GAUTENG DEPARTMENT OF EDUCATION SENIOR CERTIFICATE EXAMINATION

FITTING AND TURNING SG

OCTOBER / NOVEMBER 2005 OKTOBER / NOVEMBER 2005

TIME: 3 hours

MARKS: 200

REQUIREMENTS:

• Pocket calculator and drawing instruments

INSTRUCTIONS:

- Answer ALL the questions.
- Unless otherwise indicated, all dimensions are in millimetres.
- For ALL applicable questions, the dividing head ratio is 40:1 and the milling machine lead screw pitch is 6 mm.
- An information sheet appears on pages 8 to 10 of this question paper.
- Use ONLY the formulae indicated on the information sheet. Derivatives of these formulae may however also be used.

QUESTION 1

Answer Question 1.1 to 1.8 on the **answer sheet** on the **inside cover** of the **answer book**. For each question, indicate the correct answer(s) by making a cross (X) over the appropriate letter(s) on the answer sheet. The mark allocation on the right-hand side is an indication of the number of correct answers for each question. There may be more than one correct answer.

- 1.1 The working depth of a gear refers to _____.
 - A. the depth at which the gears mesh properly
 - B. the addendum
 - C. the dedendum
 - D. two times the addendum

(2)

2

- 1.2 The involute shape of gear teeth is the most commonly used shape of gear teeth. This shape is preferred for the following reasons:
 - A. It is cheaper than other shapes.
 - B. They are stronger at the root.
 - C. It does not easily wear off.
 - D. They are easy to machine.

(2)

705-2/0 K

3

1.3	The function of a milling machine tailstock is to support the workpiece					
	А. В. С. D.	and clamp it during machining while tapers are being machined when cutting splines when cutting helical gears	(2)			
1.4	The	arbor on a milling machine is employed when				
	A. B. C. D.	large flat surfaces must be machined we use side and face cutters the machine cross travel is too small the machine has limited power	(2)			
1.5	Abs	olute programming is when				
	А. В. С. D.	all dimensions are the same we take all dimensions from one point we refer to a common reference point all dimensions are different	(2)			
1.6	A di	A dividing head on a milling machine is used				
	А. В. С. D.	to determine the angle between two plates on a workpiece when gear racks are machined to set up toolmakers' buttons to divide the circumference of a workpiece into a number of equal divisions	(2)			
1.7	Acc Whi	idents in a workshop occur as a result of personal or work-related factors. ch of the following are personal factors?				
	A. B. C. D.	Very little or no knowledge/skills Bad electrical connections Bad attitudes Holes in workshop floors	(2)			
1.8	One The	e button in a set of toolmakers' buttons is always longer than the others. reason is that				
	А. В. С. D.	the shorter buttons are sometimes too short for accurate spacing it is always machined more accurately than shorter ones it helps when the holes are closely spaced None of the above.	(1)			

Answer Questions 1.9 to 1.13 in your **answer book**. Write only TRUE or FALSE next to the appropriate question number.

- 1.9 The sector arms on a dividing head are used only for rapid indexing.
- 1.10 Single helical gears cause end thrust on machine bearings.
- 1.11 Friction is a definite disadvantage when we consider machine bearings.
- 1.12 When a fluid in a container is placed under pressure, its volume will decrease.
- 1.13 Undercutting at the start of a screw thread is done to increase the strength of the screw thread. 5x2=(10)

[25]

QUESTION 2

2.1	Briefly discuss the aspects accessibility and visibility with regard to			
	measur	es for a good workshop layout.	(8)	
2.2	Mention	FIVE aims of preventative maintenance.	(5)	
2.3	Draw the dividing head and lead screw gear arrangement when a gear rack must be machined on a milling machine.			
2.4	A helica cut on a Calcula	l gear with a real module of 5,32 mm and a helix angle of 20° must be milling machine. The pitch circle diameter of the gear is 212,8 mm. te the following, indicating all calculations:		
	2.4.1	Normal module of the gear		
	2.4.2	Number of teeth of the gear		
	2.4.3	Number of teeth marked on the cutter		
	2.4.4	Cutting depth of the gear		
	2.4.5	Outside diameter of the gear	(14)	
2.5	Calculat	te the chordal width of a spur gear with 60 teeth and a module of 5 mm.	(2) [35]	

QUESTION 3

- 3.1 Twelve holes must be drilled on a PCD of 267,2 mm on a centre lathe. Toolmakers' buttons with a diameter of 15 mm are used for the set up. Calculate the following:
 - 3.1.1 Centre distance between holes **1** and **5**.
 - 3.1.2 Distance between buttons 1 and 9.

3.2 The simple line diagram below shows two arms of a cranked lever, completely out of balance. Draw up a mass/distance table and determine graphically the distance from the hub at which a 7 kg mass must be fitted in order to balance the lever. Determine the angle between the balance mass and the 3 kg arm. Use a scale of 1 cm = 40 kg.mm.

(11)

5

(10)

3.4

3.3.1	Static balancing using two unequal mass pieces	(4)
3.3.2	Incremental programming with reference to numerically controlled lathes	(5)
State F	IVE methods that may be used to test the accuracy of external tapers.	(5) [35]

QUESTION 4

4.1	A two-start external square thread must be cut on a centre lathe. The lead of
	the thread is 30 mm and the outside diameter is 75 mm. The clearance angle
	is 4°. Calculate the following details of the screw thread and show all your
	calculations:

4.4	Mentior	n SIX reasons why milling cutters fail.	(6) [35]
	4.3.1 4.3.2 4.3.3	A sketch to show what up-cut milling is THREE advantages of up-cut milling TWO disadvantages of up-cut milling	(8)
4.3	Give a	prief description of "up-cut" milling under the following headings:	
4.2	Explain using th	in detail how the screw thread described in Question 4.1 should be cut he "change gear" method.	(10)
	4.1.1 4.1.2 4.1.3	Helix angle Leading angle Following angle	(11)

QUESTION 5

5.1 The dovetail in the sketch below is being tested for accuracy using two precision rollers. The dimension in the neck of the dovetail is 55,772 mm and the rollers have a diameter of 20 mm. The included angle of the dovetail is 60°, as indicated. Calculate the distance between the two rollers and show all calculations. (16)

5.2	The liqu force ex	id pressure in a 360 mm diameter cylinder is 4 MPa. Calculate the certed when the piston moves outward and show your calculations.	(7)
5.3	Calcula stress i	te the diameter of a strut used to support a load of 25 000 kg. The n the strut is 200 MPa. Show all calculations.	(8)
5.4	Name t	he FOUR laws of sliding friction .	(4) [35]
		QUESTION 6	
6.1	When a plunger calculat	force of 100 N is exerted on the plunger of a hydraulic press, the will move 90 mm downward. Calculate the following and show your ions:	
	6.1.1	Distance the ram will move upward if the area of the plunger is 0,2 \textrm{m}^2 and the area of the ram is 1,8 \textrm{m}^2	
	6.1.2	Force that will be exerted by the ram	(8)
6.2	You are milling o angle o	e required to sharpen the teeth of a 180 mm diameter side and face cutter on a tool and cutter grinder. The teeth have a primary clearance f 7° and a 200 mm diameter cup grinding wheel is used for the job.	
	6.2.1	Draw a sketch of the set-up to illustrate the position of the tooth rest of the tool and cutter grinder.	(6)
	6.2.2	Calculate the off-set of the tooth rest and show your calculations.	(3)
6.3	A gear dividing indexine	blank must be divided into 103 divisions using a milling machine head with a ratio of 40:1. Choose 100 divisions (for the differential g) and calculate the following:	
	6.3.1 6.3.2 6.3.3	Required indexing Change gears needed Direction of rotation of the index crank	(10)
6.4	State F	IVE examples in practice when friction is applied as an advantage.	(5)
6.5	Draw a	neat, cross-sectional sketch of a toolmaker's button in position on a	
	plate.		(3) [35]
		TOTAL:	200

INFORMATION SHEET

1. <u>Gears for milling machine</u>

Standard and special gear wheels.

24 (two of); 28; 32; 40; 44; 46; 47; 48; 52; 56; 58; 64; 68; 70; 72; 76; 84; 86 and 100 teeth.

2. <u>Index plate for milling machine</u>

24; 25; 28; 30; 34; 37; 38; 39; 41; 42; 43; 46; 47; 49; 51; 53; 54; 57; 58; 59; 62 and 66 holes.

3. <u>Formulae</u>

21	Stross	_	F
3.1	311655	=	Α

3.2	Cross-sectional area of solid cylinde	$r = \frac{\pi}{4}D^2$
3.3	Cross-sectional area of hollow cylind	$\det = \frac{\pi (D^2 - d^2)}{4}$
3.4	Fluid pressure in a hydraulic press:	$\frac{F1}{A1} = \frac{F2}{A2}$

Volume of fluid displaced by plunger = volume displaced by piston volume = area x L

3.5 Spur gears:

3.5.1	PCD	=	Tm
3.5.2	add	=	m
3.5.3	ded	=	1,157 _m
3.5.4	Clearance	=	0,157 _m
3.5.5	OD	=	PCD + 2 add
356	т	_	PCD
5.5.0	1	-	т

	3.5.7	Chordal addendum	=	m + $\left[\frac{mT}{2}\right]$	$(1 - \cos \frac{90^{\circ}}{T}) \bigg]$
	3.5.8	Chordal width		=	mT sin $\frac{90^{\circ}}{T}$
	3.5.9	Circular pitch		=	πm
3.6	Helica	lgears			
	3.6.1	PCD		=	TMw
	3.6.2	add		=	m _n
	3.6.3	ded		=	1,157 m _n
	3.6.4	clearance		=	0,157 m _n
	3.6.5	OD		=	PCD + 2 add
	244	т			PCD
	3.0.0	I		=	m_c
	3.6.7	m _n		=	m _c cosθ
	3.6.8	Number of teeth m	arked on tl	he milling c	utter;
		Numbor	_	Т	
		Number	_	$(\cos\theta)^3$	
	3.6.9	Chordal addendum	=	$m_n + \begin{bmatrix} m_n T \\ 2 \end{bmatrix}$	$\left[\left(1-\cos\frac{90^{\circ}}{T}\right)\right]$
	3.6.10	Chordal thickness	=	90 m _n T sin	0 ⁰ Г
	3.6.11	Leadofhelix		:	$I = \pi \times PCD \times \cot \theta$
					or
					$I = \frac{\pi x PCD}{\tan \theta}$
	3.6.12	Helix angle		:	$ \tan \theta = \frac{\pi x PCD}{I} $
	3.6.13	Circular pitch		=	πm_n
	3.6.14	Lead of milling machi	ne = Dividir	ng head rat	io x pitch of
		leadscrew			

3.6.15 Change gears required
$$\begin{array}{c} Dr \\ G \end{array} = \begin{array}{c} L \\ I \end{array}$$

	3.7.1 Simple indexing	=	40 N
	3.7.2 Angular indexing	=	θ 9 ⁰
	3.7.3 Differental indexing	=	$\frac{Dr}{G} = \frac{(A-N)}{A} \mathbf{x} \frac{40}{1}$
	3.7.4 Rack:		
	I ndexing = P	Dividing head rat itch of lead scre	tio Pitch of rack x Gear ratio
3.8	Grinding of milling cutter teet	th:	
	3.8.1 Regular disc grinding v3.8.2 Cup grinding wheel: Of	vheel: Offset=R fset=rsinθ.	sin θ.
3.9	Graphical solution of static ba	alancing:	
	Out-of-balance effect = Mass face plate.	x distance of ma	ss from centre of
3.10	Tool angles for cutting square	threads:	
	3.10.1 Helix angle: tan η =	Lead πD_m	

3.7

Indexing:

3.10.2 Leading tool angle = 90° – (Helix angle + Clearance angle)

3.10.3 Following tool angle = 90° + (Helix angle – Clearance angle)