GAUTENG DEPARTMENT OF EDUCATION SENIOR CERTIFICATE EXAMINATION

FITTING AND TURNING SG
TIME: 3 hours
MARKS: 200

REQUIREMENTS:

- Pocket calculator and drawing instruments

INSTRUCTIONS:

- Answer ALL the questions.
- Unless otherwise indicated, all dimensions are in millimetres.
- Number your answers in accordance with the question paper.
- An information sheet is on pages 9 to 11 of this paper.

QUESTION 1

Answer the following questions on the answer sheet on the inside cover of your answer book. For each question, indicate the correct answer(s) by drawing a cross (\mathbf{X}) over the appropriate letter(s) on the answer sheet. The mark allocation on the right is an indication of the number of correct answers for each question.
1.1 A gear tooth vernier is used to measure the \qquad and \qquad of a gear.
A. circular pitch
B. chordal addendum
C. clearance
D. chordal thickness
1.2 A square thread has a pitch of 8 mm . What is the depth of the thread?
A. $\quad 4 \mathrm{~mm}$
B. $\quad 8 \mathrm{~mm}$
C. $\quad 16 \mathrm{~mm}$
D. 6 mm
1.3 Friction can have devastating consequences if machines are not properly maintained. Point out the circumstances where friction can cause damage to machines.
A. Machine bearings run dry
B. No lubrication on belt drives
C. No lubrication on machine slides
D. None of the above
1.4 Gauge blocks should be handled with care. Which of the following are INCORRECT?
A. Coating the blocks with oil after use
B. Exposing them to heat
C. Cleaning them
D. Wringing the blocks with bare hands
1.5 Point of action guards are used on \qquad .
A. gearboxes
B. rotating shaft-ends
C. bandsaws
D. guillotines
1.6 Shear stress is applicable when \qquad .
A. two surfaces are pressed together
B. a steel plate is being cut on a guillotine
C. two surfaces slide over one another
D. two plates bolted together are subjected to a tensile force
1.7 Before starting to cut a screw thread, the machinist must know the following:
A. The type of screw thread
B. The type of cutting tool to be used
C. If it will be a left- or right-hand thread
D. The type of material that must be used
1.8 From the list below, choose the CORRECT reason for using sector arms on a dividing head.
A. It helps with differential indexing
B. It facilitates rapid indexing
C. It helps the operator to index the correct number of holes on the index plate
D. It assists the operator to set up the change gears
1.9 Helical gears can transmit more power than spur gears. The reason for this is that \qquad .
A. the helix angle on helical gears is larger than that on spur gears
B. helical gears can be cut on much larger diameter shafts
C. power is always distributed over two teeth
D. the drive is smoother

Say whether the following statements are TRUE or FALSE. Write the word TRUE or FALSE next to the appropriate question number.
1.10 The longer button in a set of toolmakers' buttons is used for the set-up to drill a hole in a plate on a milling machine.
1.11 Differential indexing is only used to index a large number of holes.
1.12 No change gears are used when helical milling is performed.
1.13 Friction is treated as an advantage when grinding a workpiece on a universal grinder.
1.14 Square threads have been replaced by the ACME thread because ACME threads exert end thrust in only one direction.

QUESTION 2

2.1 Name TWO advantages and TWO disadvantages of the process layout of machines.
2.2 A left-hand internal square thread with a pitch of 8 mm must be cut on a centre lathe. The outside diameter of the shaft must be 90 mm and the size of the hole must be 70 mm . You are given a rough workpiece.
2.2.1 Make a neat sketch of the cutting tool.
2.2.2 Explain how the work must be carried out.
2.3 Calculate the indexing for each of the following:
2.3.1 A spur gear with 28 teeth
2.3.2 An angle of $16^{\circ} 40^{\prime}$
2.4 A two-armed cranked lever must be machined on a centre lathe. The sketch shows a diagrammatical representation of the lever mounted on a faceplate. Determine graphically the distance from the centre of the faceplate at which a 12 kg balance mass must be placed to balance the set-up. Draw up a massdistance table to facilitate your answer. Use a scale of $1 \mathrm{~mm}=50 \mathrm{~kg} . \mathrm{mm}$ for your vector diagram. Also determine the angle between the 16 kg arm and the balance mass.

12 kg on 400 mm

QUESTION 3

3.1 A helical gear with 48 teeth and a real module of $2,684 \mathrm{~mm}$ must be machined on a milling machine. The helix angle of the gear is 34°. The pitch of the machine lead screw is 6 mm and the dividing head ratio is $40: 1$ Calculate the
3.1.1 pitch circle diameter of the gear.
3.1.2 outside diameter of the gear.
3.1.3 number of teeth marked on the cutter.
3.1.4 lead of the gear.
3.1.5 lead of the machine.
3.1.6 change gears needed.
3.2 A force of 200 kN is applied on the plunger of a hydraulic lifting machine. The pressure on the liquid is found to be 500 MPa . Calculate the diameter of the plunger.
3.3 A 7 ${ }^{\circ}$ primary clearance angle is required on a 150 mm diameter side and face milling cutter. A disc grinding wheel, 150 mm in diameter, is used for the procedure.
3.3.1 Draw a neat sketch of the set-up to indicate the position of the tooth rest.
3.3.2 Calculate the offset of the tooth rest.

QUESTION 4

4.1 Draw a neat sketch to illustrate the gear arrangement (dividing head and milling machine lead screw) when
4.1.1 a gear rack is machined.
4.1.2 differential indexing is done.
4.2 A metal block must be shaped as indicated on the sketch below. The process must be carried out in a single cut along the length of the block.
4.2.1 Describe in detail, with the aid of a sketch, how you would set up the milling cutters on the arbour and proceed to cut the shaped block.
4.2.2 Name the type of milling operation used in this process.

$\begin{array}{lllll}15 & 12 & 12 & 10 & 6\end{array}$

20
4.3 The following sketch shows five holes drilled on a round workpiece. To position the holes accurately, 12 mm diameter toolmakers' buttons are used to set up the work on the lathe. Calculate the
4.3.1 pitch circle diameter of the holes.
4.3.2 distance between buttons no. $\mathbf{3}$ and no. $\mathbf{5}$.
4.3.3 What kind of triangle is formed if the centres of holes $\mathbf{2}, \mathbf{3}$ and $\mathbf{5}$ are joined?

QUESTION 5

5.1 The taper plug gauge in the sketch below must be tested for accuracy using 20 mm diameter rollers.
5.1.1 Prove that the included angle (?) of the plug gauge is 55°.
5.1.2 Calculate the small diameter of the gauge.

267

162,886
5.2 Name FOUR advantages obtained when using numerically controlled machines.
5.3 Name TWO disadvantages of grinding away from the cutting edge when sharpening the teeth of a milling cutter.
5.4 The roof of a school pavilion has a mass of 10000 kg and is supported by five similar solid pillars. If the total stress in the five pillars is only 12 MPa , calculate the diameter of each pillar.
Take \mathbf{g} as $10 \mathrm{~m} / \mathrm{s}^{2}$.
5.5 Name TWO advantages of up-cut milling.
5.6 Name ONE disadvantage of climb milling.

QUESTION 6

6.1 The sketch below shows a diagrammatical representation of a hydraulic press. Force F1, acting on piston \mathbf{A}, is 500 N and the diameter of piston A is 50 mm . Calculate the
6.1.1 pressure in the system.
6.1.2 load that can be lifted at the ram \mathbf{B} if the diameter of the ram is 150 mm .

F1 $=500 \mathrm{~N}$
A

$$
F 2=?
$$

150 mm ø

B

50 mm ø

6.2 A two-start external square thread with a pitch of 6 mm and an outside diameter of $65,5 \mathrm{~mm}$ must be cut on a centre lathe. The clearance angle on the cutting tool is 3°. Calculate the
6.2.1 leading angle on the cutting tool.
6.2.2 following angle on the cutting tool.
6.2.3 cutting depth of the thread.
6.3 Mane THREE good reasons for balancing a workpiece before machining it on a centre lathe.
6.4 Calculate the cutting depth for a helical gear with a real module of $6,59 \mathrm{~mm}$ and a helix angle of $24^{\circ} 27^{\prime}$.

INFOR MATION SHEET

1. Gears for milling machine
S tandard and specialgear whe els.

24 (two of); $28 ; 32 ; 40 ; 44 ; 46 ; 47 ; 48 ; 52 ; 56 ; 58 ; 64 ; 68 ; 70 ; 72 ; 76 ; 84 ; 86$ and 100 teetf.

2. Index plate for milling machine

$24 ; 25 ; 28 ; 30 ; 34 ; 37 ; 38 ; 39 ; 41 ; 42 ; 43 ; 46 ; 47 ; 49 ; 51 ; 53 ; 54 ; 57 ; 58 ; 59 ; 62$ and 66 holes.
3. Formulae

3.1	Stress $=\quad \begin{aligned} & \mathrm{F} \\ & \mathrm{A}\end{aligned}$	
3.2	$\text { Cross-sectionalarea of solid cylinder } \quad=\frac{\pi}{4} \mathrm{D}^{2}$	
33	Cross-sectional are a of hollow cylinder	
3.4	Fluid pressure in a fydraulic press: $\begin{aligned} & \mathrm{F} 1 \\ & \mathrm{Al}\end{aligned}$	$\begin{aligned} & \mathrm{F} 1 \\ & \mathrm{~A} 1 \end{aligned}=\begin{aligned} & \mathrm{F} 2 \\ & \mathrm{~A} 2 \end{aligned}$
	$\begin{aligned} \text { Volume of fluid displaced by plunger } & =\text { volume displa } \\ \text { votume } & =\text { are } a x \mathcal{L} \end{aligned}$	
3.5	Spur gears:	
	3.5.1 PCD $\quad=\quad \mathcal{T}$	$\mathcal{T} m$
	3.5.2 add $\quad=\quad \mathrm{m}$	m
	3.5.3 ded $=1$	$1,157_{\text {m }}$
	3.5.4 Clearance $=0$	$0,157_{m}$
	3.5.5 OD $\quad=\quad$ P	$\mathcal{P C D}+2 a d d$
	$3.5 .6 \mathcal{T}$	PCD n

```
    3.5.7 O\mathcal{D }}
    3.5.8 m
        OD
        T+2
    3.5.9 Circular pitch
= }\mp@subsup{\pi}{m}{m}[\begin{array}{c}{mT}\\{2}\end{array}(1-\operatorname{cos}\begin{array}{c}{9\mp@subsup{0}{}{0}}\\{\textrm{T}}\end{array})
    3.5.10 Chordal width
    = mtsin}9\mp@subsup{0}{}{\circ
    3.5.11 Circular pitch
= }\quad\pi
3.6 Helicalgears
= m(T)
3.6.1 PCD
= }\mathcal{TMM
3.6.2 add
= m
3.6.3 ded
= 1,157 mm
3.6.4 clearance
= 0,157 mm
3.6.5 OD = 
3.6.6 T
    PCD
= m
3.6.7 m}\mp@subsup{m}{n}{
= m
3.6.8 Number of teethmarked on the milling cutter;
    Number
= (cos0)}\mp@subsup{}{}{3
3.6.9 Chordaladdendum = mn +[ [\begin{array}{c}{\mp@subsup{\textrm{m}}{\textrm{n}}{}\boldsymbol{\top}}\\{2}\end{array}(1-\operatorname{cos}9\mp@subsup{0}{}{0}
3.6.10 Chordalthickness = m
3.6.11 Lead of helix
3.6.12 Helix angle
3.6.13 Circular pitck
= }\pi\mp@subsup{m}{n}{
3.6.14 Lead of milfing mackine \(=\mathcal{D i v i d}\) ing head ratio x pitch of leadscrew
3.6.15 Change gears required
\(\underset{\mathrm{G}}{\mathrm{Dr}}=\begin{aligned} & \mathrm{L} \\ & \mathrm{I}\end{aligned}\)
```

3.7 Indexing:

```
        3.7.1 S imple indexing = 
        3.7.2 Angular indexing = 缺
        3.7.3 Differental indexing
        = 者r
        3.7.4 Rack:
            Dividing head ratio x Pitch of rack
            Pitch of lead scren }\mp@subsup{}{}{~}\quad\mathrm{ Gear ratio
3.8 Grinding of milling cutter teeth:
```



```
        3.8.2 Cupgrinding wheel: Offset=r sin 0.
    3.9 Graphicalsolution of static Galancing:
        Out-of-Galance effect= Mass \chi distance of mass from centre of
        face plate
    3.10 Toolangles for cutting square threads:
        3.10.1 Helix angle: tan \eta
        =
        Lead
        \piD
3.10.2 Leading toolangle =90}-(\mathcal{Helix angle + Clearance angle}
3.10.3 Following toolangle = 90' +(Helix angle - Cle arance angle)
```

