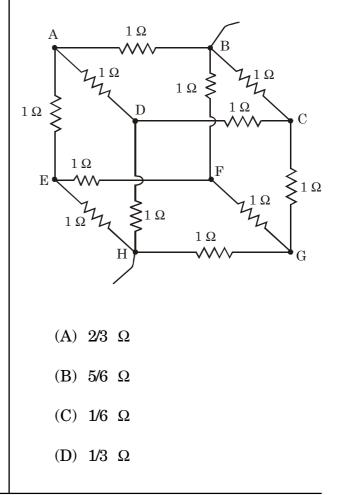


Electronic Science Paper III

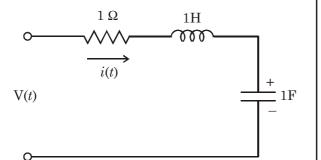
Time Allowed : 2¹/₂ Hours]

[Maximum Marks : 150

Note : This Paper contains Seventy five (75) multiple choice questions. Each question carries Two (2) marks. Attempt *All* questions.


1.	 JFET is a : (A) Current controlled device with high I/P resistance (B) Voltage controlled device with high I/P resistance 	4.		t option		g and cho the code Set I	s given
	(C) Current controlled current source (CCCS)	(a)	FET		(<i>i</i>)	Same cry	vstal
	(D) Voltage controlled voltage source (VCVS)					structure	
2.	An ideal voltage source should have :				<i>(</i> . . .	of the su	ıbstrate
		(b)	Epitaxy	7	(ii)	VVR	
	(A) Zero internal resistance	(c)	Schmit	t trigger	(iii)	Intercon	nection
	(B) Infinite internal resistance				<i></i>		
	(C) A small internal resistance	(<i>d</i>)	Metalli	zation	(10)	Hysteres	IS
	(D) Large internal resistance		Codes	:			
3.	When by-pass capacitor across the emitter lead in CE-amplifier is			(<i>a</i>)	(<i>b</i>)	(c)	(<i>d</i>)
	disconnected, it causes :		(A)	(ii)	<i>(i)</i>	(iv)	(iii)
	(A) Current gain to increase		(B)	(<i>i</i>)	(iii)	<i>(ii)</i>	(<i>iv</i>)
	(B) Voltage gain to increase		(C)	(iii)	(iv)	(i)	<i>(ii)</i>
	(C) Current gain to decrease		(\mathbf{U})	(111)	$(\iota \upsilon)$	(ι)	(11)
	(D) Voltage gain to decrease		(D)	(<i>iv</i>)	(ii)	(iii)	(<i>i</i>)

[P.T.O.


FEB - 38313/III

- 5. Astable multivibrator is a multivibrator with duty cycle equal to :
 - (A) 50%
 - (B) 100%
 - (C) 30%
 - (D) 33%
- 6. Negative feedback in CE-amplifier is to :
 - (A) Increase the voltage gain
 - (B) Increase the current gain
 - (C) Increase the power-band width
 - (D) Decrease power band width
- 7. Important characteristics of an emitter follower are :
 - (A) High I/P impedance and high O/P impedance
 - (B) High I/P impedance and low O/P impedance
 - (C) Low I/P impedance and low O/P impedance
 - (D) Low I/P impedance and high O/P impedance

 The identical resistors are connected in the following topology, where value of each resistor is 1 Ω. The effective equivalent resistance measured between Node B and Node H is

9. The circuit shown in the figure has initial current $i_{\rm L}(0 -) = 1$ A through the inductor and an initial voltage $V_c(0-) = -1V$ across the capacitor. For input V(t) = u(t), the Laplace transform of the current i(t) for t > 0 is :

(A)
$$\frac{s+2}{s^2+s+1}$$

(B) $\frac{s-2}{s^2+s+1}$
(C) $\frac{s-2}{s^2+s+1}$

(C)
$$s^2 + 2s + 1$$

(D)
$$\frac{s}{s^2 + s + 1}$$

StudentBounty.com 10. A series RLC circuit has a current which lags the applied voltage by 30°. The inductor voltage maximum is twice the capacitor voltage maximum, and

 $V_{L} = 10.0 \sin 1000 t.$

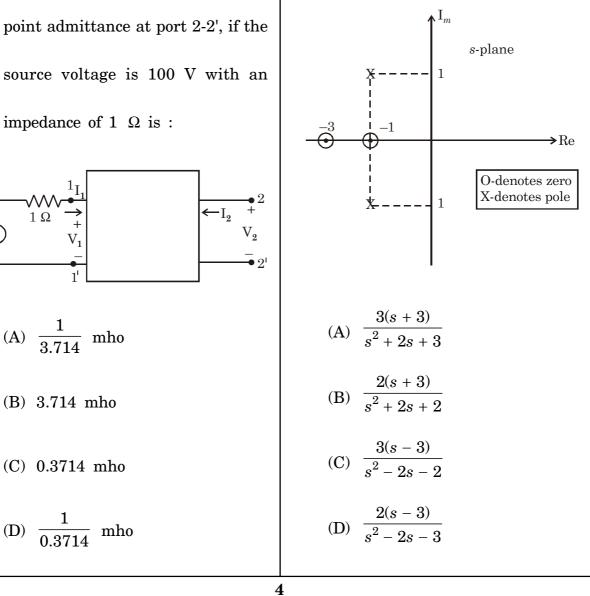
Given that : $R = 20 \Omega$, L and C are respectively :

(A)	L =	2.31	mH, C = 86.5 μ F	
(B)	L =	23.1	mH, C = 86.5 μ F	
(C)	L =	23.1	mH, C = 8.65 μ F	
(D)	L =	23.1	$\mu H, C = 86.5 nF$	

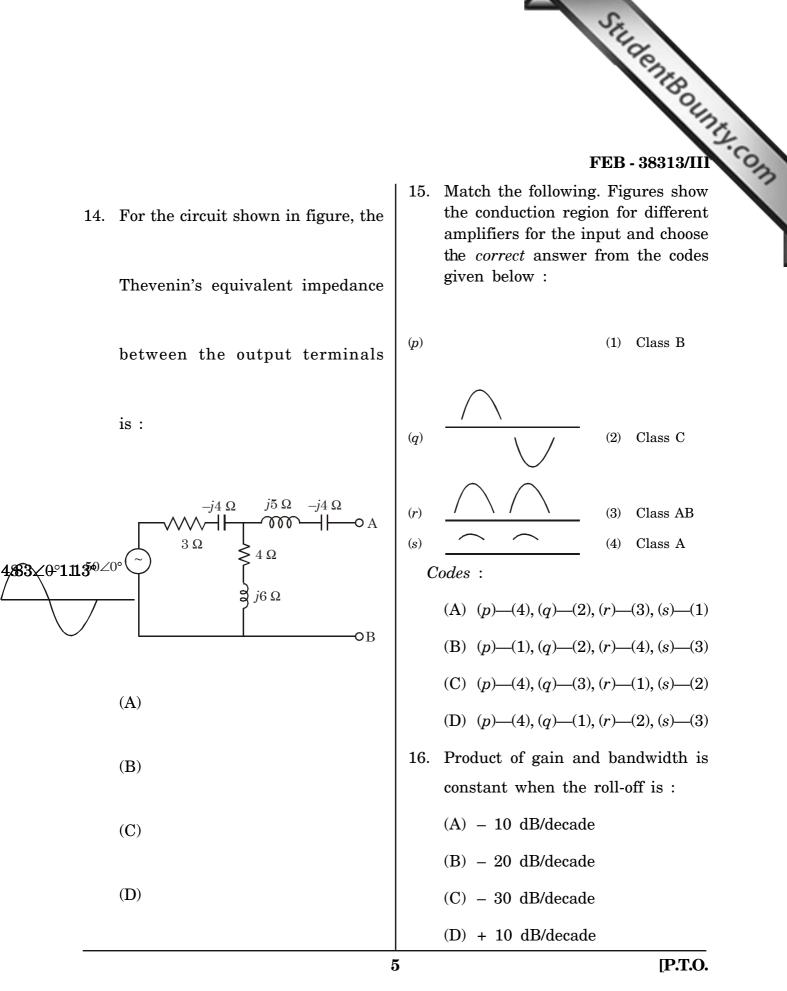
11. Match List I and with List II and select the *correct* answer from the codes given below :

- - - -

	List I		List II
(<i>a</i>)	Incidence matrix	(1)	Links
(<i>b</i>)	Cutset matrix	(2)	Twigs
(<i>c</i>)	Tie set matrix	(3)	Nodes
(d)	Reduced incidence	(4)	Branch
	matrix		
	Codes :		
	(A) (a) —(3), (b) —	-(1),	(c)— (2) ,
	(d) (4)		


(B)
$$(a)$$
—(3), (b) —(2), (c) —(1), (d) —(3)

(C)
$$(a)$$
—(1), (b) —(2), (c) —(3), (d) —(4)


(D)
$$(a)$$
—(2), (b) —(1), (c) —(3),
 (d) —(4)

[P.T.O.

- The Y-parameters of the two-port 12.network shown in the following figure are $Y_{11} = Y_{22} = 6$ mho, $Y_{12} = Y_{21} = 4$ mho. The driving point admittance at port 2-2', if the source voltage is 100 V with an impedance of 1 Ω is :
- StudentBounty.com 13. The driving point impedance Z(s) of a network has the pole-zero locations as shown in the figure. If z(0) = 3, then z(s) is :

www.StudentBounty.com

17. In a two-stage amplifier one stage has a lower critical frequency of 850 Hz and an upper critical frequency of 100 kHz. The other has correspondingly 1 kHz and 230 kHz critical frequencies. The overall bandwidth is :

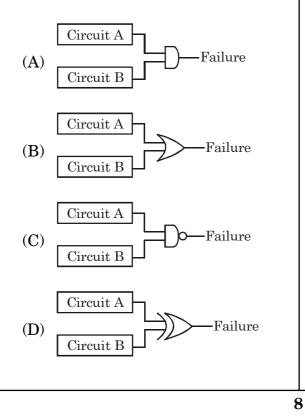
- (A) 99 kHz
- $(B) \ 229.15 \ kHz$
- $(C) \hspace{0.2cm} 99.15 \hspace{0.2cm} kHz$
- (D) 229 kHz
- 18. A varactor diode exhibits :
 - (A) A variable capacitance that depends on reverse voltage
 - (B) A variable resistance that depends on reverse voltage
 - (C) A variable capacitance that depends on forward current
 - (D) A constant capacitance over a range of reverse voltages

- FEB 38313/III 19. A Gyrator is a circuit using OP Amps, that simulates :
 - (A) Inductance property with the help of resistors and capacitors
 - (B) Resistance property with the help of inductance and capacitors
 - (C) Capacitance property with the help of resistance and inductances
 - (D) The circuit does not use any of the components
- 20. The electrothermal filters are used in the :
 - (A) less than 1 Hz to audio range
 - (B) 50 Hz to 100 kHz range
 - (C) 100 kHz to 1 MHz range
 - (D) 90 MHz to 100 MHz range
- 21. The principle of MODEMs is :
 - (A) FSK
 - (B) PWM
 - (C) Phase adder
 - (D) Automatic fine tuning

- 22. What is the meaning of RAM and what is its primary role ?
 - (A) Readily available memory, it is memory that can be reached by any sub-item within a computer and at any time
 - (B) Random access memory, it is memory used for short term temporary data storage within the computer
 - (C) Random access memory, it is the first level of memory used by the computer in all of its operations
 - (D) Resettable automatic memory, it is the memory that can be used and then automatically reset, or cleared, after being read from or written to
- 23. A BCD counter is a
 - (A) Binary counter (B) Full-modulus counter (C) Decade counter (D) Johnson counter
- 7

- StudentBounty.com 24. Consider the following series of TTL :
 - (i)74
 - (*ii*) 74H
 - (iii) 74L
 - (*iv*) 74S

Write them in increasing order of power dissipation per gate :


(A)	(iii)	(i)	(iv)	(ii)
(B)	(<i>i</i>)	(ii)	(iii)	(iv)
(C)	(iv)	<i>(i)</i>	(ii)	(iii)
(D)	(ii)	(iii)	(iv)	<i>(i)</i>

25.Match List I with List II and select the answer using the codes given below :

	List	Ι		Lis	t II
(<i>a</i>)	Schmit	t trigger	<i>(i)</i>	Toggle	switch
(<i>b</i>)	J-K flip	-flop	(ii)	Delay	switch
(<i>c</i>)	D flip-f	lop	(iii)	Race a	around
				conditi	on
(d)	T flip-f	lop	(iv)	Compa	rator and
				square genera	
	Code	es :			
		(<i>a</i>)	(<i>b</i>)	(c)	(d)
	(A)	(iv)	(iii)	(ii)	<i>(i)</i>
	(B)	(<i>i</i>)	(ii)	(iii)	(iv)
	(C)	(ii)	(<i>i</i>)	(iv)	(iii)
	(D)	(iii)	(<i>i</i>)	(iv)	(ii)

FEB - 38313/III

26. A certain system contains two identical circuits operating in parallel. As long as both are operating properly, the outputs of both circuits are always the same. A failure in one of the circuits produce differing outputs. One of the following logic circuits is the best alternative to detect the fault :

Direction : Read the following paragraphand answer the Question Nos. 27 and28 based on the same.

"Many DACs use a BCD input code where 4-bit code groups are used for each decimal digit. In one such 12-bit BCD digital to analog converter the full scale output is 9.99 V."

27. The percent resolution of above referred DAC will be :

(A) 0.001%

- (B) 0.01%
- (C) 0.1%
- (D) 1.0%

FEB - 38313/III

- 28. The step size of the above referred DAC is :
 - $(A) \ 0.001 \ V$
 - $(B) \ 0.01 \ V$
 - $(C) \ 0.1 \ V$
 - (D) 1.0 V
- 29. Match List I (Logic family) with List II (Typical fanout) and select the answer using the codes given below :

Direction : Read the following paragraph regarding the 8085 assembly language program :

"The main program is stored at $(0100)_{\rm H}$. The main program has called the subroutine at $(0150)_{\rm H}$, when the microprocessor is executing the instruction at location $(0151)_{\rm H}$. The program listing is as follows."

	List I			List II	[follows."	
(<i>a</i>)	RTL		(<i>i</i>)	> 50		0100	LXI SP, 0400H
(<i>b</i>)	TTL		(ii)	5		0103	EI
(<i>c</i>)	ECL		(iii)	10		0120	CALL 0150 H
(d)	CMOS		<i>(iv)</i>	25		0130	HLT
	Code					0150	PUSH B
	(•)	(<i>a</i>)	(b)	(c)	(<i>d</i>)	0151	LXI B, 10 FFH
	(A)	(<i>ii</i>)	(<i>iv</i>)	(iii)	(<i>i</i>)	0154	MOV C, A
	(B) (C)	(<i>ii</i>) (<i>i</i>)	(iii) (iv)	(<i>iv</i>) (<i>ii</i>)	(i) (iii)	015E	POP B
	(C) (D)	(<i>i</i>)	(<i>iv</i>)	(<i>i</i>)	(<i>ii</i>)	015E	RET
	()	(000)				9	[P.T.O.
					•		LT • 11•O•

- **Direction :** Answer the Question Nos. 30, 31 and 32 based on the above Scenario.
- 30. Assuming that before CALL 0150 H, the stack was not used, specify the content of top two locations of the stack :
 - (A) 23H, 01H
 - (B) 23H, 00H
 - (C) FFH, 00H
 - (D) 00H, FFH
- 31. Specify the stack locations where the contents of register pair B are stored :
 - (A) 03FDH and 03FCH
 - (B) 03FDH and 03FEH
 - (C) 03FEH and 03FFH
 - (D) 03FBH and 03FCH
- 32. When the program was interrupted, what is the memory address stored on the stack ?
 - (A) FFFFH
 - (B) 015FH
 - (C) 0154H
 - (D) 0150H

- StudentBounty.com 33. In interfacing 16 keys and 8 relays directly using 8255 IC with 8085 microprocessor the minimum number of pins of 8255 required are :
 - (A) 4 inputs, 4 outputs, 8 outputs
 - (B) 4 inputs, 8 outputs, 8 I/Os
 - (C) 8 I/O only
 - (D) 12 I/O only
- By using 8279 IC with 8085 34. the following functions can be done :
 - (A) Relay interfacing
 - (B) stepper motor interfacing
 - (C) Display interfacing only (LCD/ LED)
 - (D) Display (7 segment) interfacing and keyboard interfacing
- Timer ports of 8051 microcontroller 35. can be used for :
 - (A) Generation of waveforms
 - (B) Generation of PWM
 - (C) Measurement of time (ON, OFF and Freq.) of input signal with gate control
 - (D) As a counter and (B) and (C) above

FEB - 38313/III

36. Match the following and choose the *correct* answer from the codes given below :

Por	ts of 8051		Application	
(<i>i</i>)	Port 0	(<i>a</i>)	I/O + control	
(ii)	Port 1	<i>(b)</i>	I/O + higher order	
			address bus	
(iii)	Port 2	(<i>c</i>)	Low address & data bus	
(iv)	Port 3	(d)	I/O port only	
		(e)	Timer port + Input only	
	Codes :			
	(A) (i) — (c) (iv)— (a)	,	-(d), (iii)-(b),	39.
	(B) (<i>i</i>)—(<i>d</i> (<i>iv</i>)—(<i>e</i>)		(b), (iii)(a),	
	(C) (<i>i</i>)—(<i>e</i>) (<i>iv</i>)—(<i>c</i>)		-(a), (iii)-(b),	
	(D) (<i>i</i>)—(<i>a</i> (<i>iv</i>)—(<i>d</i>		(b), (iii)(c),	
37.			variables can be	
	(A) Copy of	f the s	structure variable	
	(B) Pointer	to a s	structure variable	
			(B) depending on rations required	
	(D) Both (A	A) and	l (B)	

38. After execution of the following statement :

X = (int *) Malloc(100);

(assume size of int as 2 bytes) The following amount of memory for execution will be allotted :

- (A) 2 bytes
- (B) 100 bytes
- (C) 200 bytes
- (D) 4 bytes
- 39. The output of the following program :

void main (void)

{

unsigned char flag=0X00;

flag!=(1<< 7)

printf("%d", flag);

- (A) 0X00
- (B) 0X70
- (C) 0X80
- (D) 0XFF

[P.T.O.

40. Consider the following statement fprintf(outfile, "programming in C is fun.\n");

The "out file" in this statement is :

- (A) name of a variable to be printed
- (B) file pointer previously declared and defined by fopen
- (C) identifier representing the file name
- (D) pointer of the variable to be printed
- 41. (A) Assertion : Various objects can be drawn on the computer screen with proper scale factors and colour selection

because :

(R) Reason : Matching band rate is a must for connecting a mouse to serial port.

- (A) Both (A) and (R) are true statements and the reason is a correct explanation of assertion
- (B) Both (A) and (R) are true statements but the reason is not a correct explanation of assertion
- (C) The (A) is true but (R) is false
- (D) The (A) is false but (R) is true

```
StudentBounty.com
42. What will be the output of the
    following program ?
    #include <stdio.h>
    int abc(int u, int v)
    {
        int tmp;
```

while (v !=0) {

tmp=u%v;

```
u=v;
```

v=tmp

return u;

}

```
}
```

int main(void)

```
{
```

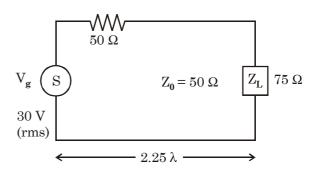
int result:

result=abc(150, 35);

```
printf("result=%d", result);
```

return 0;

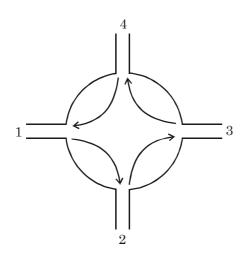
}


- (A) 35 (B) 4 (C) 10
- (D) 5

- 43. A uniformly charged sphere is compressed slightly on opposite sides. It will exhibit a :
 - (A) Monopole
 - (B) Monpole + dipole
 - (C) quadrupole
 - (D) monopole + qaudrupole
- 44. Given that the time variation of electric and magnetic fields is $e^{j\omega t}$, match the following and choose the correct option given below : :

 $\overrightarrow{\nabla} \times \overrightarrow{E}$ (**p**) (1) 0 $(q) \quad \stackrel{\rightarrow}{\nabla} \times \stackrel{\rightarrow}{\mathrm{H}}$ (2) $-j\omega\mu H$ $(r) \qquad \stackrel{\rightarrow}{\nabla} . \stackrel{\rightarrow}{\mathbf{D}}$ $(3) P_{y}$ $\overrightarrow{\nabla}$, \overrightarrow{B} (4) $(\sigma + j\omega \in) \vec{E}$ (s)**Options** are : (A) (p)—(3), (q)—(1), (r)—(2), (s)—(4)

- (B) (p)—(4), (q)—(2), (r)—(1), (s)—(3)
- (C) (p)—(4), (q)—(3), (r)—(1), (s)—(2)
- (D) (p)—(2), (q)—(4), (r)—(3), (s)—(1)


- 45. The input impedance is : (A) 66.66 Ω
 - (B) 33.33 Ω
 - (C) 50 Ω
 - (D) 75 Ω
- 46. The reflection coefficient is :
 - (A) 1
 - (B) 0
 - (C) 0.2
 - (D) 0.5

Instantaneous power delivered to 47. the load :

- (A) 17.28 W
- (B) 16 W
- (C) 18.39 W
- (D) 36 W

[P.T.O.

48. A circulator with direction of flow of power is shown in the figure.

Corresponding S matrix is :

$$(A) \qquad (B) \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
$$(C) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} (D) \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- StudentBounty.com 49. An incident wave has amplitude 1V. Corresponding reflected one is $\frac{1}{3}$ V. The VSWR is :
 - (A) 3
 - (B) 2
 - (C) 1
 - $\frac{1}{2}$ (D)

The tuned circuit of the oscillator in a simple AM transmitter uses a 40 µH coil and 12 nF capacitor. If the oscillator output is modulated by audio frequency of 5 kHz. Answer questions 50 and 51 based on the above information.

- 50. Calculate the lower side band frequency :
 - (A) 224 kHz
 - (B) 228 kHz
 - (C) 442 kHz
 - (D) 19 kHz
- 51. The bandwidth needed to transmit this amplitude modulated wave is :
 - (A) 5 kHz
 - (B) 2 kHz
 - (C) 10 kHz
 - (D) 7 kHz

14

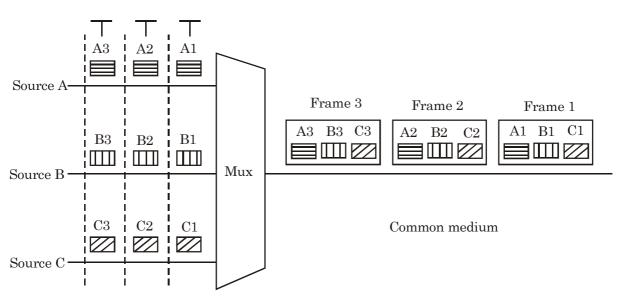
52. Match the following and choose the *correct* answer from the codes given below :

	Column I		Column II
(<i>a</i>)	Amplitude	(<i>i</i>)	Frequency
	Modulator		Discriminator
(<i>b</i>)	DSBSC modulator	(ii)	Ring modulator
(<i>c</i>)	SSB modulator	(iii)	Switching
			modulator
(d)	VSB modulator	(iv)	Phase
			discrimination
			method
	Codes :		
	(A) (A)—(3), (E	3)—(2	2), (C)—(1),
	(D)—(4)		
	(B) (A)—(2), (E	8)—(3	B), (C)—(4),
	(D)—(1)		
	(C) (A)—(3), (E) $(D) = (4)$	B)—(1	1), (C)—(2),
	(D)(4)		
	(D) (A) $-(2)$, (E	3)—(4	4), (C)—(3),

(D) - (1)

- StudentBounty.com 53. When input signal strength = 0.5 W, maximum frequency deviation = 60 kHz, base band signal cutoff frequency = 15 kHz, received white Gaussian noise power spectral density = 10^{-9} W/Hz and the average power of modulating signal = 0.1 W, the SNR of an FM limiter-discriminator demodulator is
 - (A) 36.08 dB
 - (B) 26.07 dB
 - (C) 46.07 dB
 - (D) 30 dB
- 54. (A) Assertion : Use of a compressor improves the signal to quantization noise ratio of a PCM system because :

(R) Reason : The compressor provides lower gain to weak signals and higher gain to the strong signals.


- (A) Both (A) and (R) are true statements and the reason is correct explanation of the assertion
- (B) Both (A) and (R) are true statements and the reason is not correct explanation of the assertion
- (C) The (A) is true but (R) is false
- (D) The (A) is false but (R) is true

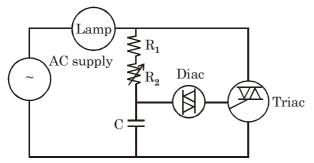
15

P.T.O.

FEB - 38313/III

The above diagram represents a :

- (A) FDM system
- (B) TDM system
- (C) WDM system
- (D) PCM system
- 56. For a polar NRZ signal representing 1 by a positive pulse X_1 and 0 by a negative pulse X_2 of duration T, the impulse response of a matched filter is given by :
 - (A) $h(t) = X_1(T t) + X_2(T t)$
 - (B) $h(t) = X_1(t) + X_2(t)$


(C)
$$h(t) = X_1(T - t) - X_2(T - t)$$

(D)
$$h(t) = X_1(t) - X_2(t)$$

- 57. The *correct* relationship from among the following is :
 - (A) BW (ASK) > BW (FSK)
 - (B) BW (BPSK) > BW (QPSK)
 - (C) Noise immunity of QPSK < Noise immunity of BFSK
 - (D) Noise immunity of ASK > = Noise immunity of PSK
- 58. A thyristor of thermal resistance 1.8°C/W is mounted on a neat sink of thermal resistance 2.0°C/W. What is the maximum power loss of thyristor if the junction temperature is not to exceed 125°C in an ambient of 40°C.
 - (A) 5.2 W
 - (B) 11.4 W
 - (C) 18.6 W
 - (D) 22.4 W

- 59. You need a very efficient device to control the speed of AC fan motor. An appropriate device for the same would be :
 - (A) SCR (B) Triac
 - (C) UJT (D) PUT
- 60. The following is the circuitary for a dimmer :

What method of power control is used ?

- (A) Phase control
- (B) Feedback control
- (C) Proportional control
- (D) Burst firing
- 61. Assertion (A) : Optical communication is called information super highway.

Reason (**R**) : Optical pulses travel at higher speed as compared to copper cable.

- (A) Both (A) and (R) are true, and(R) is the correct explanation of (A)
- (B) Both (A) and (R) are true, but(R) is not correct explanation of (A)
- (C) (A) is true, but (R) is false
- (D) (A) is false, but (R) is true

62. Match List I with List II and choose the *correct* answer from the codes given below :

	Lis	tΙ			List	II
(a)	Single	mode f	fiber	(<i>i</i>)	Local	area
					networ	·k
(<i>b</i>)	Step in	dex		(ii)	Low c	ost
	multim	ode fib	er		applica	tion
(<i>c</i>)	Graded	index	fiber	(iii)	Low ba	andwidth
(d)	PCS fil	pers		(iv)	High b	andwidth
	Code	es :				
		(<i>a</i>)	(<i>b</i>)		(c)	(d)
	(A)	(iv)	(<i>i</i>)		(iii)	<i>(ii)</i>
	(B)	(ii)	(<i>i</i>)		(iv)	(iii)
	(C)	(iv)	(iii))	<i>(i)</i>	(ii)
	(D)	(<i>i</i>)	(iii))	(iv)	<i>(ii)</i>

63. Match List I with List II and choose the *correct* answer from the codes given below :

	Lis	t I			Li	st II
(a)	Fusion	g	(<i>i</i>)	Low	cost	
(<i>b</i>)	3 pin s	splicing		(ii)	Mult	imode
(<i>c</i>)	Plastic	'V' gro	ve	(iii)	Low	insertion
	splicing	;			loss	
(d)	Square	tube		(iv)	Grad	led index
	splicing	;			fiber	s
	Code	es :				
		(<i>a</i>)	(<i>b</i>)		(c)	(d)
	(A)	(iii)	(iv)		(<i>i</i>)	(ii)
	(B)	(ii)	<i>(i)</i>		(iv)	(iii)
	(C)	(<i>i</i>)	(iii))	(ii)	(iv)
	(D)	(iv)	(ii)		(iii)	<i>(i)</i>

17

[P.T.O.

- 64. The following display device is *not* suitable for high frame rate display :
 - (A) CRT
 - (B) LCD
 - (C) LED
 - (D) PDP
- 65. Consider the following light sources.Give their suitability in the order of merit for optical communication in fibers :
 - (a) LED
 - (b) Ruby laser
 - (c) Febry Perrot laser diode
 - (d) DFB laser
 - (A) (b), (a), (c), (d)
 - (B) (a), (c), (b), (d)
 - (C) (c), (a), (d), (b)
 - (D) (d), (a), (b), (c)

- 66. The most common type of vibration sensors are :
 - (A) Piezoelectric
 - (B) Capacitive
 - (C) Resistive
 - $(D) \ (A) \ and \ (B) \ both$
- 67. The magnetic flow meter has the following disadvantages :
 - (A) Suitable for high and low velocities
 - (B) Suitable for conductivity greater than 20 mho/cm
 - (C) Gives slow response to flow changes
 - (D) Very low cost and require minimum maintenance

68. Match the following and choose the correct answer from the codes given below :

	Transducer	Principle
(<i>i</i>)	Photovoltaic	(a) An emf is generated
		across the junction
		of two dissimilar
		metals when two
		ends are at different
		temperatures
(ii)	Moving coil	(b) Motion of a coil in
	generator	a magnetic field
		generates a voltage
(iii)	Piezoelectric	(c) An emf is generated
	pickup	due to external force
		on quartz
(iv)	Thermocouple	(d) A voltage is generated
		in a semiconductor
		junction device due
		to radiant energy
(<i>v</i>)	Thermistor	
	Codes :	
	(A) (i) — (d) ,	(ii)— (b) , (iii) — (c) ,
	(iv)— (a)	
		(ii)— (d) , (iii) — (b) ,
	(<i>iv</i>)—(<i>c</i>)	
	· · · · · · · ·	(ii)-(c), (iii)-(d),
	(iv)— (a)	

(D) (i)—(c), (ii)—(a), (iii)-(b),(iv)—(d)

StudentBounty.com Match the following and choose the **69**. correct answer from the codes given below :

Measurement Measuring Quantity **Unit/Symbol** Pa or N/m² (*i*) Phase angle (a)Angular velocity *(b)* kg/m (ii) Linear denstiy rad/s (c)(iii) Radian (iv)Stress (d)kg/m³ (e) Codes : (A) (i)—(d), (ii)—(b), (iii)—(a), (iv)—(c)(B) (i)—(e), (ii)—(a), (iii)—(c), (iv)—(b)(C) (i)—(a), (ii)—(b), (iii)-(c),(iv)—(e)

- (D) (i)—(d), (ii)—(c), (iii)-(b),(iv)—(a)
- The resistors in a bridge are given 70. by $R_1 = R_2 = R_3 = 120 \ \Omega$ and $R_4 = 121 \ \Omega$. If supply voltage is 10.0 V dc, then the offset voltage will be :

19

[P.T.O.

StudentBounty.com 71. In a PID control system, the control 73. The system described by $\frac{dx}{dt} = f(x)$ equation will be : (A) $V_{out} = KP * (DE) + PI * PD$ is : (B) $V_{out} = KP * (DE) + PI + PD$ (A) an autonomous system (C) $V_{out} = KP * [DE + PI + PD]$ (B) a static system (D) $V_{out} = [KP * (DE)/PI] * PD$ (C) a time dependent system Match the following and select the correct answer from the codes given (D) a non-linear system below : 74. The characteristic equation of a Bode plot (a) Stability of linear system is given by : control system $s^{6} + 3s^{5} + 8s^{4} + 18s^{3} + 37s^{2} + 75s^{3}$ Root locus plot (b) Stability in + 50 = 0frequency response The system is : (*iii*) Nyquist criterion (c) Analysis of (A) Stable & Nicholas chart frequency response (iv) Hurwitz and (d) Method to determine (B) Unstable Routh criterion the roots of a (C) Marginally stable characteristic (D) Conditionally stable equation The open loop transfer function of 75. (e) Compensation and a feedback system is : control of close loop system G(s) H(s) = $\frac{k(1+s)}{(1-s)}$ Codes : (A) (i)—(d), (ii)—(b), (iii)-(c),The value of k for which the system (iv)—(a)is stable, is : (B) (i)—(a), (ii)—(b), (iii)—(c), (A) k < 1(iv)—(d)(B) k > 1(C) (i)—(a), (ii)—(b), (iii)-(c),(iv)—(e)(C) k = 1(D) (i)—(c), (ii)—(d), (iii)-(b),

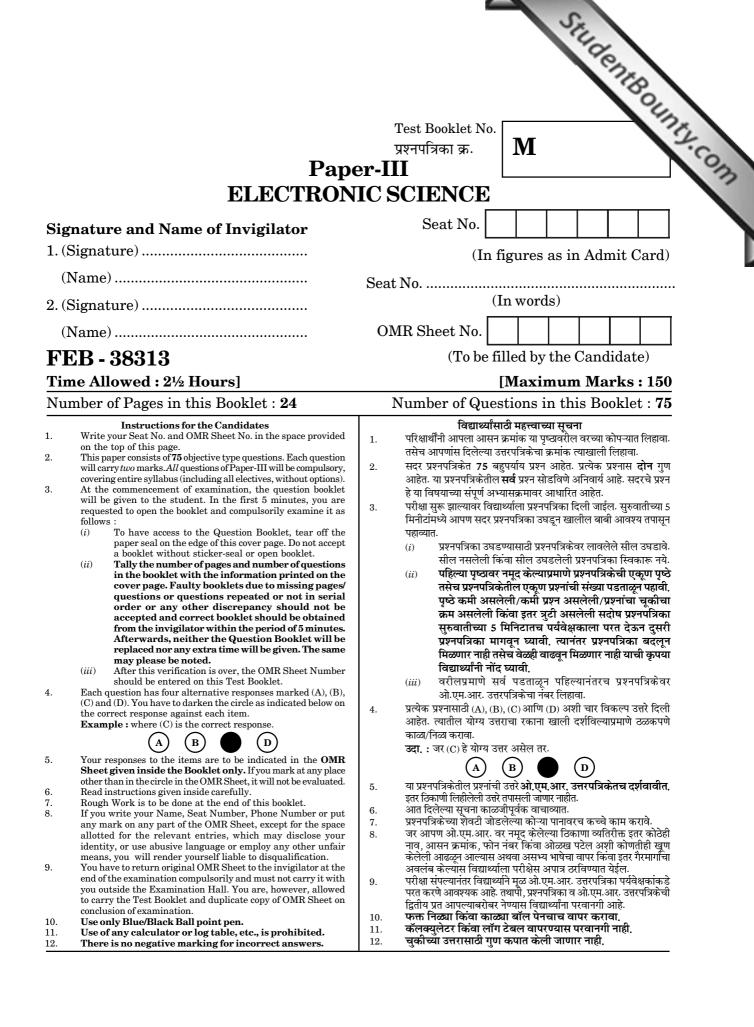
72.

(*i*)

(ii)

(iv)—(a)

(D) k = 0



ROUGH WORK

[**P.T.O**.

ROUGH WORK

