G AUTENG DEPARTMENT OF EDUCATION

SENIO R CERTIFIC ATE EXAMINATION

ADDITIONAL MATHEMATICSHG

FEB / MAR 2006
TIME: 3 hours
MARKS: 400

INSTRUCTIONS:

- This exam ination paper con sists of FIVE sections.
- Section A is COMPULSORY.
- A further TWO sections should be ans wered from Sec tions B, C, D and E.
- Each se ction sh ould be answer ed in a sepa rate answer book and the relevant section must be clearly indicated on the cover. Place all answe r books inside the ans wer book for Section A bef ore handing all the answer books in toge ther.
- Non-programmable c alculators may be use d, unles s ind icated other wise.
- This question paper consists of 17 pages. Statistical tables and formula sheets may be fou nd on page s 15 to 17 .
- All neces sary calculations should be shown.
- All angles are in radians and ans wers should also be given in radians.
- Handwr iting should be legible.

SECTION A
 COM PULSORY
 CALCULUS
 QUESTION 1

1.1 Sketch on the same sys tem of ax es the graphs of \mathbf{f} and \mathbf{g} where

$$
\begin{equation*}
f: x \rightarrow \arcsin x+\frac{\pi}{2} \text { and } \quad g: x \rightarrow \arccos x \tag{12}
\end{equation*}
$$

1.2 Answer this quest ion without the use of a calculator:
1.2.1 Calculate $\arccos \left(\cos _{6}^{7 p}\right)$
1.2.2 Calculate $\boldsymbol{\operatorname { s i n }}(\arctan \mathbf{m}+\arctan \underset{\mathbf{m}}{\mathbf{1}})$

QUESTION 2

2.1 $\mathbf{f}(\mathbf{x})=\left\{\begin{array}{ccc}\mathbf{p} \mathbf{x}+\mathbf{2 q}-\mathbf{4} & \text { if } & \mathbf{x}<\mathbf{2} \\ \mathbf{q} \mathbf{x}^{\mathbf{2}}-\mathbf{p} \mathbf{x}+\mathbf{p} & \text { if } & \mathbf{x} \geq \mathbf{2}\end{array} \quad \mathrm{f}\right.$ is differentiable for all \mathbf{x}.

Determine the values of \mathbf{p} and \mathbf{q}.
$2.2 \quad g(x)=\left\{\begin{array}{lll}x^{2}-4 & \text { if } & x<3 \\ 4 & \text { if } & x=3 \\ x+2 & \text { if } & x>3\end{array}\right.$
2.2.1 Determine if \mathbf{g} is cont inuous at $\mathbf{x}=\mathbf{3}$, and substantiate fully. If not continuous, state the type of discontinuity.
2.2.2 Determine, with substantiation, if \mathbf{g} is differentiable at $\mathbf{x}=\mathbf{3}$.

QUESTION 3

3.1 Determine the following limits and show if the limit does not ex ist:

$$
\begin{array}{lc}
\text { 3.1.1 } & \lim _{n \rightarrow \infty} \begin{array}{c}
\mathbf{2}+\mathbf{n}-\mathbf{4 n}^{\mathbf{3}} \\
5+\mathbf{2 n}^{\mathbf{3}}
\end{array} \\
& \tag{10}\\
\text { 3.1.2 } & \lim _{x \rightarrow \mathbf{9}^{-}} x^{2}-\mathbf{8 1} \\
x-\mathbf{9}
\end{array}
$$

3.2 3.2.1 Determine $f^{\prime}(\mathbf{x})$ from first principles if $\mathbf{f}(\mathbf{x})=\frac{\mathbf{1}}{\sqrt{2-\mathbf{3 x}}}$
3.2.2 Determine $\mathbf{g}^{\prime}(\mathbf{1})$ if $\mathbf{g}(\mathbf{x})=\begin{gathered}\mathbf{x}^{\mathbf{2}}+\mathbf{1} \\ \left(\mathbf{x}^{\mathbf{5}}-\mathbf{x}^{\mathbf{3}}+\mathbf{x}\right)\end{gathered}$
3.3 Determine a formu la for the n -th de rivative of $\mathbf{f}(\mathbf{x})=(\mathbf{1}-\mathbf{5} \mathbf{x})^{\mathbf{4 0}}, \mathbf{n} \leq \mathbf{4 0}$.

QUESTION 4

Three graphs are drawn in the sketch be low for $\mathbf{0} \leq \mathbf{x} \leq \mathbf{2 \pi}$:
$\mathbf{f}(\mathbf{x})={ }_{\mathbf{2}}^{\mathbf{1}} \mathbf{x}$ and $\mathbf{g}(\mathbf{x})=-\mathbf{3} \sin \mathbf{x}$ and $\mathbf{h}(\mathbf{x})=\mathbf{f}(\mathbf{x})+\mathbf{g}(\mathbf{x})$.
Three points A, B and C (shown on the sketch) are to be found.

4.1 Write down Newton's Formula for finding the \mathbf{x} co-ordinate of point A. Suggest a suitable starting value. Do not calculate the answer.
4.2 Write down Newton's For mula for finding the \mathbf{x} co-ordinate of \mathbf{B}. (Do not calculate the answer!)
4.3 Write down Newton's For mula for find ing the \mathbf{x} co-ordinate of \mathbf{C}, the max imum turning point of $\mathbf{h}(\mathbf{x})$. (Do not calculate the answer!)

QUESTION 5

The ske tch be low sho ws the graph of the cur ve $\mathbf{y}=\mathbf{4} \mathbf{x}-\mathbf{x}^{\mathbf{2}}$ abo ve the \mathbf{X}-axis.

5.1 Use the Riemann Sum Formu la where $\mathbf{n} \rightarrow \infty$ to find the area between the graph of the cur ve $\mathbf{y}=\mathbf{4} \mathbf{x}-\mathbf{x}^{\mathbf{2}}$ and the positive \mathbf{X}-ax is for $\mathbf{x}<\mathbf{4}$.
5.2 Allow this curve to be rotated abo ut the \mathbf{X}-ax is and de termine the volume of the solid of rotation wh ich is generated. Leave your answer in terms of π.

QUESTION 6

6.1 Determine the following integrals:
6.1.1 $\int \frac{\sin \theta}{\sqrt{1-\cos \theta}} d \theta$
6.1.2 $\int\binom{\mathbf{1}}{\mathbf{9} \mathbf{t}^{2}+\mathbf{6 t}+\mathbf{2}} \mathrm{dt}$
6.2 The cur ves of $\mathbf{f}(\mathbf{x})=\mathbf{2} \boldsymbol{\operatorname { c o s }}^{\mathbf{2}} \mathbf{x}$ and $\mathbf{g}(\mathbf{x})=\boldsymbol{\operatorname { s i n }} \mathbf{2} \mathbf{x}$ are given be low:

6.2.1 Determine the area of the re gion between $\mathbf{f}(\mathbf{x})$ and $\mathbf{g}(\mathbf{x})$
from $x=\frac{\pi}{4}$ to $\mathbf{x}=\frac{\pi}{2}$.
6.2.2 $A B$ is a vertical line representing the maximum distance bet ween $f(\mathbf{x})$ and $\boldsymbol{g}(\mathbf{x})$ in the interval $\frac{\pi}{\mathbf{4}} \leq \mathbf{x} \leq \frac{\pi}{2}$. Determ ine the value of \mathbf{x} at which this max imum occ urs, and show that it is indeed a max imum.

Ans wer any TW O of the following FOUR sections.

SECTION B
 FINANCIAL MATHEMATICS
 QUESTION 7

The marginal cost and revenue fu nctions (in thous ands of Rands) for a company are

$C^{\prime}(\mathbf{q})=\mathbf{m q}+10$
 $R^{\prime}(q)=\mathbf{3 0}$
 where \mathbf{q} represen ts the number of items pro duced.

These functions are illustra ted be low:

q

7.1 What does the area \mathbf{A} represent?
7.2 If a total prof it of 100 thous and rands is made when 200 items ar e being produ ced, calculate \mathbf{m}. There is no fixed cos t.

QUESTION 8

8.1 An amount of R1 000 is invested for 5 years at a compound interest rate of 13% per annum. What will the value of the investment be af ter 5 years? Give your answe r to the near est cent.
8.2 How much (to the near est cent) sho uld be invested at a simple interest rate of 13% per annum to y ield the same amount af ter 5 years?

QUESTION 9

Mr Thanksdad wants to invest R30 000 now to cater for a $21^{\text {st }}$ birthday pre sent for each of his 3 daughters when they turn 21. They have presently just turned 3,5 and 8 and each must receive the same amount. How much w ill each receive if interest is at $12,5 \%$ compounded monthly?

QUESTION 10

10.1 A school wants to replace its photoco py machine after five years with a new one. The value of the machine is currently R8 000 and they es timate that a new mach ine will cost R13 480 in five years' time. Ca lculate the compound yearly inflation rate that the schoo 1 used in their calculations. Give the ans wer cor rect to a whole number.
10.2 They realise that the y can swop the old machine. They es timate that the value of the old mach ine will decrease with 11% p.a. on the book value. Show that they will need R9 012,75 in five years' time.
10.3 They sa ve monthly with a bank and get 9% p.a. interest, compounde d monthly, on the account. They will start saving in one mon th's time, and the ir last payment wi ll be two months bef ore the new machine is bought. Calculate how much the ir monthly deposits should be.

QUES TION 11

I take out a home loan from a bank to fund the pur chase of a hous e costing R725 000. The interest charged is 12% per annum compo unded monthly.
11.1 If I can afford to pay back R6 000 per month, will I ever be able to amor tise the loan? Explain your answer.
11.2 I do some cr eative budget ing and manage to scr ape together R8 000 per month. How long will I take to amortise the loan? Paymen ts are made at the end of each month, starting in one month's time.
11.3 After 10 years I find I can't afford to c arry on payin g back R 8000 a month. How much do I st ill owe immed iately after the $120^{\text {th }}$ paymen t ?
11.4 Fortuna tely, a rich aunt hears of my predicament desc ribed in Question 11.3 and offers to give me R5 000 at the beginning of each ye ar for 5 years to he lp pay of f the balance of R552 471,00 on the hou se. These year ly payments, together with my lesser month ly amount \mathbf{x}, paid at the end of ea ch month, pay of f the loan in a further 10 years.

Determine \mathbf{x} to the nearest cent.

TOTAL FOR SE CTION B: [100]

SECTION C
 ANALYTICAL GEOMETRY

QUESTION 12

Let $\frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{a}^{\mathbf{2}}}+\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{b}^{\mathbf{2}}}=\mathbf{1}$ be the canonica 1 equation of an ellipse with eccentricity
$e=\begin{gathered}\sqrt{5} \\ 3\end{gathered}$ and focus $(\sqrt{5} ; 0)$.
12.1 Show that $\mathbf{a}=\mathbf{3}$ and $\mathbf{b}=\mathbf{2}$.
12.2 Find the equation of the normal to the ellipse at the point $\mathrm{P}(\sqrt{\mathbf{3}} ; \sqrt{\mathbf{8}})$.
12.3 Find the ang le betwe en the normal at P and the diameter of the ellipse which pass es thro ugh P. Give the answe r in degrees.

QUESTION 13

13.1 Show that $\mathbf{x}=\mathbf{a} \mathbf{t}^{\mathbf{2}}$ and $\mathbf{y}=\mathbf{2 a t} ; \mathbf{t} \in \mathbf{R}$ are parame tric equations for $\mathbf{y}^{\mathbf{2}}=\mathbf{4 a x}$.
13.2 Prove that the equation of the tangent to $\mathbf{y}^{\mathbf{2}}=\mathbf{4 a x}$ at ($\mathbf{a t}^{\mathbf{2}} ; \mathbf{2} \mathbf{a t}$) is given by

$$
\begin{equation*}
\mathbf{x}-\mathbf{t y}+\mathbf{a} \mathbf{t}^{2}=\mathbf{0} \tag{10}
\end{equation*}
$$

13.3 In the figure, P is any po int on the parabola $\mathbf{y}^{2}=\mathbf{4 a x}$. RPT is a tangent. PA is parallel to the \mathbf{X}-axis. F is the focus of the parabola. The tangent TP through point P cuts the \mathbf{X}-ax is at R.

Prove that $\mathbf{A P} \mathbf{P}=\mathbf{F} \hat{\mathbf{P}}$.

QUESTION 14

14.1 Given the poin ts $\mathbf{A}(\mathbf{0} ; \mathbf{- 1 ; - 1)} \mathbf{~} \mathbf{B}(\mathbf{2} ; \mathbf{- 2} ; \mathbf{2}) ; \mathbf{C}(-\mathbf{3} ; \mathbf{8} ; \mathbf{7})$ and D(-1; 2; 0):
14.1.1 Find the equ ation of the plane through the po ints \mathbf{A}, \mathbf{B} and \mathbf{C}.
14.1.2 Show that the points $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} are co-planer.
14.1.3 Prove that ABCD is a paralle logram.
14.2 If \mathbf{P} is the point $(\mathbf{1} ; \mathbf{2} ; \mathbf{3})$, give the equat ion of the line $\mathbf{A P}$.
14.3 Calculate the distance from \mathbf{P} to the p lane ABC .

SECTION D

AL GEBRA

QUESTION 15

15.1 State the conjuga te surd the orem.
15.2 If $-\mathbf{1}+\mathbf{2} \sqrt{\mathbf{3}}$ is a zero of $\mathbf{f}(\mathbf{x})$, fac tor ize

$$
\begin{equation*}
f(x)=x^{5}+5 x^{4}-2 x^{3}-25 x^{2}-29 x-22 \text { fully in } Q[x] \tag{20}
\end{equation*}
$$

15.3 Write down a polynomial with in teger coefficients that meets the following condition s: It sho uld be of grade 3, have 4 terms an d be irreduc ible in $\mathrm{Q}[\mathbf{x}]$ according to Eisenste in (it is not neces sary to sho w this).

QUESTION 16

16.1 Use mathematical induction to prove $\mathbf{8}^{\mathbf{n}}-\mathbf{7 n}+\mathbf{6}$ is divisible by $\mathbf{7}$, for all natural numbers $\mathbf{n} \in \mathbf{N}$.
16.2 If the zeroes of the polynomial $\mathbf{4} \mathbf{x}^{\mathbf{3}}+\mathbf{3} \mathbf{x}^{\mathbf{2}}+\mathbf{2 x}+\mathbf{1}$, are $\mathbf{a}, \boldsymbol{\beta}$ and ?, find the coefficients of the third degree polynomial of which the zeroes are

$$
\frac{1}{\alpha}+\frac{\mathbf{1}}{\beta}+\frac{1}{\gamma} ; \quad \begin{gather*}
1 \tag{18}\\
\alpha \beta
\end{gathered}+\frac{\mathbf{1}}{\beta \gamma}+\frac{1}{\alpha \gamma} \text { and } \begin{gathered}
1 \\
\alpha \beta \gamma
\end{gather*} .
$$

QUESTION 17

$f(x)=x+5+\frac{7}{x}+\frac{3}{x^{2}}$
17.1 Write down the asymptot es of the graph of $\mathbf{y}=\mathbf{f}(\mathbf{x})$.
17.2 Calculate at which \mathbf{X}-value the graph cuts its ob lique asymptote.
17.3 The graph of $\mathbf{f}(\mathbf{x})$ has \mathbf{x}-intercepts at $\mathbf{x}=\mathbf{- 1}$ and $\mathbf{x}=-\mathbf{3}$. It has minimum turning points at $(-1 ; 0)$ and at $(3 ; 10,7)$, and a maximum turning point at $(-2 ; 1 / 4)$. Sketch the graph of $\mathbf{f}(\mathbf{x})$, sho wing all as ymptotes and inter cepts with the axis. It is not necessary to show the \mathbf{y}-values of the stationary points.

QUESTION 18

Decompose $\begin{gathered}\mathbf{3} \mathbf{x}^{2}+\mathbf{8 x}-\mathbf{3} \\ (x+1)^{2}(x-1)\end{gathered}$ into partial fractions.
TOTAL FOR SECTIOND:
[100]

SECTION E STATISTICS

G ive answers corr ect to 4 decimal digits where applicable.

QUESTION 19

19.1 Six numbe rs between 1 and 49 are chosen for a lotto ticket. Order does not matter. A ticket costs R5. How much mone y must you spe nd this week to be 50% certain of winning the jackpot?
19.2 Joe's car runs out of petrol between the filling station and h is house. On the way back to his car, a stranger approaches him an d asks for money. In h is pocke t Joe has thre e R10 notes, four R2 0 notes, two R50-notes and one R1 00 note. He randomly takes a note out of his pocket.
19.2.1 He wants to lose the smallest possible amount. What is the probability that he will take a R 10 note out of his pocket?
19.2.2 The note which he takes out is a R20 note and he gives it to the beggar, but the per son is not satisfied and asks for R50. What is the pro bability that Joe will now take a R 50 note out of his pocket?
19.2.3 What is the probabi lity that the total amount would have been R80 if Joe too k out three notes simu ltaneous ly from his pocket?
$19.3 \mathbf{P}(\mathbf{A})=\mathbf{0 , 6} ; \mathbf{P}(\mathbf{B})=\mathbf{x}$ and $\mathbf{P}(\mathbf{A} \cup \mathbf{B})=\mathbf{0}, \mathbf{8 8}$.
Calculate \mathbf{x} if A and B are ind epend ent events.

QUESTION 20

Amanda must write a "true or false" test on anc ient Greek literature, but she knows no thing abo ut the topic. She decides to toss a co in before she answer s each question. Heads or ta ils will then deter mine whether she shou ld ans wer true or false for each of 30 questions.
20.1 What is the probability (to 4 significant figures) that she will answer 20 ques tions correctly?
20.2 Determine the probabi lity that she will answer all the questions correctly. Leave your answer in expon ential form.
20.3 What is the probabi lity that she will ans wer at least one question correctly? Do not round off your ans wer.

QUESTION 21

Out of a class of 100 students, the fo llowing information is obta ined over a period of a ye ar after the ir stud ies are completed:
(i) 40 are women and 60 are men
(ii) 30 of these stude nts went to work in Londo n after comp leting the ir stud ies
(iii) 50 students got married in this year, of which 35 are men
(iv) 20 got married in Lond on
(v) 10 female studen ts went to work in London
(vi) \mathbf{X} is the numbe r of women who g ot marr ied in London
(vii) 20 are men who are not mar ried and have not worked in Londo n
21.1 Present this information on a Venn diagram.

Use the following sets in the diagram:
W : this is a woman
L: these are students who went to work in London
M: these are the studen ts who got married within the specific year
21.2 Determine how many women got married in London.

QUESTION 22

The East-Gauteng Centre for Additional Mathematics on ly wants to enrol learners who are in the top 5% of the populat ion. It is known that IQ is normally distributed, with a mean of 100 and a standard dev iation of 15 .
22.1 What IQ shou ld be us ed as the minimum re quirement for acceptanc e?
22.2 If the IQs of 1500 learners in a big schoo 1 are also norma lly distributed, how many learners can be acce pted into the centre?
22.3 Learners with an IQ of less than 85 may struggle with Mathema tics. Determine the percentage of learners in this category.

QUESTION 23

A manuf acturer of med ical products claims that at least 99% of the condoms which they manu facture are effective. This claim is que stioned by a grou p of women.

A samp le of 500 condom s is rando mly chosen and tested. It is found that 10 of the se have defects, and are thus not 100% safe for use.
23.1 Find a po int estimate for the propor tion of effective cond oms.
23.2 Determine a 95\% con fidence interval for the propor tion of condoms whi ch are at least 99% effective (accurate to 3 decimals).

Normal Distribution/ Normaalverspreiding

$$
P(X \leq x)=\frac{1}{\sqrt{ } 2 p} \int_{-\infty}^{x} \epsilon_{2}^{-x^{2}} 2_{d x}
$$

P.T.O./b.o.

Finance/ Finansies

FORMULA SHEET/ FORMULEBLAD
Differential and Integral Calculus
Differensiaal- en Integraalrekene
$\mathrm{s}=\mathrm{r} \theta$
$\sin ^{2} x=1 / 2(1-\cos 2 x) \cos ^{2} x=1 / 2(1+\cos 2 x)$
$\sin A \cdot \cos B=1 / 2(\sin (A+B)+\sin (A-B))$
$\sin A \cdot \sin B=1 / 2(\cos (A-B)-\cos (A+B))$
$\cos A \cdot \cos B=1 / 2(\cos (A-B)+\cos (A+B))$

$$
\begin{aligned}
& \sum_{i=1}^{n} i=\begin{array}{c}
n(n+1) \\
2
\end{array} \\
& \sum_{i=1}^{n} i^{2}=\begin{array}{c}
n(2 n+1)(n+1) \\
6
\end{array}
\end{aligned}
$$

$$
a_{n+1}=a_{n}-\begin{gathered}
f\left(a_{n}\right) \\
f^{\prime}\left(a_{n}\right)
\end{gathered}
$$

$$
V=\pi \int_{a}^{k}[f(x)]^{2} d x
$$

Riemann Sum $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x_{i}$

F(x)	$F^{\prime}(x)$
a.x ${ }^{\text {n }}$	na. $\mathrm{x}^{\text {n+1 }}$
$\boldsymbol{\operatorname { s i n }} \mathrm{x}$	$\cos X$
$\cos X$	- $\sin x$
$\boldsymbol{\operatorname { t a n }} \mathrm{x}$	$\sec ^{2} x$
$\boldsymbol{s e c} X$	$\sec x \cdot \tan x$
$\cot x$ $\operatorname{cosec} x$	$\begin{gathered} -\operatorname{cosec}^{2} x \\ -\operatorname{cosec} x \cdot \cot x \end{gathered}$
$\arcsin x$ $b g \sin x$	$\begin{gathered} 1 \\ \sqrt{1}-x^{2} \end{gathered}$
$\arccos x$ bgeosx	$\begin{gathered} 1 \\ \sqrt{1}-x^{2} \end{gathered}$
$\arctan x$ bgtan x	$\begin{gathered} 1 \\ x^{2}+1 \end{gathered}$
$f(x) . g(x)$	$f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
$\begin{aligned} & f(x) \\ & g(x) \end{aligned}$	$\begin{gathered} f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x) \\ {[g(x)]^{2}} \end{gathered}$
$\mathrm{f}(\mathrm{g}(\mathrm{x})$)	$\mathrm{f}^{\prime}\left(\mathrm{g}(\mathrm{x}) \mathrm{)} . \mathrm{g}^{\prime}(\mathrm{x})\right.$

$F=P(1+i)^{n} \quad F=P(1-i)^{n}$
$F=P(1+i n) \quad F=P(1-i n)$
$P=x .{ }_{i}^{1-(1+i)^{-n}} \quad F=x .{ }_{i}^{(1+i)^{n}-1}$
Analytical Geometry/ Analitiese Meetkunde

$$
\begin{array}{ll}
y=4 a x^{2} & y y_{1}=2 a\left(x+x_{1}\right) \\
x^{2}+y^{2}=1 & x x_{1}+\frac{y y_{1}}{a^{2}}+1 \\
a^{2}=1 \\
a^{2}+\frac{b^{2}}{}=1 \\
x^{2}-y^{2}=1 & x x_{1}-y_{1}=1 \\
a^{2}-b^{2}=1 & a^{2}-b^{2}=1
\end{array}
$$

Algebra
$\begin{array}{ll}\alpha+\beta=-\begin{array}{l}\mathbf{b} \\ \mathbf{a}\end{array} & \alpha+\beta+\gamma=-\frac{\mathbf{b}}{\mathbf{a}} \\ \alpha \cdot \beta=\begin{array}{c}\mathrm{c} \\ \mathrm{a}\end{array} & \alpha \beta+\beta \gamma+\alpha \gamma=\begin{array}{l}\mathbf{c} \\ \mathbf{a}\end{array}\end{array}$

$$
\alpha \beta \gamma=-\frac{\mathbf{d}}{\mathbf{a}}
$$

Statistics / Statistiek

$$
P(X=x)=\begin{aligned}
& \binom{p}{x}\left(\begin{array}{l}
N-p \\
n-x
\end{array}\right. \\
& \binom{N}{n}
\end{aligned}
$$

$$
\mathbf{z}=\begin{gathered}
\mathbf{X}-\mu \\
\sigma
\end{gathered}
$$

$$
\mathbf{P}\left(X-1.96_{\sqrt{n}}^{\sigma}<\mu<X+1.96_{\sqrt{n}}^{\sigma}\right)=0.95
$$

$$
\mathrm{P}\left(\mathrm{p}-1.96 \sqrt{\mathrm{p}(1-p)} \underset{n}{ }<\pi<p+1.96 \sqrt{p(1-p)} \begin{array}{c}
n
\end{array}\right)=0,95
$$

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A \cap B)
\end{aligned}
$$

Wiskun de For mu leblad/ M athematics F or mula Sheet

1. $\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathbf{b}^{2}}-\mathbf{4 a c}}{2 \mathrm{a}}$
2. $\quad T_{n}=a+(n-1) d$
3. $\quad S_{n}=\frac{n}{2}(a+I)$
4. $\quad S_{n}={ }_{2}^{n}[2 a+(n-1) d]$
5. $\quad T_{n}=a r^{n-1}$
6. $\quad S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
7. $S_{n}=\begin{gathered}a\left(r^{n}-1\right) \\ r-1\end{gathered}$
8. $\quad S_{\infty}=\underset{1-r}{a}$
9. $\quad A=P\left(1+\begin{array}{c}r \\ 100\end{array}\right)^{n}$
10. $A=P\left(1-\begin{array}{c}r \\ 100\end{array}\right)^{n}$
11. $f^{\prime}(x)=\lim _{h \rightarrow 0} f(x+h)-f(x)$
12. $d=\sqrt{ }\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$
13. $y=m x+c$
14. $y-y_{1}=m\left(x-x_{1}\right)$
15. $m=\begin{aligned} & y_{2}-y_{1} \\ & x_{2}-x_{1}\end{aligned}$
16. $\quad m=\tan \theta$
17. $\quad\left(\begin{array}{c}x_{1}+x_{2} \\ 2\end{array} ; \begin{array}{c}y_{1}+y_{2} \\ 2\end{array}\right)$
18. $y^{2}+x^{2}=r^{2}$
19. $(x-p)^{2}+(y-q)^{2}=r^{2}$
20. $\quad \underset{\sin A}{a}=\begin{gathered}b \\ \sin B\end{gathered}$
21. $\quad a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A$
22. $\operatorname{area} \triangle \mathrm{ABC}=1 / 2 \mathrm{ab} \cdot \sin \mathrm{C}$
23. $\cos (A+B)=\cos A \cdot \cos B-\sin A \cdot \sin B$
24. $\sin (A+B)=\sin A \cdot \cos B+\cos A \cdot \sin B$
25. $\quad \tan (A+B)=\begin{array}{r}\tan A+\tan B \\ 1-\tan A \tan B\end{array}$
26. $\quad \cos 2 A=\cos ^{2} A-\sin ^{2} A$
27. $\sin 2 A=2 \sin A \cos A$
