GAUTENG DEPARTMENT OF EDUCATION

SENIOR CERTIFIC ATE EXAM INATION

OCTOBER / NOVEMBER 2005 OKTOBER / NOVEMBER 2005

ADDITIONAL MATHEMATICSHG

TIME: 3 hours
MARKS: 400

I NSTRUCTIONS:

- This exam ination paper con sists of FIVE sections.
- Section A is COMPULSORY.
- A further TWO sections should be ans wered from Sec tions B, C, D and E.
- Each se ction sh ould be answer ed in a sepa rate answer book and the relevant section should be clearly indic ated on the cover. Place all answer books inside the ans wer book for Section A bef ore handing all the answer books in together.
- A diagram sheet is provided on page 16 for answering Question 2.2. Detach it and put it in your ans wer book.
- Unless otherw ise indicated, non-programmable calculators may be used.
- This exam ination paper con sists of 19 pages. Statistical tables and relevant formula she ets can be fou nd on pages 17 to 19 .
- All essen tial calculations sh ould be clearly shown.
- All angles are measured in radians and an swers should be given in radians.
- Writing should be legible.

SECTION A COM PULSORY
 CALCULUS
 QUESTION 1

1.1 Define the following conc epts fully:
1.1.1 The function \mathbf{f} is continu ous at the po int where $\mathbf{x}=\mathbf{a}$.
1.1.2 The function \mathbf{f} is differentiable at $\mathbf{x}=\mathbf{a}$.
1.2 Given the fu nction
$f(x)=\left\{\begin{array}{ccc}-x+{ }_{2} & \text { if } & x<0 \\ \arccos x & \text { if } & 0 \leq x<1 \\ 2 & \text { if } & x=1 \\ (x-1)^{2} & \text { if } & x>1\end{array}\right.$
1.2.1 Discuss the cont inuity of $\mathbf{f}(\mathbf{x})$ for the following values of \mathbf{x}. Classify any discont inuities.
(a) $\mathbf{X}=\mathbf{0}$
(b) $\mathbf{x}=\mathbf{1}$
1.2.2 Discuss the differentiability of $\mathbf{f}(\mathbf{x})$ at $\mathbf{x}=\mathbf{0}$

QUESTION 2

2.1 Without using a calculator, deter mine:
2.1.1 $\quad \arcsin \binom{-\sqrt{ } 3}{\mathbf{2}}$
2.1.2 $\cos (\arccos \sqrt{2})$
2.1.3 $\arctan \left(\cot \binom{4 \pi}{3}\right)$
2.2 A sketch graph of $\mathbf{f}(\mathbf{x})$ is pro vided with the following properties:

- $\quad \mathbf{f}(\mathbf{x})$ is continuou s
- \quad Three stationary points occur at \mathbf{A} (local minimum), B (local max imum) and \mathbf{C} (point of inflection).
- Three zeroes (\mathbf{x} - intercepts) occur at $\mathbf{x}=-1,5 ; 0$ and 2.
$-\quad \mathbf{f}(\mathbf{x}) \rightarrow-\infty$ if $\mathbf{x} \rightarrow \infty$, and $\mathbf{f}(\mathbf{x}) \rightarrow \infty$ if $\mathbf{x} \rightarrow-\infty$.

Use the dia gram sheet provided on pag e 16 and draw on the same se t of axes a rough sketch of $\mathbf{f}^{\prime}(\mathbf{x})$. Show clearly where $\mathbf{f}^{\prime}(\mathbf{x})$ has a max imum, minimum or zero. Detach it and place it in your exam book.
2.3 Determine the value of the following limits, if they ex ist:
2.3.1 $\lim _{x \rightarrow 1} \sqrt{x+3-2} x-1$
2.3.2 $\lim _{? \rightarrow 0} \sin ?$

QUESTION 3

3.1 If $\mathbf{f}(\mathbf{x})=\arcsin \mathbf{x}$ and $\mathbf{g}(\mathbf{x})=\mathbf{2 x - 3}$
3.1.1 Determine $(\mathbf{f} \mathbf{c} \mathbf{g})(\mathbf{x})$.
3.1.2 Show that $\mathbf{D}_{\mathbf{x}}(\mathbf{f} \subset \mathbf{g})(\mathbf{x})=\begin{gathered}\mathbf{1} \\ \sqrt{3} \mathbf{x}-\mathbf{x}^{\mathbf{2}} \mathbf{- 2}\end{gathered}$
3.1.3 Hence calculate the value of $\int_{3 / 2}^{7 / 4} \sqrt{3} \mathbf{d x}-\mathbf{x}^{2}-\mathbf{2}$
$3.2 \quad$ Find $\underset{\mathbf{d x}}{\mathbf{d}}\left(\sqrt{1}-\mathbf{2 x} \cdot \sec \mathbf{x}^{2}\right)$
3.3 If $\mathbf{f}(\mathbf{x})=(\mathbf{1 - 2} \mathbf{x})^{\text {n }}$, determine $\mathbf{f}^{(\mathbf{n})}(\mathbf{x})$, the $\mathrm{n}^{\text {th }}$ derivative of the function.

QUESTION 4

4.1 Use the Newton-Rhaps on method to find a positive solution for the equa tion $\mathbf{1}+\mathbf{x}=\mathbf{2} \boldsymbol{\operatorname { t a n }} \mathbf{x}$ in the interval $\left[\begin{array}{c}\mathbf{0} ; \mathbf{p} \\ \mathbf{2}\end{array}\right]$. Use 0,8 as a starting value and give the answe r correct to 3 dec imal places.
4.2 A force, \mathbf{F}, drags an object with weight \mathbf{W} along a horizontal plane. The force acts along a rope attache d to the object. If the rope makes an ang le of θ with the horizo ntal, then the magnitude of the force is given by the equa tion:

Show that \mathbf{F} will be a minimum when $\boldsymbol{\operatorname { t a n }} \boldsymbol{?}=\mathbf{a}$.

QUESTION 5

Find the are a under the curve $\mathbf{f}(\mathbf{x})=-\mathbf{x}^{2}+\mathbf{2 x + 4}$ between $\mathbf{x}=\mathbf{0}$ and $\mathbf{x}=\mathbf{3}$ by using \mathbf{n} strips of equal width, the Riemann Sum, and then letting $\mathbf{n} \rightarrow \infty$.

QUESTION 6

Determine the follo wing integrals:
6.1 $\int \cos 5 \mathrm{x} \sin 2 \mathrm{xdx}$
6.2 $\int \frac{x}{\sqrt{1}-4 x^{4}} d x$
$6.3 \int_{0}^{1 / 2} \mathbf{x}^{\mathbf{1}-\mathbf{4} \mathbf{x}^{\mathbf{4}}} \mathbf{d x}$ (Leave the answer in surd form.)

QUESTION 7

The piecewise function $\mathbf{f}(\mathbf{x})$, ske tched be low, is defined by
$f(x)=\left\{\begin{array}{ccc}x & \text { if } & 0 \leq x<2 \\ \sqrt{4 x-x^{2}} & \text { if } & 2 \leq x \leq 4\end{array}\right.$

If $\mathbf{f}(\mathbf{x})$ is rotated abou the \mathbf{x}-ax is, deter mine the volume of the resulting solid of revolution. Leave your ans wer in terms of \mathbf{p}.

Answer any T WO of the following F OUR sections.

SECTION B
 FINAN CIAL MATHEMATICS
 QUESTION 8

The cost and re venue f unct ions for a platinum m ine are given respectively by
$\mathbf{C}(\mathbf{t})=\mathbf{0 , 0 5 t ^ { 2 }}+\mathbf{4 0}$
$\mathbf{R}(\mathbf{t})=\mathbf{0}, \mathbf{0 2 \mathbf { t } ^ { 2 } + \mathbf { 7 } \mathbf { t }}$ where \mathbf{t} is the time (in ye ars) that the mine oper ates for and
$\mathbf{C}(\mathbf{t})$ and $\mathbf{R}(\mathbf{t})$ are in millions of Rand s. The graphs of $\mathbf{C}(\mathbf{t})$ and $\mathbf{R}(\mathbf{t})$ are given be low.

8.1 What does point \mathbf{A} represent?
8.2 What does point \mathbf{B} represent?
8.3 If $\mathbf{C D}$ is a vertical line somewhe re bet ween \mathbf{A} and \mathbf{F}, what does $\mathbf{C D}$ represent?
8.4 Determine expressions for the marginal cost $C^{\prime}(t)$ and marginal revenue $R^{\prime}(t)$ and hence find the maximum profit.

QUESTION 9

9.1 Calculate each of the following and write down wh ich is a better investmen t.

A: An amount \mathbf{x} is invested at a simple interest rate of 12% per annum for 8 years.
B: An amount \mathbf{x} is invested at a compound interest rate of 10% per annum for 8 years.
9.2 What compound interest rate would y ield the sa me amount as investment \mathbf{A} ? Give your answer correct to 4 decimal places.

QUESTION 10

The Minister of Transpor t pays a depos it of R y on a new car costing R764 346,00. He takes out a bank loan for the balance and pays th is off in 3 instalments;

R y in 2 years' time,
R 3y in 5 years' time, and
R 5y in 7 y ears' time.
Interest is paid at 17% compoun ded quar terly for the first 3 years and 19% compou nded semi-annu ally for the rema ining 4 years. How much was his deposit?

QUESTION 11

Vivaldi wants to buy a new so und sy stem cos ting R4700,00. He is offered a hire purchase ag reement where the simple interest rate is 10% per an num and payments ar e due every month for 3 years.
11.1 Calculate Vivaldi's monthly payments to the ne arest cent.
11.2 After one year (i.e. 12 pay ments), Vivaldi finds he is ban krupt. He still owe s R4 073,33. A bank a grees to give him a loan for this amount on con dition that he pays back \mathbf{X} rands per month over 4 years to amort ise the debt. He starts pay ing 5 months after th is loan is granted and must make 44 pay ments. The compo und interest on the loan is 12% per annum compounded monthl y. Calculate \mathbf{x}.

QUESTION 12

A med ical centre has just purchased an x-ray machine for R3,5 million.
12.1 The cen tre began saving for this machine a few years ago. R60 000 was paid at the end of every 3 months into an ac count earning 9% interest per annum, compo unded quar terly. Their last payment was with the purc hase of the machine. Calculate for how many months they saved in order to have enough mone y to buy the machine.
12.2 In 8 years from now the med ical centre will have to rep lace the x-ray machine. They want to avoid taking out another loan for this. Taking inflation and depreciation into account, the y work out they will need R3 705104 immediately after the last payment to replace the mach ine. If the centre sets up a sinking fund, starting in one month's time, to pay for the new machine, what will the mon thly payments be (to the nearest cent)? The interest is now 9% p.a., compound ed monthly.
12.3 After the $80^{\text {th }}$ payment of R26 492,25 in to the account, the old mach ine breaks and has to be rep laced. At this time a new mach ine costs R 5 million. They do not have enoug h mon ey in the sinking fund to buy this and ha ve to take out a loan for the balance. Calculate the value of this loan.

SECTION C
 ANALYTICAL GEOMETRY

QUESTION 13

13.1 Two lines $\mathbf{I}_{\mathbf{1}}$ and $\mathbf{I}_{\mathbf{2}}$ are defined by the equat ions:
$I_{1}: \quad x-2 y+3=0$
$I_{2}: 2 x+3 y+1=0$
13.1.1 Find the ac ute angle between $\mathbf{I}_{\mathbf{1}}$ and $\mathbf{I}_{\mathbf{2}}$. Give your answer correct to 2 decimal places.
13.1.2 Find the po int \mathbf{P} which is symmetr ical to $(-2 ; 3)$ in the line $\mathbf{I}_{\mathbf{1}}$.
13.2 Find the equation of the line which pass es throu gh the intersection of $\mathbf{3 x}-\mathbf{y}=\mathbf{4}$ and $\mathbf{x - 2 y}=\mathbf{1 8}$ and is perpend icular to $\mathbf{2 x - 3 y - 7}=\mathbf{0}$.

QUESTION 14

14.1 The equation of a parabola is $\mathbf{y}-\mathbf{x}^{\mathbf{2}}-\mathbf{5} \mathbf{x}=\mathbf{0}$. Find the equation of the tangent and the normal at the point on the parabola where $\mathbf{x}=\mathbf{- 2}$.
14.2 An ellipse is defined by the equat ion $\begin{gathered}(\mathbf{x}-\mathbf{3})^{2} \\ \mathbf{8 1}\end{gathered}+\begin{gathered}(y+4)^{2} \\ \mathbf{1 2 1}\end{gathered}=\mathbf{1}$.

Determine the . . .
14.2.1 eccentricity
14.2.2 foci
14.2.3 directrices and
14.2.4 area enc losed by the ellipse

QUESTION 15

Two circles have the following equations:
$(x+4)^{2}+(y-4)^{2}=100$
$(x+7)^{2}+(y-8)^{2}=225$
15.1 Show that the circles touch inter nally.
15.2 Find the equation of the common t angent.

QUESTION 16

16.1 Write down the equation of the plane \mathbf{V}, parallel to the plane $\mathbf{2 x}+\mathbf{3 y - 2}-\mathbf{2}=\mathbf{0}$ if \mathbf{V} intersects the y ax is at $\mathbf{- 4}$.
16.2 Determine the pe rpen dicular distance bet ween the two planes.

TOTAL FOR SECTIONC:
 [100]

SECTION D

ALGEBRA

QUESTION 17

17.1 Prove the following assertion with the help of Mathema tical induc tion:

$$
\begin{align*}
& \mathbf{a}+\mathbf{a r}+\mathbf{a} \mathbf{r}^{\mathbf{2}}+\ldots . .+\mathbf{a} \boldsymbol{r}^{\mathbf{n}-\mathbf{1}}=\frac{\mathbf{a}\left(\mathbf{1}-\mathbf{r}^{\mathbf{n}}\right)}{\mathbf{1}-\mathbf{r}} \text { for all } \mathbf{a} \text { and } \mathbf{r} \text { in } \mathbf{R} \text { with } \mathbf{r} \neq \mathbf{1} \text { for all } \\
& \mathbf{n} \in \mathrm{N} . \tag{14}
\end{align*}
$$

17.2 Rationa lize the denominator of $\frac{\mathbf{1}}{\mathbf{a}^{2}-\mathbf{a}+\mathbf{2}}$ if $\mathbf{a}=\sqrt[3]{-4}$.

QUESTION 18

Decompose the following into partial fractions:

$$
\begin{gather*}
x^{3}-6 x^{2}+x \\
x^{4}-1 \tag{18}
\end{gather*}
$$

QUESTION 19

19.1 State Eisenste in's Criterion.
19.2 Decompos e the following polynom ial comp letely into factors in $\mathbf{Z}[\mathbf{x}]$
if $\mathbf{3}+\mathbf{2} \sqrt{ } \mathbf{2}$ is a zero: $5 x^{5}-\mathbf{3 2} x^{4}+17 x^{3}+8 x^{2}-60 x+10$

QUESTION 20

$$
f(x)=\frac{x^{2}+2 x-3}{x-4}
$$

$\mathbf{f}(\mathbf{x})$ has a local minimum at $(8,6 ; 19,1)$ and a local maximum at $(-0,6 ; 0,8)$.
20.1 Determine the intercepts with the \mathbf{x}-ax is and \mathbf{y}-axis.
20.2 Determine all the vertical, horizontal and ob lique asymptot es of this function.
20.3 Make a neat sketch of the graph of $\mathbf{f}(\mathbf{x})$, and show a ll the intercepts, asymptot es and turning points.

TOTAL FOR SECTIOND:

SECTION E
 STATISTICS

QUESTION 21

21.1 In how many different ways can three green, five yellow and eight red books be arranged on a shelf?
21.2 A box of "Smarties" contains a total of 28 "Smarties" of which six are blue. If I take out six (chose n randomly), find the probability that three will be blue.
21.3 How many times do I have to throw an ordinary die in order to be 95% sure of obtain ing at least one six?
21.4 Mamre and D lamini play table tenn is against each other. The first person to win two times, wins the match. Mamre has a chance of 0,75 to win each time. Use a tree diagram to determ ine the probab ility that Dlamini will win the game.

QUESTION 22

The total month ly rainfall (in mm) for two towns \mathbf{A} and \mathbf{B} for the first half of 2005 is given be low:

	Jan	Feb	Mar	Apr	May	Jun
A	112	98	75	23	12	10
B	39	47	60	98	163	186

22.1 What is Town \mathbf{A} 's average month ly rainfall for the first half of 2005?
22.2 What is the standa rd dev iation of the read ings in Quest ion 22.1?
22.3 Town B's average monthly rainfall is 99 mm and the stand ard deviation for this data is 57 mm . Compar e th is with your ans wers obtained in Quest ions 22.1 and 22.2 and write down a conclusion which can be drawn regarding the averages and a conc lus ion regarding the stand ard de viations.

QUESTION 23

At Hlanganiphile High Sch ool there are 120 Grade 12 learners. A survey is condu cted to see how many take the subjects Biology, Mathem atics and Science. The Ven n Diagram be low sho ws three se ts represent ing the nu mber of learners taking Biology (B) (a total of 44); Mathematics (M) (a total of 65) and Sc ience (S).

23.1 Using the numbe rs given in the Venn diagram, find \mathbf{x} and \mathbf{y}.
23.2 Hence write down. . .
23.2.1 $\quad \mathbf{n}\left(\mathbf{B} \cap \mathbf{M}^{\prime} \cap \mathbf{S}^{\prime}\right)$
23.2.2 $\mathbf{n}\left(\mathbf{M} \cap(\mathbf{B} \cup \mathbf{S})^{\prime}\right)$
23.2.3 the probability that a pupil chosen at rand om will take no ne of the three subjec ts.

QUESTION 24

The probability dens ity function for the lifesp an of a certa in insect species is given by

$$
f(x)=\left\{\begin{array}{l}
-3 x^{-3}+\frac{3}{4} \\
0 \text { elsewhere }
\end{array} \quad 0 \leq x \leq m \quad \text { where } x\right. \text { is the age of the insect in years. }
$$

Find \mathbf{m}, the max imum lifespan of these insects.

QUESTION 25

A very prestigious cross-country race takes place ann ually in the town of Baleka. In 2004 the times taken by all the compet itors to comp lete the race were norma lly distributed about a mean of $\mu=90$ minu tes and standar d deviation s.
25.1 If 80% of the compet itors took less than 2 hours to comp lete the race, what is the value of s to the near est minute?
25.2 Only the top 5\% of compe titors are awarde d the famous 'Mvund la' award. Assuming that s is 36 minutes, find the cut-off time for this award (to the near est minute).

QUESTION 26

It is believed that 15% of the pop ulation in South Africa have blue eyes. If a random sample of South Africans is taken, how large wou ld the sample have to be, to be 95% sure of obtaining an estimate to with in 2% ?

ADDTIONAL MATHEMATICS HG / ADDISIONELE WISKUNDE HG

Diagram Sheet / Diagr amblad

Examination num ber / Eksamennommer | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Normal Distribution/ Normaalvers preiding

$$
P(X \leq x)=\frac{1}{\sqrt{2 p}} \int_{-\infty}^{x} \epsilon_{-\infty}^{-x^{2}} 2_{d x}
$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0		0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

P.T.O./b.o.

ADDITIONAL MATHEMATICS HG / ADDISIONELE WISKUNDE HG

Finance/ Finansies
$\begin{array}{ll}F=P(1+i)^{n} & F=P(1-i)^{n} \\ F=P(1+i n) & F=P(1-i n)\end{array}$
$P=x . \quad \begin{gathered}1-(1+i)^{-n} \\ i\end{gathered} \quad \begin{gathered}(1+i)^{n}-1 \\ i\end{gathered}$
Analytical Geometry/ Analitiese Meetkunde

$$
\begin{array}{ll}
y=4 a x^{2} & y y_{1}=2 a\left(x+x_{1}\right) \\
x^{2} \\
a^{2}+\frac{y^{2}}{b^{2}}=1 & x x_{1}+y y_{1}=1 \\
a^{2}+b^{2} \\
x^{2}-y^{2}=1 & x x_{1}-y_{1}=1 \\
a^{2}-b^{2}=1 & a^{2}
\end{array}
$$

Algebra

$$
\begin{array}{ll}
\alpha+\beta=-\frac{\mathbf{b}}{\mathbf{a}} & \alpha+\beta+\gamma=-\begin{array}{l}
\mathbf{b} \\
\mathbf{a} \\
\text { a. } \beta=\begin{array}{c}
\mathrm{c} \\
\mathrm{a}
\end{array}
\end{array} \\
\mathbf{c}
\end{array}
$$

$$
\alpha \oiint \gamma=-\frac{\mathbf{d}}{\mathbf{a}}
$$

Statistics / Statistiek

$$
P(X=x)=\begin{aligned}
& \binom{p}{x}\binom{N-p}{n-x} \\
& \binom{N}{n}
\end{aligned}
$$

$$
\mathbf{z}=\begin{gathered}
\mathbf{X}-\mu \\
\sigma
\end{gathered}
$$

$$
\mathbf{P}\left(X-1.96{ }_{\sqrt{n}}^{\sigma}<\mu<X+1.96{ }_{\sqrt{n}}^{\sigma}\right)=0.95
$$

$$
P(p-1.96 \sqrt{p(1-p)} \underset{n}{ }<\pi<p+1.96 \sqrt{p(1-p)} \underset{n}{p})=0,95
$$

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& { }_{n} \mathbf{P}_{\mathbf{r}}=\begin{array}{c}
\mathbf{n}! \\
(\mathbf{n}-\mathbf{r})!
\end{array} \quad{ }_{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\begin{array}{c}
\mathrm{n}! \\
(\mathrm{n}-\mathrm{r})!\mathrm{r}!
\end{array} \\
& P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}
\end{aligned}
$$

Wiskun de For mu leblad/ M athematics F or mula Sheet

1. $\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathbf{b}^{2}}-\mathbf{4 a c}}{2 \mathrm{a}}$
2. $\quad T_{n}=a+(n-1) d$
3. $\quad S_{n}=\frac{n}{2}(a+I)$
4. $\quad S_{n}=\frac{n}{2}[2 a+(n-1) d]$
5. $\quad T_{n}=a r^{n-1}$
6. $\quad S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
7. $S_{n}=\begin{gathered}a\left(r^{n}-1\right) \\ r-1\end{gathered}$
8. $\quad S_{\infty}=\underset{1-r}{a}$
9. $\quad A=P\left(1+\begin{array}{c}r \\ 100\end{array}\right)^{n}$
10. $A=P\left(1-\begin{array}{c}r \\ 100\end{array}\right)^{n}$
11. $f^{\prime}(x)=\lim _{h \rightarrow 0} f(x+h)-f(x)$
12. $d=\sqrt{ }\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$
13. $y=m x+c$
14. $y-y_{1}=m\left(x-x_{1}\right)$
15. $m=\begin{aligned} & y_{2}-y_{1} \\ & x_{2}-x_{1}\end{aligned}$
16. $\quad m=\tan \theta$
17. $\quad\left(\begin{array}{c}x_{1}+x_{2} \\ 2\end{array} ; \begin{array}{c}y_{1}+y_{2} \\ 2\end{array}\right)$
18. $y^{2}+x^{2}=r^{2}$
19. $(x-p)^{2}+(y-q)^{2}=r^{2}$
20. $\quad \underset{\sin A}{a}=\begin{gathered}b \\ \sin B\end{gathered}$
21. $\quad a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A$
22. $\operatorname{area} \triangle \mathrm{ABC}=1 / 2 \mathrm{ab} \cdot \sin \mathrm{C}$
23. $\cos (A+B)=\cos A \cdot \cos B-\sin A \cdot \sin B$
24. $\sin (A+B)=\sin A \cdot \cos B+\cos A \cdot \sin B$
25. $\quad \tan (A+B)=\begin{aligned} & \tan A+\tan B \\ & 1-\tan A \tan B\end{aligned}$
26. $\quad \cos 2 A=\cos ^{2} A-\sin ^{2} A$
27. $\sin 2 A=2 \sin A \cos A$

ADDITIONAL MATHEMATICS HG / ADDISIONELE WISKUNDE HG

