GAUTENG DEPARTMENT OF EDUCATION
 SENIOR CERTIFICATE EXAMINATION

FUNCTIONAL MATHEMATICS SG (First Paper: Algebra)

TIME: 3 hours
MARKS: 150

INSTRUCTIONS:

- Answer ALL questions.
- Show all relevant calculations.
- Pocket calculators may be used, unless otherwise stated.
- Round off final answers to TWO decimal digits, unless otherwise stated.
- Consult the information sheet on page 7 of the question paper.
- Use the graph paper on page 8 to answer Question 3.2

QUESTION 1

1.1 Simplify, without using a calculator.
1.1.1
1.1.2 $\quad 8^{\frac{1}{3}}+5^{0}-64^{2}$
1.1.3 $\frac{3^{x+4}-6.3^{x+1}}{3^{x} .7}$
1.1.4

$$
\begin{gather*}
2 \sqrt{ } 12+\sqrt{ } 75 \tag{5}\\
3 \sqrt{ } 3 \tag{5}
\end{gather*}
$$

1.2 Solve for x, without using a calculator.
1.2.1

$$
\begin{equation*}
x^{3}=8 \tag{3}
\end{equation*}
$$

1.2.2 $3^{2 x+1}=27$

QUESTION 2

2.1 Simplify, without using a calculator.
2.1.1 $\log 75+3 \log 2-\log 6$
2.1.2 $\log _{3} 81-\log _{6} 1+\log _{25} 5$
2.2 Solve for x, without using a calculator.
2.2.1 $\quad \log _{6} 2 x=1$
2.2.2 $\log x=\begin{aligned} & \log 64 \\ & \log 8\end{aligned}$
2.3 Solve for x, rounded off to 2 decimal digits.
$25^{x}=50$
2.4 If $\log 3=a$ and $\log 5=b$, express $\log 75$ in terms of a and b.

QUESTION 3

3.1 Complete the following table in your answer book.

\mathbf{x}	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathrm{y}=2^{\mathrm{x}}$					
$\mathrm{y}=3.2^{\mathrm{x}}$					

3.2 Use the graph paper provided on page 8 and draw the graphs of $f(x)=2^{x}$ and $g(x)=3.2^{\mathrm{x}}$ on one set of axes.
3.3 Make use of symmetry and draw on the same set of axes the graphs of $h(x)=(1 / 2)^{x}$ and $k(x)=\log _{2} x$.
3.4 Determine graphically the value of the following. Show clearly on the graph where the readings are made. (Use A, B and C.)

$$
\begin{equation*}
\text { 3.4.1 } \quad 2^{x}=7 \tag{2}
\end{equation*}
$$

3.4.2 $\quad 3.2^{1 / 2}=y$
3.4.3 $\quad \log _{2} x=0$
3.5 Determine the y-intercept of $3.2^{x}=y$

QUESTION 4

Use the relevant formulae to answer the following questions.

$$
T_{n}=a+(n-1) d \quad S n={ }_{2}^{n}[2 a+(n-1) d]
$$

4.1 Given the sequence $2 ; 5 ; 8 ; \ldots$. Calculate
4.1.1 the $50^{\text {th }}$ term of the sequence.
4.1. \quad the sum of the first fifty terms of the sequence.
4.2 The first term of an arithmetic sequence is -3 and the third term is equal to 3 .

Determine
4.2.1 the constant difference.
4.2.2 the $25^{\text {th }}$ term.
4.2.3 which term is equal to 57 .
4.3 The general term of an arithmetic sequence is $\mathbf{T}_{\mathbf{n}}=\mathbf{- 3 n + 2}$.

Determine the first 3 terms of the sequence.

QUESTION 5

Use the relevant formulae to answer the following questions.

$$
T_{n}=a r^{n-1} \quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}
$$

5.1 The $8^{\text {th }}$ term of a geometric sequence is 640 and the third term is 20.

Calculate
5.1.1 the common ratio.
5.1.2 the first term.
5.2 Given the geometric series $1+3+9+$ \qquad Determine
5.2.1 the $8^{\text {th }}$ term.
5.2.2 the sum of the first eight terms of the series.
5.3 The first three terms of a geometric sequence are $x ; x+1 ; x+3$.
5.3.1 Determine the value of x.
5.3.2 Determine the first three terms of the sequence.

QUESTION 6

6.1 Given: $\mathbf{f}(\mathbf{x})=\mathbf{3} \mathbf{x}^{\mathbf{2}}$
6.1.1 Determine the average gradient of the curve of f between the points $x=1$ and $x=4$.
6.1.2
(a) Determine $f(x+h)$.
(b) Hence, determine the derivative $f^{\prime}(x)$ from first principles.
6.2 Use the rules with regard to derivatives and determine $f^{\prime}(x)$ if:
6.2.1 $f(x)=3$
6.2.2 $f(x)=3 x^{6}-2 x$
6.2.3 $f(x)=(x+1)(3 x-2)$
6.3 Given: $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}} \mathbf{- 4} \mathbf{x}$

Determine
6.3.1 $f(2)$
6.3.2 $\quad f^{\prime}(x)$
6.3.3
$\mathrm{f}^{\prime}(2)$
6.3.4 the equation of the tangent to the curve of f at the point $x=2$, by making use of the equation $\mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right)$ or $\mathbf{y}=\mathbf{m x}+\mathbf{c}$.
6.4 Determine $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$

QUESTION 7

7.1 The diagram below shows the graph of $f(x)=x^{3}-6 x^{2}+9 x$.

7.1.1 Write down the coordinates of A.
7.1.2 Calculate the coordinates of B and C, the turning points of the curve of $f(x)$, if $f^{\prime}(x)=0$.

Logarithms/Logaritmes

$$
\begin{aligned}
& \log _{a} P Q=\log _{a} P+\log _{a} Q \\
& \log _{a}{ }^{P} / Q=\log _{a} P-\log _{a} Q \\
& \log _{a} P^{n}=n \log _{a} P \\
& \log _{Q} P=\log _{b} P \\
& \log _{b} Q
\end{aligned}
$$

Sequences and Series/Rye en Reekse

$$
\begin{aligned}
& T_{n}=a+(n-1) d \\
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& T_{n}=a r^{n-1} \\
& S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}
\end{aligned}
$$

Calculus/Differensiaalrekene

$$
\begin{aligned}
& D_{x}\left[x^{n}\right]=n x^{n-1} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

EXAMINATION NUMBER: EKSAMENNOMMER:

INSTRUCTIONS/INSTRUKSES:

- Use this graph paper to answer Question 3.2, then place it at the back of your answer book.
- Gebruik hierdie grafiekpapier om Vraag 3.2 te beantwoord en plaas dit dan agter in jou antwoordboek.

