (2)
- 3.3 Use the graphs and read off the values of the following. Indicate clearly on the graph where the readings were made (use A, B and C):
 - 3.3.1 $3^x = 7$ x = ? (2)
 - $3.3.2 \quad 2.3^x = 5 \qquad x = ? \tag{2}$
 - 3.3.3 $3^{x} = (?)^{x}$ x = ? (2)

[20]

QUESTION 4

USE ONLY THE FOLLOWING FORM ULAE TO ANSWER THE FO LLOWING QUESTION.

Tn = a + (n - 1)d Sn = $\frac{n}{2}[2a+(n-1)d]$

	4.1.1 Determine the twelfth term.		(3)	
	4.1.2	Determine the sum of the first 21 terms of the sequence.	(3)	
4.2	In the s	equence 600; 550; 500; Which term will be equal to 0?	(4)	
4.3	16-4x; $2x-6$; $4x-8$ are the first 3 terms of an arithmetic sequence.			
	4.3.1	Show by calculation that the value of $x = 5$.	(5)	
	4.3.2	Determine the sequence.	(3)	
4.4	If the the the the twe	hird term of an arithmetic sequence is 11 and the seventeenth term is 39, determine lfth term of the sequence.	(6)	

QUESTION 5

USE ONLY THE FOLLOWING FORM ULAE TO ANSWER THE FO LLOWING QUESTION.

Tn =
$$ar^{n-1}$$
 Sn = $\frac{a(r^n-1)}{r-1}$

- 5.1 In the sequence ¹/₉; ¹/₃; 1;
 5.1.1 Determine the tenth term. (4)
 5.1.2 Determine the sum of the first 8 terms of the sequence. (3)
 5.2 In the sequence 16; 8; 4 Which term will be equal to ¹/₁₆? (6)
 5.3 Determine the first 3 terms of a geometric sequence of which the seventh term is 192 and
- 5.3 Determine the first 3 terms of a geometric sequence of which the seventh term is 192 and the fourth term is -24.
 (7) [20]

QUESTION 6

6.1 Determine
$$\lim_{x \to 2} \frac{x^2 - 2x - 8}{x + 2}$$
 (3)

[24]

FUNCTIONAL MATHEMATICS SG		
(First Paper)	303-2/1 L	5

6.2	If $f(x$	= 3x + 8, determine			
	6.2.1	f(x+h).	(2)		
	6.2.2	the derivative $f'(x)$ of $f(x)$ making use of first principles.	(4)		
6.3	Determine the derivative of				
	6.3.1	$D_x [6x^4 - 2x + 5]$	(3)		
	6.3.2	$D_x [2x^3(5x - 1)]$	(4)		
6.4	A projectile is shot diagonally upwards. The vertical height above the ground, y metres, is given by the formula $y = 800t - 16t^2$ where t is the time in seconds.				
	6.4.1	Determine the height of the projectile after 5 seconds.	(2)		
	6.4.2	Determine the derivative $\frac{dy}{dt}$.	(2)		
	6.4.3	Determine after how many seconds the projectile will reach a maximum height if $\frac{dy}{dt} = 0.$	(3)		
	6.4.4	Determine the maximum height of the projectile after 25 seconds.	(2) [25]		

QUESTION 7

$$f(x) = x^{3} - 3x - 2$$
$$= (x+1)^{2}(x-2)$$

f is illustrated graphically as follows:

		FUNCTIONAL MATHEMATICS (First Paper)	3 SG 303-2/1 L	6
7.1	Write down the coordinates of A and	1 B.		(2)
7.2	Write down the coordinates of C.			(1)
7.3	Determine $f'(x)$.			(2)
7.4	If $f'(x) = 0$ determine the coordinat	tes of D, the turning point.		(5) [10]
			TOTAL:	150