GAUTENG DEPARTM ENT OF EDUCATION
 SENIOR CERTIFICATE EXAMINATION

ELECTRICIANS WORK SG

POSSIBLE ANSWERS OCT / NOV 2006

QUESTION 1
ELECTRICAL CURRE NT THEORY
1.1
1.1.1

$$
\begin{align*}
\text { Vrms } & =0,707 \times \mathrm{Vm} \tag{1}\\
& =0,707 \times 60 \tag{1}\\
& =42,42 \mathrm{volt} \tag{1}\\
\mathrm{I} & =\mathrm{V} \tag{1}\\
& \mathrm{R} \\
& =42,42 \tag{1}\\
& =45 \\
& =0,943 \mathrm{~A} \text { or } 943 \mathrm{~mA}
\end{align*}
$$

1.1.2 $2 \mathrm{pft}=314 \mathrm{t}$
$\mathrm{f}=\begin{array}{r}314 \mathrm{t} \\ 2 \mathrm{pt}\end{array}$

$$
\begin{equation*}
=50 \mathrm{~Hz} \tag{1}
\end{equation*}
$$

1.1.3

$$
\begin{align*}
\mathrm{e} \quad & =60 \operatorname{Sin}(314 \mathrm{t}) \tag{1}\\
& =60 \operatorname{Sin}\left(314 \times 3 \times 10^{-3}\right) \tag{1}\\
& =60 \operatorname{Sin}(0,942 \mathrm{rad}) \tag{1}\\
& =60 \operatorname{Sin}(0,942 \times 57,3) \tag{1}\\
& =60 \operatorname{Sin} 53,97 \tag{1}\\
& =48,52 \text { volt } \tag{1}
\end{align*}
$$

$$
1.2 \quad \begin{align*}
\mathrm{F} & =\begin{array}{r}
\mathrm{T}
\end{array} \tag{1}\\
& =1 \times 10^{-3} \tag{1}\\
& =50 \mathrm{~Hz} \tag{1}\\
\mathrm{i} & =\mathrm{Im} \sin 2 \mathrm{pft} \tag{1}\\
5 & =\operatorname{Im} \sin 2 \mathrm{p} \mathrm{ft} \tag{1}\\
\mathrm{Im} & =\sin 2 \pi \times 50 \times 5 \times 10^{-3} \tag{1}\\
& =182,4 \mathrm{~A} \tag{1}
\end{align*}
$$

1.3 The total opposition imped ing the passage of an alternating current in a circu it comprising combina tions of resistances and reactances is called impedance.
1.4
1.4.1 $\mathrm{XL}=2 \mathrm{pFL}$
$\mathrm{XC}=\begin{gathered}1 \\ 2 \mathrm{pFC}\end{gathered}$
$\mathrm{XC}=\begin{gathered}1 \\ 2 \mathrm{p} \times 100 \times 160 \times 10^{-6}\end{gathered}$
$=9,95 \mathrm{ohms}$
$\mathrm{Z}=\sqrt{\mathrm{R}^{2}+(\mathrm{XL}-\mathrm{XC})^{2}}$
$=\sqrt{20^{2}}+(251,33-9,95)^{2}$
$=\sqrt{ } 58664,13$
$=242,207 \mathrm{ohm}$
I $\quad=\begin{aligned} & \mathrm{V} \\ & \mathrm{Z}\end{aligned}$
1.4.2 $\quad \cos \emptyset=\begin{aligned} & \mathrm{R} \\ & \mathrm{Z}\end{aligned}$
$\emptyset \quad=\cos ^{-1} \begin{gathered}55 \\ 242,207\end{gathered}$
$\emptyset \quad=76,87^{\circ}$
1.4.3 $\quad \cos \emptyset=\begin{aligned} & \mathrm{R} \\ & \mathrm{Z}\end{aligned}$
$\cos \emptyset=\begin{gathered}55 \\ 242,207\end{gathered}$
$\cos \emptyset=0,227=$ P.F
1.4.4 I active $=I \cos \emptyset$
1.4.5 \quad I reactive $=I \sin \emptyset$

$$
\begin{equation*}
=0,403 x \sin 76,87 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=0,392 \mathrm{~A} \tag{1}
\end{equation*}
$$

1.5 Bigger cables are needed to handle higher current.

Switches, instruments must be able to handle the higher current.
It causes a greater fall in the terminal voltage.
ther

QUESTION 2

2.1

2.2 Construction

It comprises a nu mber of reeds (thin steel strips) 'tuned' to vibrate at different
frequencies by varying their length. They are placed in front of a laminated iron core around which an exciting coil is wound.

Operation
The exciting coil is connected across the supply of which the frequency is to be measured, which sets up an alternating flux. This alternating flux will cause the reed tuned to that frequency to vibrate and its tip, which is painted, will appear to be drawn out. The reeds close by will also vibrate but to a les ser extent.

QUESTION 3

3.1
3.1.1 $\quad \mathrm{VP}=\quad \mathrm{VL}$
$=\begin{gathered}380 \\ \sqrt{3}\end{gathered}$
$=219,393 \mathrm{~V}$
$\mathrm{IP}=\quad \mathrm{VP}$
219,393
40
$=\quad 5,485 \mathrm{~A}$
$\mathrm{IL}=\mathrm{IP}$
$=606,06 \mathrm{~A}$
$\mathrm{P}=\sqrt{3} \times \mathrm{VL} 2 \times \mathrm{IL} 2 \times \operatorname{Cos} \emptyset$
$=\quad \sqrt{3} \times 380 \times 5,485 \times 1$
$=\quad 3,85 \mathrm{~kW}$
3.1.2 $\mathrm{VL}=\mathrm{VP}$
$=380 \mathrm{~V}$
$\mathrm{IP}=\begin{gathered}\mathrm{VP} \\ \mathrm{R}\end{gathered}$
$=380$
$=\quad 9,5 \mathrm{~A}$
$P=\sqrt{3} \times$ VL $2 \times$ IL $2 x \cos \varnothing$
$=\quad \sqrt{3} \times 380 \times 16,454 \times 1$
$=\quad 10,83 \mathrm{~kW}$
$\mathrm{IL}=\sqrt{3} \times \mathrm{IPH}$
$\mathrm{IL} 2=9,5 \times \sqrt{ } 3$
$=16,454 \mathrm{~A}$
3.2
3.2.1 Efficiency $=\quad \begin{gathered}\text { output } \\ \text { input } \times 100 \%\end{gathered}$

Pin $=\quad \begin{gathered}\text { Pout } \\ \text { Efficiency }\end{gathered}$

$$
\begin{gather*}
200000 \tag{1}\\
0,9
\end{gather*}
$$

$$
\begin{equation*}
=\quad 222,222 \mathrm{~kW} \tag{1}
\end{equation*}
$$

$\operatorname{Pin}=\sqrt{3}$ VL IL Cos \emptyset
IL $=\quad \begin{gathered}\text { Pin } \\ \sqrt{3} \times \mathrm{VL} \times \operatorname{Cos} \emptyset\end{gathered}$
$=\quad \begin{gathered}222222 \\ \sqrt{ } 3 \times 500 \times 0,9\end{gathered}$
$=285,112 \mathrm{~A}$
3.2.2 In delta IL $=\sqrt{ } 3 \times$ IPH

$$
\begin{align*}
& =\sqrt{ } 3 \times 285,112 \tag{1}\\
& =493,828 \mathrm{~A} \tag{1}
\end{align*}
$$

QUESTION 4

4.1 To switch on the alarm when there is a fault.

To isolate the transformer from the supply when there is a fault.
4.2
$\begin{array}{ll}\text { 4.2.1 } & \mathrm{V} 1 \\ & \mathrm{~V} 2\end{array} \quad \begin{aligned} & \mathrm{N} 1 \\ & \mathrm{~N} 2\end{aligned}$
$2000=\mathrm{N} 1$
$400=150$
$\mathrm{N} 1=2000 \times \begin{aligned} & 150 \\ & 400\end{aligned}$
$\mathrm{N} 1=750$ turns
4.2.2 $\mathrm{S} \quad=\mathrm{V} 1 \times \mathrm{I} 1$
$\mathrm{I} 1=\begin{gathered}\mathrm{S} \\ \mathrm{V}\end{gathered}$
$=\begin{gathered}120000 \\ 2000\end{gathered}$
$=60 \mathrm{~A}$

$$
\begin{align*}
4.2 .3 \quad & =\mathrm{V} 2 \times \mathrm{I} 2 \\
\mathrm{I} 2 & =\mathrm{S} \tag{1}\\
& \tag{1}\\
& =120000 \tag{1}\\
& =300 \mathrm{~A}
\end{align*}
$$

4.3
4.3.1 $\quad \mathrm{VL}=\sqrt{ } 3 \times \mathrm{VP}$
$\mathrm{VP}=\begin{aligned} & \mathrm{VL} \\ & \sqrt{3}\end{aligned}$
$=\begin{gathered}380 \\ \sqrt{3}\end{gathered}$
$=219,393 \mathrm{~V}$
4.3.2 $\mathrm{VL}=\mathrm{VP}=6000 \mathrm{~V}$
$\mathrm{TR}=\begin{aligned} & \mathrm{V} 1 \mathrm{p} \\ & \mathrm{V} 2 \mathrm{p}\end{aligned}$
$=\begin{gathered}6000 \\ 219,35\end{gathered}$
$=27,35: 1$
$\begin{array}{ll}\text { 4.3.3 } & \mathrm{V} 1 \mathrm{p} \\ \mathrm{V} 2 \mathrm{p}\end{array}=\begin{aligned} & \mathrm{N} 1 \\ & \mathrm{~N} 2\end{aligned}$
$\begin{gathered}6000 \\ 219,393\end{gathered}=\begin{gathered}3000 \\ \mathrm{~N} 2\end{gathered}$
$\mathrm{N} 2=\begin{gathered}3000 \times 219,393 \\ 6000\end{gathered}$
$\mathrm{N} 2=109,696$ turns
4.3.4 IL $=\sqrt{ } 3 \times$ IP
$\mathrm{IP}=\begin{aligned} & \mathrm{IL} \\ & \sqrt{3}\end{aligned}$
$=\begin{array}{r}25 \\ \sqrt{3}\end{array}$
$=20,21 \mathrm{~A}$
4.4 1. Copper losses
(1)
2. Iron losses

QUESTION 5

5.1 The speed of rotation of the magnet ic flux is called synchronous speed.

The speed that the rotor rotates is called the rotor speed and is always less than the synchronous speed.
5.2 1. Insulation Resistance Test between Windings
2. Insulation Resistance to Earth Test
3. Short Circuit and Open Circuit Test
$\begin{aligned} \text { 5.3 Input } & =\begin{array}{c}\text { Output } \\ \text { Efficiency } \times 100 \%\end{array} \\ & =15000 \\ & =18,8 \\ & =18,750 \mathrm{~W} \\ & \end{aligned}$
$\mathrm{I}=\begin{gathered}\mathrm{P} \\ \sqrt{3} \times V \times \cos \varnothing\end{gathered}$
$=\quad \begin{gathered}18750 \\ \sqrt{3} \times 380 \times 0,9\end{gathered}$
$=\quad 18750$
526,54
$=31,653 \mathrm{~A}$
$7 \%=\begin{gathered}31,653 \times 7 \\ 100\end{gathered}=2,216 \mathrm{~A}$
Current value on overload $=31,653+2,216=33,869$
5.4

Resistance star ter for a slip-ring motor
5.5 It is much more expensive than an ordinary induction motor.

It has a low starting torque.
It requires more auxiliary equipment.
It can only be operated by trained personnel.
5.6 Frequency

No of pole pairs
5.7 The direction of rotation may be reversed by interchanging an y two supply lines on the motor or starter terminals.

QUESTION 6

6.2 1. Both current and voltage are amplified and therefore this can be regarded as a power amplifier.
2. The signal is inverted with respect to the input signal.
3. The input and output impedance are in the medium range, i.e. between approximately 1,5 and 5 kilo-ohms.
6.3 The transistor is connected to the supply with the emitter to the negative and the collector to the positive. For conduction to take place the base must be made positive with re spect to the emitter, the transistor is in the "cut-off" or non-conduction condition.
6.4 To keep the voltage in the circuit constant when the current is variable and is able to withstand relatively high currents without the $\mathrm{P}-\mathrm{N}$ junction be ing destroyed.
6.5 By changing the potential of one set of plates to either maximum positive position or maximum negative position.

QUESTION 7

7.1 1. Switch off the power supply.
2. If the supply cannot be switched off, the person must be pulled away using an insulated material.
3. If necessary, the conductors must be cut with pliers or hexed off with an axe.
4. En sure that you do not get shocked as well.
5. Examine the person and if necessary you can perform bas ic first-aid treatment or call a doct or.
7.2 1. Unsafe circumstances
2. Wrong attitude
3. Physical or mental in disposition
4. Lack of knowledge and skill
5. Incorrect usage of equipment
[Any suitable answer]

