POSSIBLE ANSWERS / MOONTLIKE ANTWOORDE SUPP 2007

QUESTION 1

1.1
1.1.1 $\mathrm{XL}=2 \mathrm{pFL}$
$=2 \times 3,14 \times 50 \times 35$
$=10,99 \mathrm{ohm}$
$\mathrm{XC}=\begin{gathered}1 \\ 2 \mathrm{x} \pi \mathrm{FC}\end{gathered}$
$\begin{array}{ll}= & 1 \\ = & 2 \times 3,14 \times 50 \times 1 \\ & 17,68 \text { ohm }\end{array}$
$I R=V T$

$$
\begin{align*}
& =150 \tag{1}\\
& =\quad 7,5 \mathrm{~A} \tag{1}
\end{align*}
$$

$\mathrm{IL}=\begin{aligned} & \mathrm{VT} \\ & \mathrm{XL}\end{aligned}$
$=\begin{gathered}150 \\ 10,99\end{gathered}$
$=13,65 \mathrm{~A}$
$\mathrm{IC}=\begin{aligned} & \mathrm{VT} \\ & \mathrm{XC}\end{aligned}$
$=\begin{gathered}150 \\ 17,68\end{gathered}$
$=8,48 \mathrm{~A}$
1.1.2 \quad IT $=\sqrt{ } \mathrm{IR}^{2}+(\mathrm{IL}-\mathrm{IC})^{2}$

$$
\begin{equation*}
=\sqrt{7,5^{2}+(13,65-8,48)^{2}} \tag{1}
\end{equation*}
$$

$$
=\sqrt{88,148}
$$

$$
\begin{equation*}
=9,39 \mathrm{~A} \tag{1}
\end{equation*}
$$

$1.1 .3 \quad \mathrm{ZT}=\quad \mathrm{VT}$
IT
150
9,39
$=15,97 \mathrm{ohm}$
1.2

$$
\begin{align*}
\text { Iave } & = \tag{1}\\
& \begin{array}{c}
i 1+\mathrm{i} 2+\mathrm{i} 3+\mathrm{i} 4+\mathrm{i} 5+\mathrm{i} 6 \\
6
\end{array} \tag{1}\\
& = \\
& 2+5+8+9+6+3 \tag{1}\\
& 6 \\
& =\quad 33 \\
& =5,5 \mathrm{~A}
\end{align*}
$$

R.m.s. value $=\sqrt{i 1^{2}+\mathrm{i} 2^{2}+\mathrm{i} 3^{2}+. . \mathrm{i} 6^{2}} \begin{array}{r}\text { no of midordinates }\end{array}$

I rms $=\int \begin{gathered}2^{2}+5^{2}+8^{2}+9^{2}+6^{2}+3^{2} \\ 6\end{gathered}$

$$
=\sqrt{219} \begin{gather*}
2 \tag{1}
\end{gather*}
$$

$$
\begin{equation*}
=\sqrt{36,5} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=6,04 \mathrm{~A} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \text { Form factor }=\begin{array}{l}
\text { RMS } \\
\text { AVE }
\end{array} \tag{1}\\
& =\begin{array}{c}
6,04 \\
5,5
\end{array} \tag{1}\\
& =0,897 \tag{1}\\
& \text { 1.3 Active current }=I \cos \emptyset \tag{1}\\
& \text { Reactive current }=I \sin \emptyset \tag{1}\\
& 1.4 \\
& \text { 1.4.1 } \mathrm{XL}=2 \mathrm{p} \mathrm{FL} \tag{1}\\
& =2 \mathrm{px100} \mathrm{\times 0,2} \tag{1}\\
& =125,66 \mathrm{ohm} \tag{1}\\
& \mathrm{XC}=\begin{array}{c}
1 \\
2 \mathrm{x} \pi \mathrm{FC}
\end{array} \tag{1}\\
& =\frac{1}{2} \times 3,14 \times 100 \times \underset{1000000}{160} \tag{1}\\
& =9,947 \mathrm{ohm} \tag{1}\\
& \mathrm{Z}=\sqrt{\mathrm{R}^{2}+(\mathrm{XL}-\mathrm{XC})^{2}} \tag{1}\\
& =\sqrt{100^{2}}+(125,66-9,95)^{2} \tag{1}\\
& =\sqrt{ } 23388,804 \\
& =152,93 \mathrm{ohm} \tag{1}\\
& I=\begin{array}{l}
V \\
Z
\end{array} \tag{1}\\
& =\begin{array}{c}
100 \\
152,93
\end{array} \tag{1}\\
& =0,65 \mathrm{~A} \tag{1}
\end{align*}
$$

$$
\begin{align*}
\text { 1.4.3 } \quad \cos \emptyset & =\mathrm{R} \tag{1}\\
& \\
\cos \emptyset & =152,93 \tag{1}\\
\cos \emptyset & =0,13=\text { P.F } \tag{1}\\
& \tag{1}\\
1.4 .4 \quad \mathrm{I} \mathrm{ac} & =\mathrm{I} \cos \emptyset \\
& =0,85 \times 0,13 \\
& =0,111
\end{align*}
$$

QUESTION 2

2.1

2.2 In this type of wattmeter the two fixed coils carry the current in the circuit while the moving coil carries a current proportional to the voltage.
Different voltage ranges can be accommodated by means of an external variable resistor, as in the case of a moving-coil voltmeter.
The field strength is proportional to the product of current and voltage, which is the power (instantaneous values during one complete cycle).
Deflection takes place as a result of the interaction between the coils during current flow.
2.3 Wattmeter
2.4 To measure current

QUESTION 3

3.1 Pin $=\sqrt{ } 3$ VL IL $\operatorname{Cos} \emptyset$

$$
\begin{array}{lc}
= & \sqrt{ } 3 \times 600 \times 20 \times 0,9 \\
= & 18,706 \mathrm{~kW} \\
= & \quad \text { P Output } \tag{1}\\
= & \text { P Input } \times 100 \% \\
= & 12 \\
= & 18,706 \times 100 \% \\
& 64 \%
\end{array}
$$

3.2
3.2.1 Efficiency $=\quad \begin{gathered}\text { output } \\ \text { input } \mathrm{x} 100 \%\end{gathered}$

$$
\begin{align*}
\mathrm{P}_{\text {inp ut }} & = \tag{1}\\
& \text { P output } \tag{1}\\
& \text { Efficiency } \\
& 200000 \\
& =0,9 \\
& 222,222 \mathrm{~kW}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{Pin} \quad=\quad \sqrt{3} \mathrm{VL} \text { IL } \operatorname{Cos} \emptyset \tag{1}
\end{equation*}
$$

$$
\text { IL } \quad=\quad \begin{gather*}
\text { Pin } \tag{1}\\
\sqrt{3} \times V L \times \operatorname{Cos} \varnothing
\end{gather*}
$$

$$
=\begin{gather*}
222222 \tag{1}\\
\sqrt{ } 3 \times 500 \times 0,9
\end{gather*}
$$

$$
\begin{equation*}
=\quad 285,112 \mathrm{~A} \tag{1}
\end{equation*}
$$

3.2.2 In delta IL $=\sqrt{ } 3 \times$ IPH

$$
\begin{equation*}
=\sqrt{ } 3 \times 285,112 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=493,828 \mathrm{~A} \tag{1}
\end{equation*}
$$

3.3
3.3.1

$$
\begin{align*}
\text { Pin } & =\sqrt{3} \mathrm{VL} \text { IL } \operatorname{Cos} \emptyset \tag{1}\\
& =\sqrt{ } 3 \times 380 \times 30 \times 0,9 \tag{1}\\
& =17,8 \mathrm{~kW} \tag{1}
\end{align*}
$$

3.3.2

$$
\begin{align*}
\mathrm{S} & =\sqrt{ } 3 \times \text { VL IL } \tag{1}\\
& =\sqrt{ } 3 \times 380 \times 30 \tag{1}\\
& =19,7 \mathrm{kVA} \tag{1}
\end{align*}
$$

3.3.3

$$
\begin{align*}
\mathrm{IL} & =\sqrt{ } 3 \times \mathrm{IP} \tag{1}\\
\mathrm{IP} & =\mathrm{IL} \tag{1}\\
& =30 \tag{1}\\
& =\sqrt{3} \tag{1}\\
& =17,3 \mathrm{~A}
\end{align*}
$$

3.3.4 Efficiency $=\begin{gathered}\text { output } \\ \text { input } \times 100 \%\end{gathered}$

$$
\begin{align*}
& =12 \times 100 \% \tag{1}\\
& =17,8 \\
& =67,4 \%
\end{align*}
$$

QUESTION 4

4.1

- The secondary winding must firs t be short-circuited.
- Dangerously high e.m.f. might be induced in the secondary winding.
4.2 Advantages:
- Less copper is needed.
- It is smaller.
- Different voltages can be obtained from one input.
- More efficient, since the magnetic coupling is better.
(Any two)
Disadvantages:
- The primary and secondary turns are electrically con nected.
- A dangerous situation could occur if the primary gets into contact with ear th.
- Dangerously high current will occur if the secondary is short-circuited.
(Any two)

4.3

$$
\text { 4.3.1 } \quad \begin{align*}
\text { VL2 } & =\sqrt{ } 3 \times \mathrm{VPH} 2 \tag{1}\\
\text { VPH2 } & =\sqrt{ } / 3 \tag{1}\\
& =380 \tag{1}\\
& =\sqrt{3} \tag{1}\\
& =219,39 \mathrm{~V}
\end{align*}
$$

4.3.2 VL1 = VPH1

$$
\begin{array}{rl}
& =11000 \mathrm{~V} \\
\mathrm{VPH} 1 & 11000 \\
\mathrm{VPH} 2 & 219,39 \\
& =50,13 \tag{1}
\end{array}
$$

4.3.3 $\mathrm{N} 2 \quad=\quad \mathrm{V} 2 \mathrm{x}$ N1

$$
\begin{align*}
& =4000 \times \begin{array}{l}
219,39 \\
= \\
11000
\end{array} \tag{1}\\
& =79,78 \text { windings }
\end{align*}
$$

4.3.4 IPH1 $=\begin{gathered}\text { IL1 } \\ \sqrt{3}\end{gathered}$

$$
=\begin{gather*}
5 \tag{1}\\
\sqrt{3}
\end{gather*}
$$

$$
\begin{equation*}
=3,46 \mathrm{~A} \tag{1}
\end{equation*}
$$

4.3.5 $\mathrm{P}=\sqrt{ } 3 \times \mathrm{VL} \times$ IL $\times \cos \emptyset$

$$
\begin{equation*}
=\sqrt{ } 3 \times 11000 \times 5 \times 0,8 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=76,21023 \mathrm{~kW} \tag{1}
\end{equation*}
$$

4.4 Its purpose is to dry the air which passes into the transformer tank when the air above the tank contracts.

QUESTION 5

5.1

Resistance star ter for a slip-r ing motor
[15]
5.2
5.2.1 4 pole $=2$ pole pairs

$$
\begin{align*}
\mathrm{N} & =\mathrm{F} \times 60 \tag{1}\\
& 2 \tag{1}\\
& =50 \times 60 \\
& =1500 \mathrm{r} / \mathrm{min}
\end{align*}
$$

5.2.2 Rotor speed $=\mathrm{N}-5 \%$-slip

$$
\begin{equation*}
=1500-5 \% \tag{1}
\end{equation*}
$$

$$
=\begin{gather*}
1500 \tag{1}\\
100
\end{gather*}
$$

$$
=75
$$

$$
\begin{equation*}
=1500-75 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=1425 \mathrm{r} / \mathrm{min} \tag{1}
\end{equation*}
$$

5.3 1. Lock-out switches
2. Isolator
3. No-volt coil
4. Overload coil
(1)
5. Earth leakage device
6. Isolating link
7. Interlock switches
5.4

Ac ${ }^{P}$ upply

Shaded-pole ind uction motor
5.5 Number of poles frequency
5.6 The speed that the rotor rotates is called the rotor speed and is always less than the synchronous speed.

QUESTION 6

6.1

- Has no heating filament and thus need no heating voltage.
- Takes up little space.
- Cheaper than tube diodes.
- Lo wer resistance and therefore less voltage drop.
- Works efficient at lower current and voltage.
- Having only two connection points, makes circuit so much simpler.
(Any three answers) $\quad 3 \times 1=[3]$
6.2 It is used for studying shapes of alternating currents and voltages as well as for measuring quantities such as voltage, current, power and frequency.
It is also used for diagnostic testing and monitoring of elec trical and electronic systems.

[20]

QUESTION 7

7.1

- Unsafe conditions
- Unsafe acts
- Physical or mental indisposition
- Lack of knowledge and sk ills
- Incorrect usage of equipment
(Any suitable ans wer)
7.2 Blood transfusion (infected blood)

Sharing of needles for drugs with an infected person
Infected blood entering the body through an injury
Without latex gloves when a person is treated for blood
Having sex with an infected person without protection.
(Any suitable answer)

