GAUTENG DEPARTMENT OF EDUCATION
 SENIOR CERTIFICATE EXAMINATION

BRICKLAYING AND PLASTERING SG

POSSIBLE ANSWERS OCT / NOV 2006

QUESTION 1

1.1 - Retain formwork in place for a longer period.PP

- Cover concrete with impermeable sheeting.P P
- Cover concrete with wet sacks, wet sand etc.PP
- \quad Spray the surface at certain intervals with water.P P
1.2 Cube testP
1.3 Slump test P
1.4 - SlateP
- P.V.C.P
- AsphaltP
- LeadP
- BitumenP
- MelthoidP
1.5 - The direction of the flueP P
- The shape of the buildingP P
- The slope of the roofP P
- The proximity of the trees or other buildingsP P
- The position of the door or window openingP P
1.6 A distance a pile penetrates after each blowP P
1.7 - Be of a sufficient strengthPP
- Be protected against damagePP
- Be constructed of durable materialP P
- All joints should remain watertightP P
- The joints must not form any obstruction in the interior of the drainP P
- Be laid in a straight line between points where changes of direction occurP P
- Be self-cleansingPP
- Be of adequate size to carry maximum volume of matterP P
- Where any drain or sewer passes under a building such precautions should be taken to prevent damage or loss of watertightness PP
- Be capable of withstanding watertightness test after its completionPP

QUESTION 2

2.1 • Base plateP

- Toeboard clipP
- Double couplerP
- Single couplerP
- Reveal pinP
- Putlog endP
- Swivel couplerP
- Putlog clipP
2.2 Drawing

QUESTION 3

3.1 It is a substance which is applied to walls and ceilings while it is plastic and which later hardens.P P

3.2.1 TWO COAT PLASTER

Clean the wall and remove all loose mortar. P P
Roughen the wall. P P
Distemper it.P P
Rake out joints not over 6 mm depth. P P
Apply rendering first coat.P P
Leave it to set.P P
Float with steel trowelling.PP
Keep rendering damp.P P
Comb the surface when the coat starts setting.P P
Apply second coat and leave it to set.P P
Cut to plumb and fill where there are holes.P P
Float the wall using the wooden float to give a smooth finish.PP
3.2.2 MIXING MORTAR BY HAND

The sand and cement are carefully measured.P P
First the sand is spread out on a platform made of half bricks.P P Next the cement is distributed evenly over the sand.P P
The dry mix is thoroughly mixedP P until it has attained an even greyP P colour.
Careful mixing follows.PP
3.3 MANUFACTURING OF PORTLAND CEMENT FLOW-CHART

QUESTION 4

4.1.1 Semicircular archP
4.1.2 Segmental archP
4.1.3 Semi-elliptical archP
4.2 Drawing
4.3 Drawing

QUESTION 5

5.1 Drawing
5.2.1 ConPP
5.2.2 MHCP P
5.2.3 IEPP
5.2.4 GPP
5.2.5 ILPP

QUESTION 6

6.1 Draw to scale of 1:10 a vertical section through the roof eaves and ceiling of a building by using the following specifications:
General impression
Roof-truss detail
Roof covering detail
Rainwater goods
Eaves batters
Ceiling detail
Extemal wall
Scale

QUESTION 7

7.1
7.1.1 Volume $=20$ (Length x Width x Height) $P P$
$=20\left(0,3 \mathrm{~m} \times 0_{3}, 225 \mathrm{~m} \times 3 \mathrm{~m}\right) \mathrm{PPP}$
$=20\left(0,201 \mathrm{~m}^{3}\right) \mathrm{PPP}$
$=4,02 \mathrm{~m}^{3}$
$\begin{aligned} \text { 7.1.2 Cement } & =1 / 6 \times 4,02 \mathrm{~m}^{3} \mathrm{P} \\ & =0,67 \mathrm{~m}^{3}\end{aligned}$
Given $0,033 \mathrm{~m}^{3}$

$$
\begin{align*}
& =\quad 0,67 \mathrm{~m}^{3} / 0,033 \mathrm{~m}^{3} \mathrm{P} \\
& =20,3 \\
& =\quad 21 \text { bags of cementP } \tag{3}
\end{align*}
$$

7.1.3 Sand $=2 / 6 \times 4,02 \mathrm{~m}^{3} \mathrm{P}$

$$
\begin{equation*}
=\quad 1,34 \mathrm{~m}^{3} \mathrm{PP} \tag{3}
\end{equation*}
$$

7.2 EXTERNAL WALLS
Area A

$$
\begin{array}{ll}
= & 2(1 \times \mathrm{h}) \mathrm{P} \\
= & 2(22 \mathrm{~m} \times 2,6 \mathrm{~m}) \mathrm{P} \\
= & 114,4 \mathrm{~m}^{2} \mathrm{P}
\end{array}
$$

Area $B=2(1 \times h) P$

$$
=2(9,56 \mathrm{~m} \times 2,6 \mathrm{~m}) \mathrm{P}
$$

$$
=\quad 49,71 \mathrm{~m}^{2} \mathrm{P}
$$

Total area of external walls $A+B=114,4 \mathrm{~m}^{2}+49,71 \mathrm{~m}^{2} \mathrm{P}$

$$
=\quad 164,11 \mathrm{~m}^{2} \mathrm{P}
$$

Area of Openings
Windows A \& B $=2(I \times h) P$
$=2\left(1,6 \mathrm{~m}_{2} \times 1,3 \mathrm{~m}\right) \mathrm{P}$
$=4,16 \mathrm{~m}^{2} \mathrm{P}$
Windows C \& D $\quad=\quad 2(1 \times h) P$

$$
\begin{aligned}
& =\quad 2(1,2 \mathrm{~m} \times 1,0 \mathrm{~m}) \mathrm{P} \\
& =\quad 2,4 \mathrm{~m}^{2} \mathrm{P}
\end{aligned}
$$

$$
\begin{aligned}
\text { Extemal Doors } & =2(1 \times \mathrm{h}) \mathrm{P} \\
& =2\left(0,8 \mathrm{~m}^{2} \times 2,1 \mathrm{~m}\right) \mathrm{P} \\
& =3,36 \mathrm{~m}^{2} \mathrm{P} \\
\text { Total area of openings } & =4,16 \mathrm{~m}^{2}+2,4 \mathrm{~m}^{2}+3,36 \mathrm{~m}^{2} \mathrm{P} \\
& =9,92 \mathrm{~m}^{2} \mathrm{P} \\
\text { Total area of bkwk } & =164,11 \mathrm{~m}^{2}-9,92 \mathrm{~m}^{2} \mathrm{P} \\
& =154,19 \mathrm{~m}^{2} \mathrm{P}
\end{aligned}
$$

108 bricks per m ${ }^{2}$
Total no. of bricks external $=\quad$ area $\times 108 / \mathrm{m}^{2}$

$$
\begin{aligned}
& =108 / \mathrm{m}^{2} \times 154,19 \mathrm{~m}^{2} \mathrm{P} \\
& =16652,52 \mathrm{P} \\
& =16653 \text { bricksP }
\end{aligned}
$$

INTERNAL WALLS

Area A	$=1 \times \mathrm{hP}$
	$=3,56 \mathrm{~m}^{2} \times 2,6 \mathrm{mP}$
	$=9,26 \mathrm{~m}^{2} \mathrm{P}$
Area B	$=1 \times \mathrm{hP}$
	$=10,56 \mathrm{~m}^{2} \times 2,6 \mathrm{mP}$
	$=27,46 \mathrm{~m}^{2} \mathrm{P}$
	$=9,26 \mathrm{~m}^{2}+27,456 \mathrm{P}$
Area A + Area B	$=36,72 \mathrm{~m}^{2} \mathrm{P}$
	$=2(1 \times \mathrm{h}) \mathrm{P}$
Doors	$=2\left(0,8 \mathrm{~m}^{2} \times 2,1 \mathrm{~m}\right) \mathrm{P}$
	$=3,36 \mathrm{~m}^{2} \mathrm{P}$
	$=36,72 \mathrm{~m}^{2}-3,36 \mathrm{~m}^{2} \mathrm{P}$
Total area of bkwk -area	$=33,36 \mathrm{~m}^{2} \mathrm{P}$
of openings	$=$

Given 54 bricks $/ \mathrm{m}^{2}$ for halfbrick wall
Total no of bricks internal $=54$ bricks $/ \mathrm{m}^{2} \times 33,36 \mathrm{~m}^{2} \mathrm{P}$
$=1801,44$ bricksP
$=1802$ bricksP
Total no. of bricks $=1802$ bricks +16653 bricksP $=18455$ bricksP

QUESTION 2.2

QUESTION 4.2 ANSWER
VRAAG 4.2 ANTWOORD

FRONT ELEVATION OF A TWO-RINGED SE MICIRCULAR ARCH VOORAANSIG VAN 'N TWEERING-HALFSIRKEL-BOOG

QUESTION 4.3

No. of courses = 3
Cross-J unction $=3$
Brickforce $=3$
English bond = 3 Linework + neatness = 3

QUESTION 6

(40)

