GAUTENG DEPARTMENT OF EDUCATION

SENIOR CERTIFICATE EXAMINATION

ELECTRONICS SG

FEB / MAR 2006

TIME: 3 hours

MARKS: 200

INSTRUCTIONS:

- Answer ALL the questions.
- Sketches and diagrams must be large, neat and labelled.
- All calculations must be shown.
- Answers must be clearly numbered.
- An approved pocket calculator may be used.
- An information sheet may be found on pages 6 to 9.

QUESTION 1 ELECTRICAL CURRENT THEORY

1.1 A 240 V/50 Hz supply is connected to a series circuit. The series circuit has a pure resistance of 12 ohm, an inductance of 175 mH and a capacitance of 75 microfarad.

Calculate

1.1.1	the inductive reactance.	(3)
1.1.2	the capacitive reactance.	(3)
1.1.3	the impedance of the circuit.	(3)
1.1.4	the current flow in the circuit.	(3)
1.1.5	the phase angle.	(3)
1.1.6	the total power developed.	(3)

A circuit comprises a non-inductive resistor of 45 ohm, an inductor of 0,3 henry 1.2 and a capacitor of 150 micro-farad, all connected in parallel across a 250 V/50 Hz supply.

Calculate

1.3

1.2.1	the current through each component.	(15)
1.2.2	the total current.	(3)
1.2.3	the dynamic impedance.	(3)
1.2.4	the phase angle.	(3)
1.2.5	the Q factor.	(3)
Draw a	a phasor diagram (not to scale, but in proportion).	(7)
		[52]

QUESTION 2 THREE-PHASE ALTERNATING-CURRENT SYSTEMS

2.1 Three pure resistances of 50 ohm each are connected in star to a 380 volt three-phase supply.

Calculate

2.1.1	the phase voltage.	(3)
2.1.2	the phase current.	(3)
2.1.3	the line current.	(1)

- 2.1.3 the line current.
- 2.2 Three pure resistances of 50 ohm each are connected in delta to a 380 volt three-phase supply.

Calculate

2.2.1	the phase voltage.	(1)
2.2.2	the phase current.	(3)
2.2.3	the line current.	(3)
		[14]

QUESTION 3 SEMICONDUCTORS

3.1	Draw a neat, labelled circuit diagram of a transistor which is connected in the common-base configuration. Input and output waveforms must be shown. State the properties of the transistor when connected in this configuration.	(10)
3.2	Show by means of a neatly labelled circuit how an SCR is connected to an alternating-current supply. Draw the output wave over the load and over the SCR in good relation to the trigger pulse.	(8)
3.3	Briefly describe the difference in operation of PNP and NPN transistors.	(6) [24]

QUESTION 4 AMPLIFIERS

4.1	Draw a neatly labelled di	agram of an RC	c-coupled amplifier.	(17)
4.2	Sketch a neatly labelled Show all calculations. T		line for a common-emitter amplifier. a is given:	
	Load resistance Supply voltage	= =	3 kO 15 volts	(11) [28]
	SWITCH	QUESTIO IING AND CON	N 5 TROL CIRCUITS	
5.1			ricuit diagram and a brief description ntrolled by using thyristors.	(10)
5.2	Draw a neatly labelled ci	rcuit diagram of	a bistable multivibrator.	(10)
5.3	Explain by means of a di is clamped to a positive l		eforms how a 6 volt peak-to-peak wave	(8) [28]
		QUESTIO OSCILLAT	-	
•	in, with the aid of a neatly al-controlled oscillator.	labelled circuit of	diagram, the operating principle of the	[10]
	C	QUESTIO OMPUTER PR		
7.1	Sketch the symbol and ir	ndicate the truth	table of the OR gate.	(7)
7.2	Design a NOR-gate netw	vork for the follo	wing Boolean expression:	
	$X = (A + \overline{B})(C + D)$			(6)
7.3	Prove by means of Boole	ean algebra that	:	
	(X+Y)(X+Z) = X + YZ			(6)
7.4	Design a combination cir expression:	cuit of logic gate	es to satisfy the following Boolean	
	$X = \overline{AB} + CD.EF$			(7)

(6)

7.5 Give the Boolean expression for the combination circuit in **Figure 7.5**. Write only the **answer** in your **answer book**.

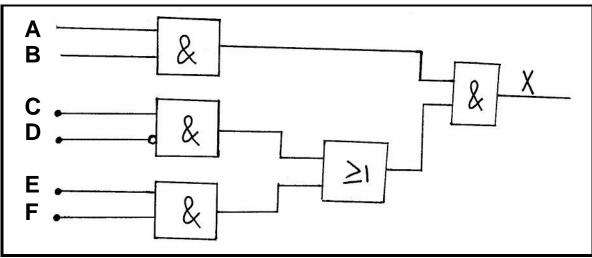


Figure 7.5

[32]

QUESTION 8 ELECTRONIC DEVICES

Sketo	Sketch a neatly labelled block diagram of an FM transmitter.	
	QUESTION 9 SAFETY PRECAUTIONS	
9.1	Explain what safety precautions you would institute in your workshop to prevent the spread of Aids.	(2)
9.2	List THREE dangerous actions in the workshop.	(3) [5]
	TOTAL:	200

6

INFORMATION SHEET / INLIGTINGSBLAD ELECTRIC CURRENT THEORY / ELEKTRIESE STROOMTEORIE

$I = \frac{V}{R}$	AMPS
-------------------	------

$\mathbf{P} = \mathbf{V} \mathbf{x}$	1WATT
--------------------------------------	-------

$t = \frac{1}{F}$ seconds / sekondes	
--------------------------------------	--

 $V_{ave.} / gem. = V_m \ge 0.637$

 $V_{\rm rms./wgk.} = V_{\rm m} \ge 0.707$

STAR / STER

 $V_{\rm L} = \sqrt{3} \times V_{\rm P}$

$I_{L} = I_{P}$	

DELTA

 $I_{I} = \sqrt{3} \times I_{P}$

	$V_{L} = V_{P}$	
$X_{c} = 1$	$f_{r} = \frac{1}{r}$	
$2 \times p \times F \times C$	$2 \times p \times \sqrt{LC}$	

	ELECTRONICS SG ELEKTRONIKA SG	704-2/0 L	7
$X_{L} = 2 x p x F x L$	$f_{r} = \frac{1}{2 x p} x \sqrt{\frac{1}{LC} - \frac{R^{2}}{L^{2}}}$		
$V_{\rm T} = \sqrt{V_{\rm R}^2 + V_{\rm C}^2}$	$Q = \frac{X_{L}}{R}$		
$V_{\rm T} = \sqrt{V_{\rm R}^{2} + V_{\rm L}^{2}}$	$Q = \frac{X_c}{R}$		
$V_{\rm T} = \sqrt{V_{\rm R}^{2} + V_{\rm X}^{2}}$	$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$		
$V_{\rm X} = V_{\rm L} - V_{\rm C}$		$\begin{array}{c} \mathbf{V}_1\\ \mathbf{V}_2 \end{array} = \begin{array}{c} \mathbf{N}_1\\ \mathbf{N}_2 \end{array} = \begin{array}{c} \mathbf{I}_2\\ \mathbf{I}_1 \end{array}$	
$V_{\rm C} = I_{\rm T} \times X_{\rm C}$			
$V_{\rm L} = I_{\rm T} \times X_{\rm L}$		$\frac{\mathbf{N}_1}{\mathbf{N}_2} = \sqrt{\frac{\mathbf{Z}_1}{\mathbf{Z}_2}}$	
$V_{R} = I_{T} \times R$			

MEASURING INSTRUMENTS / MEETINSTRUMENTE

$V_{\rm T} = \sqrt{V_{\rm R}^2 + V_{\rm X}^2}$	$Z = \sqrt{R^2 + X_c^2}$	
$V_{\rm X} = V_{\rm C} - V_{\rm L}$	$Z = \sqrt{R^2 + X_L^2}$	

$I_{\rm T} = \sqrt{I_{\rm R}^2 + I_{\rm X}^2}$	$Z = \sqrt{R^2 + X_x^2}$	
$I_X = I_C - I_L$	$X_{X} = X_{L} - X_{C}$	

AMPLIFIERS / VERSTERKERS

$I_e = I_c + I_b$	
$V_{cc} = V_{Rc} + V_{ce}$	
$I_{c} = \frac{V_{cc}}{Rc}$	

DECIBEL RATIOS / DESIBE LVER HOUDINGS	
$G_1 = 20 \operatorname{LOG} \frac{I_2}{I_1}$	
$G_{v} = 20LOG \frac{V_{2}}{V_{1}}$	
$G_{\rm P} = 10 \text{LOG} \frac{P_2}{P_1}$	
OPER ATIONAL AMPLIFI ERS / OPERASIO NELE VERS TERKERS	
$A_{v} = -\frac{R_{F}}{R_{I}}$	
$V_{OUT} = A_v \times V_I$	
$A_{v} = 1 + \frac{R_{F}}{R_{1}}$	
$V_{OUT} = A_v \times V_I$	
$V_{\rm OUT} = \frac{1}{\rm RC} \int V_1 dt$	
$V_{OUT} = - RC \frac{dv}{dt}$	
$V_{\text{OUT}} = - (V_1 \frac{R_F}{R_1} + V_2 \frac{R_F}{R_2} + V_3 \frac{R_F}{R_3})$	

9

COMPUTER PRINCIPLES / REKE NAARBEGI NSELS

A.B = B.A	
$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$	
A. $(B \cdot C) = (A \cdot B) \cdot C$	
A + (B + C) = (A + B) + C	

A. (B + C) = AB + AC	
A + (B.C) = (A + B) + (A + C)	

A(A + B) = A		
$\mathbf{A} + (\mathbf{A}\mathbf{B}) = \mathbf{A}$		

$\mathbf{A} + 0 = \mathbf{A}$	
A + 1 = 1	
A.0 = 0	
A.1 = A	
$A + \underline{A} = A$	
A + A = 1	
$A.\underline{A} = A$	
A.A = 0	

6

INFORMATION SHEET / INLIGTINGSBLAD ELECTRIC CURRENT THEORY / ELEKTRIESE STROOMTEORIE

$I = \frac{V}{R}$	AMPS
-------------------	------

$\mathbf{P} = \mathbf{V} \mathbf{x}$	1WATT
--------------------------------------	-------

$t = \frac{1}{F}$ seconds / sekondes	
--------------------------------------	--

 $V_{ave.} / gem. = V_m \ge 0.637$

 $V_{\rm rms./wgk.} = V_{\rm m} \ge 0.707$

STAR / STER

 $V_{\rm L} = \sqrt{3} \times V_{\rm P}$

$I_{L} = I_{P}$	

DELTA

 $I_{I} = \sqrt{3} \times I_{P}$

	$V_{L} = V_{P}$	
$X_{c} = 1$	$f_r = \frac{1}{r}$	
$2 \times p \times F \times C$	$2 \times p \times \sqrt{LC}$	

	ELECTRONICS SG ELEKTRONIKA SG	704-2/0 L	7
$X_{L} = 2 x p x F x L$	$f_{r} = \frac{1}{2 x p} x \sqrt{\frac{1}{LC} - \frac{R^{2}}{L^{2}}}$		
$V_{\rm T} = \sqrt{V_{\rm R}^2 + V_{\rm C}^2}$	$Q = \frac{X_{L}}{R}$		
$V_{\rm T} = \sqrt{V_{\rm R}^{2} + V_{\rm L}^{2}}$	$Q = \frac{X_c}{R}$		
$V_{\rm T} = \sqrt{V_{\rm R}^{2} + V_{\rm X}^{2}}$	$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$		
$V_{\rm X} = V_{\rm L} - V_{\rm C}$		$\begin{array}{c} \mathbf{V}_1\\ \mathbf{V}_2 \end{array} = \begin{array}{c} \mathbf{N}_1\\ \mathbf{N}_2 \end{array} = \begin{array}{c} \mathbf{I}_2\\ \mathbf{I}_1 \end{array}$	
$V_{\rm C} = I_{\rm T} \times X_{\rm C}$			
$V_{\rm L} = I_{\rm T} \times X_{\rm L}$		$\frac{\mathbf{N}_1}{\mathbf{N}_2} = \sqrt{\frac{\mathbf{Z}_1}{\mathbf{Z}_2}}$	
$V_{R} = I_{T} \times R$			

MEASURING INSTRUMENTS / MEETINSTRUMENTE

$V_{\rm T} = \sqrt{V_{\rm R}^2 + V_{\rm X}^2}$	$Z = \sqrt{R^2 + X_c^2}$	
$V_{\rm X} = V_{\rm C} - V_{\rm L}$	$Z = \sqrt{R^2 + X_L^2}$	

$I_{\rm T} = \sqrt{I_{\rm R}^2 + I_{\rm X}^2}$	$Z = \sqrt{R^2 + X_X^2}$	
$I_X = I_C - I_L$	$X_{X} = X_{L} - X_{C}$	

AMPLIFIERS / VERSTERKERS

$I_e = I_c + I_b$	
$V_{cc} = V_{Rc} + V_{ce}$	
$I_{c} = \frac{V_{cc}}{Rc}$	

DECIBEL RATIOS / DESIBE LVER HOUDINGS	
$G_1 = 20 \operatorname{LOG} \frac{I_2}{I_1}$	
$G_{v} = 20LOG \frac{V_{2}}{V_{1}}$	
$G_{\rm P} = 10 \text{LOG} \frac{P_2}{P_1}$	
OPER ATIONAL AMPLIFI ERS / OPERASIO NELE VERS TERKERS	
$A_{v} = -\frac{R_{F}}{R_{I}}$	
$V_{OUT} = A_v \times V_I$	
$A_{v} = 1 + \frac{R_{F}}{R_{1}}$	
$V_{OUT} = A_v \times V_I$	
$V_{\rm OUT} = \frac{1}{\rm RC} \int V_1 dt$	
$V_{OUT} = - RC \frac{dv}{dt}$	
$V_{\text{OUT}} = - (V_1 \frac{R_F}{R_1} + V_2 \frac{R_F}{R_2} + V_3 \frac{R_F}{R_3})$	

9

COMPUTER PRINCIPLES / REKE NAARBEGI NSELS

A.B = B.A	
$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$	
A. $(B \cdot C) = (A \cdot B) \cdot C$	
A + (B + C) = (A + B) + C	

A. (B + C) = AB + AC	
A + (B.C) = (A + B) + (A + C)	

A(A + B) = A		
$\mathbf{A} + (\mathbf{A}\mathbf{B}) = \mathbf{A}$		

$\mathbf{A} + 0 = \mathbf{A}$	
A + 1 = 1	
A.0 = 0	
A.1 = A	
$A + \underline{A} = A$	
A + A = 1	
$A.\underline{A} = A$	
A.A = 0	