Pearson Edexcel Level 3 Certificate

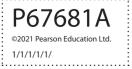
Time 1 hour 40 minutes

Paper reference

7MC0/01

Mathematics in Context

PAPER 1: Comprehension


ΔΔ

Source Booklet

Do not return this Booklet with the question paper.

Turn over ▶

Formulae sheet

There will be no credit for anything you write on this formulae sheet.

Mean of a frequency distribution

$$= \frac{\sum fx}{\sum f}$$

Mean of a grouped frequency distribution

$$= \frac{\sum fx}{\sum f}, \text{ where } x \text{ is the mid-interval value}$$

Variance

$$=\frac{\sum (x-\overline{x})^2}{n}$$

Standard deviation (set of numbers)

$$\sqrt{\left[\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2\right]}$$

or

$$\sqrt{\left\lceil \frac{\sum (x - \overline{x})^2}{n} \right\rceil}$$

where \overline{x} is the mean of the set of values

Standard deviation

(discrete frequency distribution)

$$\sqrt{\left[\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2\right]}$$

or

$$\sqrt{\left[\frac{\sum f(x-\bar{x})^2}{\sum f}\right]}$$

Spearman's rank correlation coefficient

$$1-\frac{6\sum d^2}{n(n^2-1)}$$

The product moment correlation coefficient is

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{\sum_{i} x_{i}y_{i} - \frac{(\sum_{i} x_{i})(\sum_{i} y_{i})}{n}}{\sqrt{\left(\sum_{i} x_{i}^{2} - \frac{(\sum_{i} x_{i})^{2}}{n}\right)\left(\sum_{i} y_{i}^{2} - \frac{(\sum_{i} y_{i})^{2}}{n}\right)}}$$

The regression coefficient of y on x is $b = \frac{S_{xy}}{S_{xx}}$

Least squares regression line of y on x is y = a + bx where $a = \overline{y} - b\overline{x}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1 - r^n)}{1 - r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

There will be no credit for anything you write in this source booklet.

SECTION A: CYCLING

Data source A

Table 1: Sales of new bicycles in the United Kingdom 2015–2018

Quarter	Sales of new bicycles (thousands)		
2015 Q1	398		
2015 Q2	403		
2015 Q3	363		
2015 Q4	451		
2016 Q1	418		
2016 Q2	459		
2016 Q3	442		
2016 Q4	547		
2017 Q1	459		
2017 Q2	452		
2017 Q3	442		
2017 Q4	547		
2018 Q1	463		
2018 Q2	461		
2018 Q3	462		
2018 Q4	592		

Data source B

Gender differences in recreational and transport cycling.

Adult members of a community cycling organisation completed an online survey about their cycling patterns in 2012. Table 2 shows some of the information from the survey.

Table 2: Number of days cycling per week

Number of days cycling per week	Number of males	Number of females
5-7	364	88
3-4	531	192
1-2	349	159
Total	1244	439

Data source C

Between April 2007 and December 2010, UK Biobank surveyed 227 272 participants who were in paid employment or self employed and did not always work at home.

Table 3 gives information about the main mode of transport to work for the participants in the survey.

All participants in the survey selected only one option from car, bus, train, walk, cycle.

A non-active commute is one using car, bus or train.

Table 3: Mode of transport to work

Non-active commute	Walk	Cycle	
206 299	14222	6751	

Table 4 gives information about the health issues for the participants in the survey.

Some participants had two or more health issues; some participants had no health issues.

Table 4: Mode of transport to work and associated health issues

Health issue	Non-active commute	Walk	Cycle	
Diabetes history	7879	427	110	
Hypertension	41 822	2721	869	
Cancer history	11 620	856	286	
Longstanding illness	51 615	3276	1286	
Cardiovascular disease	48 550	3142	998	
Depression history	65 780	4949	1782	

SECTION B: FOOD

Data source D

33% of all food produced globally is lost or wasted every year. 45% of root crops, fruit and vegetables produced globally is lost or wasted per year. 25% of the food wasted globally could feed all 795 million undernourished people in the world.

The GDP (gross domestic product) for each country is the total value, in US dollars, of all the transactions (goods and services) in one year.

The GDP per person is the GDP for that country divided by the population of that country. Richer countries have a higher GDP than poorer countries.

Table 5: Food waste per person and GDP per person for 12 countries in 2017

Country	Food waste per person (tonnes)	GDP per person (US\$)	
Australia	361	47 000	
Brazil	71	15 500	
China	44	16800	
France	106	42 800	
Germany	154	44 800	
India	51	7100	
Japan	157	43 900	
Portugal	135	32 200	
Russia	56	25 500	
South Korea	95	38300	
United Kingdom	75	43 900	
United States	278	59 500	

Data source E

The EU and its member states are committed to meeting Sustainable Development Goal (SDG) 12.3, adopted in September 2015. This sets a target for member states to halve food waste at the retail and consumer level by 2030 and to reduce food losses along the food production and supply chains.

In 2017, food wastage in the EU was 275 kg per person per year.

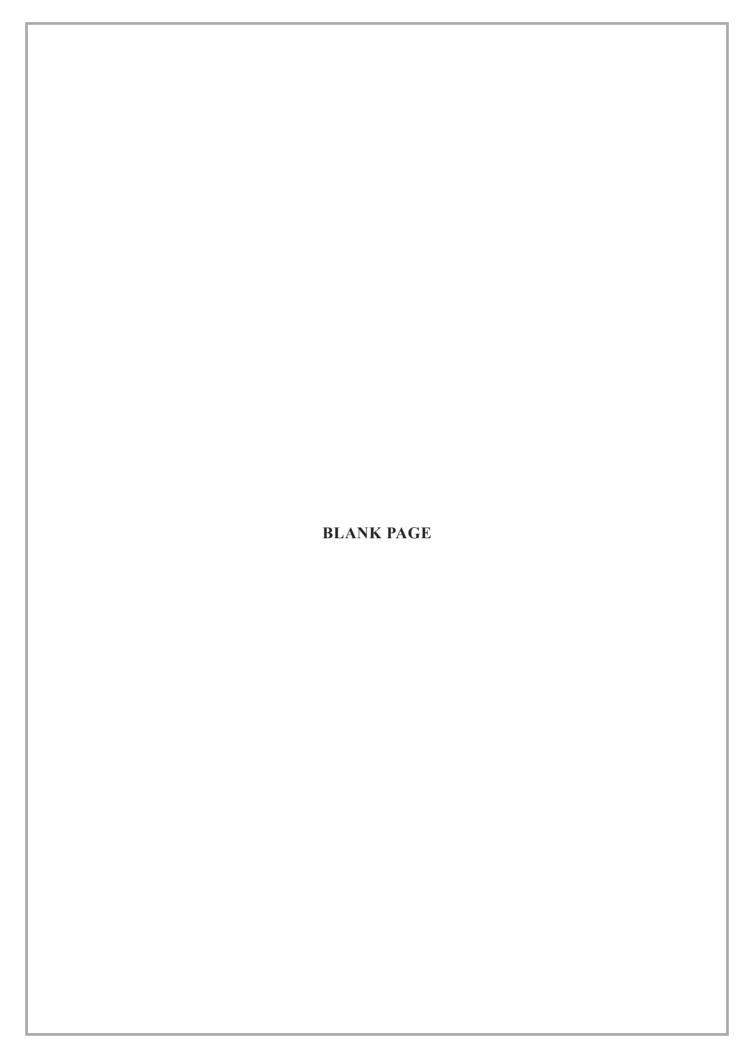
Table 6: Annual food loss and waste worldwide 2017

UN		Food waste per person by stage (kg)					
Region	Income level	Pre-harvest	Post-harvest	Processing	Distribution	Consumer	Total
European Union (EU)	High	99	30	34	19	93	275
North America and Oceania	High	98	32	31	23	118	302
Industrialised Asia	Upper middle	63	46	21	31	72	233
Latin America	Middle	87	49	33	26	24	219
North Africa, West and Central Asia	Middle	71	50	41	36	35	233
South and Southeast Asia	Lower middle	38	43	12	20	11	124
Sub-Saharan Africa	Low	64	65	23	24	7	183

Data source F

The water footprint measures the amount of water used to produce each of the goods and services we use. It can be measured for a single process, such as growing rice, for a product, such as a pair of jeans, for the fuel we put in our car, or for an entire multinational company.

The water footprint can also tell us how much water is being consumed by a country – or globally – in a specific river basin or from an aquifer. In the United Kingdom domestic water use only accounts for around 4% of an individual's water footprint. Water scarcity affects over 2.7 billion people for at least one month each year. An individual country's water footprint can have a global effect as many goods and foods are imported.


The United Kingdom has an average water footprint of 2757 litres per person per day.

In 2017 the average amount of beef consumed per person in the United Kingdom was 18.4 kg.

Table 7: Water footprint and nutritional content of some meats and soybeans

Foodstuff	Water footprint	Nutritional content (per kilogram)			
Foodstull	(litres/kg)	Calories	Protein (g)	Fat (g)	
Chicken meat	4325	1440	127	100	
Pig meat	5988	2786	105	259	
Sheep/goat meat	8763	2059	139	163	
Beef	15415	1513	138	101	
Soybeans	2145	1730	166	90	

Source information

Data source A adapted from:

Crown Copyright

https://www.cyclinguk.org/statistics

Data source B adapted from:

https://ijbnpa.biomedcentral.com/track/pdf/10.1186/1479-5868-9-106

Data source C adapted from:

https://www.bmj.com/content/357/bmj.j1456

Data source D adapted from:

https://www.statista.com/statistics/933059/per-capita-food-waste-of-selected-countries/

https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD?view=chart

Data source E adapted from:

https://www.governmenteuropa.eu/reducing-food-waste-eu/91604/

https://www.statista.com/statistics/948358/global-food-loss-and-waste-per-capita-by-stage-and-region/https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups

Data source F adapted from:

https://www.nationalbeefassociation.com/resources/beef-statistics/

https://www.foodmatterslive.com/news-and-comment/comment/meat-free-diets-could-cut-water-footprint

https://evgenii.com/water-footprint/en/

https://www.healthline.com/nutrition/foods/soybeans#nutrition