FUNCTIONAL MATHEMATICS SG		
(First Paper)	303-2/1 K	-

GAUTENG DEPARTMENT OF EDUCATION

SENIOR CERTIFICATE EXAMINATION

OCTOBER / NOVEMBER 2005 OKTOBER / NOVEMBER 2005

FUNCTIONAL MATHEMATICS SG (First Paper: Algebra)

TIME: 3 hours

MARKS: 150

INSTRUCTIONS:

- Answer ALL questions.
- All relevant calculations must be shown.
- Pocket calculators may be used, unless otherwise stated.
- Final answers must be rounded off to TWO decimal digits, unless otherwise stated.
- Consult the information sheet on page 7.
- A sheet of graph paper is provided at the back of the question paper. Use it to answer Question 3.

QUESTION 1

1.1 Simplify, without using a calculator.

1.1.1
$$2^{0} - 125^{\frac{2}{3}} + 27^{-\frac{1}{3}}$$
 (5)

- 1.1.2 $\frac{\sqrt{45 + \sqrt{5}}}{\sqrt{80}}$ (4)
- 1.1.3 $\sqrt{48} \cdot \sqrt{27}$ (3)

1.1.4
$$\frac{4^{x} \cdot 2^{x+1}}{8^{x-1}}$$
 (4)

1.1.5
$$\frac{5^{x+1}+5^x}{3.5^x}$$
(3)

FUNCTIONAL MATHEMATIC	CS SG	3
(First Paper)	303-2/1 K	Ũ

- 1.2 Solve for x, without using a calculator.
 - $1.2.1 16^{x-1} = 8^x (4)$

1.2.2
$$x^{\frac{3}{2}} = 27$$
 (3)

1.2.3
$$25^x = \frac{1}{625}$$
 (3) [29]

QUESTION 2

2.1	Simplify, without using a calculator.		
	2.1.1	$5 \log_4 64$	(3)
	2.1.2	$\log_7 14 - \log_7 2$	(2)
	2.1.3	$\log_3 \frac{1}{9} + \log_2 8$	(4)
	2.1.4	$\frac{\log 27}{\log 81} + \log_3 1$	(4)
2.2	Solve f	for x , without using a calculator.	
	2.2.1	$\log_x 32 = 5$	(3)
	2.2.2	$\log_2(x-3) = -1$	(3)
2.3	Solve f	for x , rounded off to two decimal digits.	
	$7^{x} = 2$	7	(3)
2.4	If log 8	x = x, determine log 800 in terms of x.	(3) [25]

QUESTION 3

3.1 Complete the following tables for the given functions.

(2)

3.1.2 $y = 3.2^x$

X	-1	0	1	2	3
$y = 3.2^{x}$					

(2)

- 3.2 Draw the graphs of $y = 2^x$ and $y = 3.2^x$ on the same set of axes. Use the graph paper provided at the end of the question paper. (4)
- 3.3 Make use of **symmetry** and draw the graphs of $y = (\frac{1}{2})^x$ and $y = \log_2 x$ on the same set of axes used in Question 3.2. (4)
- 3.4 Use the graphs and read off the value of the following. Indicate clearly on the graph where the readings were made (use A, B and C):

3.4.1	$2^{x} = 7$	x = ?	(2)

- $3.4.2 \quad 3.2^x = 10 \qquad \qquad x = ? \tag{2}$
- 3.4.3 $y = (\frac{1}{2})^{-1}$ y = ? (2)

[18]

QUESTION 4

USE ONLY THE FOLLOWING FORM ULAE TO ANSWER THE FO LLOWING QUESTION.

Tn = a + (n-1)d Sn =
$$\frac{n}{2}[2a+(n-1)d]$$

4.1	In the sequence 11; 18; 25;		
	4.1.1	Determine the twe lfth term.	(3)
	4.1.2	Determine the sum of the first 21 terms of the sequence.	(3)
4.2	In the s	equence 500; 450; 400; Which term will be equal to 0?	(4)
4.3	2x-3;	5x+2; $x-7$ are the first 3 terms of an arithmetic sequence.	
	4.3.1	Show by calculation that the value of $x = -2$.	(5)
	4.3.2	Determine the sequence.	(3)
4.4	If the find sequence	fth term of an arithmetic sequence is 7 and the tenth term is 27, determine the ce.	(6) [24]

QUESTION 5

USE ONLY THE FOLLOWING FORM ULAE TO ANSWER THE FO LLOWING QUESTION.

Tn =
$$ar^{n-1}$$
 Sn = $\frac{a(r^n-1)}{r-1}$

In the sequence 4; 8; 16; 5.1.1 (3) Determine the tenth term. 5.1.2 Determine the sum of the first 15 terms of the sequence. (3) (4) In the sequence $\frac{5}{9}$; $\frac{5}{3}$; 5 Which term will be equal to 10 935? 5.2 5.3 Determine the first 3 terms of a geometric sequence of which the eighth term is 448 and the fourth term is 28. (6)[16]

QUESTION 6

6.1	The distance an object moves in t seconds is given by $s(t) = t^2 + 3t$. Calculate the	
	average speed of the object between $t = 2$ and $t = 4$ seconds.	(4)

6.2 If
$$f(x) = 2x^2$$
,
6.2.1 determine $f(x+h)$. (2)

6.2.2 Hence, determine the derivative
$$f'(x)$$
 by using the first principle. (4)

6.3 Use the differential laws to determine the derivative f'(x) of:

6.3.1
$$f(x) = \frac{2}{3}x^3$$
 (1)

6.3.2
$$f(x) = 2x(x^3 + 6)$$
 (4)

6.4 If
$$f(x) = x^3 - 2x^2 - 5x$$
 determine:

5.1

- (2)6.4.1 f (-1)
- f'(x)(3) 6.4.2
- 6.4.3 f '(-1) (2)
- The equation of the tangent to the curve of $f(x) = x^3 2x^2 5x$ at the point 6.4.4 (3) where x = -1[25]

QUESTION 7

Given: $f(x) = x^3 - 6x^2$ = $x^2(x-6)$

7.1	Calculate where the curve of $f(x)$ intersects the x axis and the y axis.	(3)
7.2	Calculate the co-ordinates of the turning points of the curve $f(x)$ if $f'(x) = 0$.	(7)
7.3	Use this information to draw a neat sketch graph of the curve of $f(x)$.	(3) [13]

TOTAL: 150