

Mathematical Science Paper II

[Maximum Marks : 100

Time Allowed : 75 Minutes] Note : This Paper contains Fifty (50) multiple choice questions. Each question carries Two (2) marks. Attempt All questions.

1. Let
$$G_n = \left(0, 1 + \frac{1}{n}\right)$$
 for $n \in N$. Then
 $\cap G_n$ is :
(A) closed
(B) open
(C) both open and closed
(D) neither open nor closed
2. Let $A_n = \left[\frac{1}{n}, 1\right]$. Then $\bigcup_{n=1}^{\infty} A_n$ is :
(A) $(0, 1)$
(B) $(0, 1]$
(C) $[0, 1]$
3. The series $\sum a_n z^n$ represents an entire function, if :
(A) $\frac{\lim_{n\to\infty}}{|a_n|^{1/n}} = 0$
(B) $\frac{\lim_{n\to\infty}}{|a_n|^{1/n}} = 0$
(C) $\lim_{n\to\infty} |a_n|^{1/n} = 0$
(C) $\lim_{n\to\infty} |a_n|^{1/n} = 0$
(D) $\lim_{n\to\infty} |a_n|^{1/n} = 0$
(D) has countably many points of continuity

- Let S = $\{u_1, u_2, ..., u_p\}$ be a linearly 6. independent subset of a vector space $V = \langle v_1, ..., v_q \rangle$. Then :
 - (A) p < q
 - (B) p = q
 - (C) p < q
 - (D) p > q
- If $T : \mathbf{R}^3 \to \mathbf{R}^3$ is the identity map, 7. then nullity T = ?
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3
- 8. In which of the following alternatives a subset T of the set : $S = \{(2, 0, 0), (2, 2, 2), (2, 2, 0), \}$ (0, 2, 0)is not a basis of ${\bf R}^3({\bf R})$? (A) $T = \{(2, 0, 0), (2, 2, 0), (2, 2, 2)\}$ (B) $T = \{(2, 0, 0), (2, 2, 2), (0, 2, 0)\}$
 - (C) $T = \{(2, 0, 0), (2, 2, 0), (0, 2, 0)\}$
 - (D) $T = \{(2, 2, 0), (2, 2, 2), (0, 2, 0)\}$

- StudentBounty.com 9. The dimension of the space of diagonal $n \times n$ matrices is :
 - (A) *n*
 - (B) n^2
 - (C) n(n 1)/2
 - (D) n(n + 1)/2
- 10. Let A_1 , ..., A_n be column vectors of size m. Assume that they have coefficients in \mathbf{R} , and they are linearly independent over R. Then :
 - (A) They are linearly independent over C
 - (B) They are linearly dependent over
 - (C) They form a basis for \mathbf{R}
 - (D) They form a subspace for \mathbf{R}

 $\mathbf{2}$

- 11. Let E, F and G be mutually exhaustive events such that E and F are mutually exclusive and F and G are independent events. Then a feasible assignment of probabilities is :
 - (A) $P(E) = 0.5, P(F \cup G) = 0.5,$ P(F) = 0.2
 - (B) P(E) = 0.2, $P(F \cup G) = 0.65$, P(F) = 0.5
 - (C) P(E) = 0.2, $P(F \cup G) = 0.8$, P(F) = 0.4
 - (D) P(E) = 0.5, $P(F \cup G) = 0.36$, P(F) = 0.2

12. Let N be a random variable with $, n = 1, 2, \dots$ $\mathbf{P}(\mathbf{N} = n) =$ Then E[N] is : (A) $\frac{1}{10}$ (B) $\frac{3}{10}$ (C) 1 (D) infinity

3

[P.T.O.

13. The probability that a certain machine will produce a defective item is
$$\frac{1}{4}$$
. If a random sample of 8 items is taken from the output of the machine, what is the probability that there will be 7 or more defectives in the sample ?

(A)
$$\frac{25}{(256)^2}$$

(B) $\frac{4}{(256)^2}$
(C) $\frac{24}{(256)^2}$

(D)
$$\frac{5}{(256)^2}$$

- 14. Let X follow a Poisson (2)distribution. Then :
 - (A) The r.v. 2X follows Poisson (4) and $\frac{X}{2}$ follows Poisson (1)
 - (B) Both 2X and $\frac{X}{2}$ are not Poisson r.v.s.
 - (C) The r.v. 2X follows Poisson (4) but $\frac{X}{2}$ is not a Poisson r.v.
 - (D) The r.v. 2X is not a Poisson r.v.

but $\frac{X}{2}$ is Poisson (1)

 $\frac{1}{n(n+1)}$

Studenteount FEB - 30213/II

15. Consider the Linear Programming Problem

> Maximize $Z = x_1 + x_2$ Subject to $x_1 + 3x_2 < 4$ $3x_1 + x_2 < 4$ $x_1, x_2 > 0$

For this problem the value of the objective function at the optimal solution is :

- (A) 2
- (B) 4
- (C) 1
- (D) 3
- 16. Maximization assignment problem is transformed into a minimization problem by :
 - (A) Substracting all the elements of a column from the highest element of that column
 - (B) Substracting each element of the profit matrix from the highest element of the matrix
 - (C) Substracting all the elements in a row from the highest element of that row
 - (D) Any of the above

- 17. Consider the function $f(x) = \frac{1}{x}$ on $[1, \infty]$ and $g(x) = \frac{1}{x}$ on x > 0. Then :
 - (A) both f and g are uniformly continuous
 - (B) g is uniformly continuous butf is not
 - (C) neither f nor g is uniformly continuous
 - (D) f is uniformly contrinuous butg is not
 - Or

Let X and Y be two random variables with E[Y|X] = X with probability 1. Then :

- (A) Cov(X, Y) = 0
- (B) Cov(X, Y) = E[Y|X]
- (C) Cov(X, Y) = Var(Y)
- (D) Cov(X, Y) = Var(X)
- 4

- 18. If f(x) is monotonic increasing on (a, b) and a < c < b, then $\lim_{x \to c^-} f(x) =$
 - (A) $\inf\{f(x) \mid x < c\}$
 - (B) $\sup\{f(x) \mid x > c\}$
 - (C) $\sup\{f(x) \mid x < c\}$
 - (D) $\inf\{f(x) \mid x > c\}$

Let X and Y be two independent r.v.s such that X follows the exponential distribution with mean 2 and Y follows Binomial $\left(8, \frac{1}{2}\right)$. Then the variance of X + 2Y :

- (A) is 10.
- (B) can not be computed from the given information.
- (C) is 12.
- (D) is 8.

- StudentBounty.com 19. In **R** let $F_n = \left(-\frac{1}{n}, \frac{1}{n}\right), \forall n \in \mathbb{N}.$ Then, $\cap \mathbf{F}_n$ is :
 - (A) $\{0\}$
 - (B)
 - (C) both open and closed
 - (D) neither open nor closed

Or

Let \mathbf{X}_1 , \mathbf{X}_2 ,, \mathbf{X}_n be a random sample from $N(\mu, \mu)$, where mean = variance = μ is unknown. Then which of the following statements is not true ?

- (A) (ΣX_i^2) is sufficient for μ
- (B) (ΣX_i) is sufficient for μ
- (C) $(\Sigma X_i, \Sigma X_i^2)$ is jointly sufficient for μ
- (D) Sufficient statistics do not exist

5

20. Consider the sequence :

$$u_n = \frac{(-1)^n 10^7}{n}$$
 and $v_n = \frac{5^n}{\underline{|n|}}$

Then,

- (A) only $\{u_n\}$ is convergent
- (B) only $\{v_n\}$ is convergent
- (C) both of these have the same limit
- (D) $\{u_n\}$ is oscillating and $\{v_n\}$ is convergent

Or

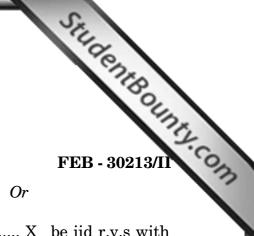
Let the random variables X_1 , X_2 be distributed as Poisson variates with mean λ . Then number of unbiased estimators of λ is :

- (A) 3
- (B) 2
- (C) infinity
- (D) 4

21.
$$\int_{0}^{1} \left(1 - \frac{x}{1!} + \frac{x^{2}}{2!} - \dots \right) e^{2x} dx =$$

(A) $e - 1$
(B) e
(C) e^{2}
(D) $e + 1$

Or


Let the random variable X follow $U(\theta, \theta + 1)$. Then which of the following statements is *not* correct ?

StudentBounty.com

- (A) $\underset{i}{\text{Min }} X_i = X_{(1)}$ is an mle which is sufficient for θ
- (B) $\left(\overline{X} \frac{1}{2}\right)$ is an unbiased estimate of θ
- (C) UMVUE will not exist for θ
- (D) Any value of θ in the interval $[X_{(n)}-1, X_{(1)}]$ is an m/e
- 22. Let **R** be the set of real numbers. Let $f : \mathbf{R} \to \mathbf{R}$ be such that $|f(x) - f(y)| < |x - y|^3$, for all $x, y \in \mathbf{R}$. Then the value of the function f(x)

Then the value of the function f(x)is :

- (A) *x*
- (B) x^2
- (C) Zero
- (D) a constant

Let z_1 and z_2 be independent standard normal variables and let $y_1 = z_1 z_2^2$ then the correlation between z_1 and y_1 equals :

 $(A) \quad \frac{\sqrt{3}}{2}$

(B) 0

(C) $5^{-1/2}$

(D)
$$\frac{1}{\sqrt{3}}$$

 $\oint (x) = x^{-2} \mathbf{I}_{(1,\infty)}(x)$

23. Consider the following two statements :

- (a) $e^z, z \in \mathbb{C}$ is a one-one function
- (b) $\sin z, z \in$ is a bounded entire function
- (A) both (a) and (b) are false
- (B) both (a) and (b) are true
- (C) only (b) is true

(D) only (a) is true

Let X_1, X_2, \dots, X_n be iid r.v.s with pdf f(x), where

Then :

- (A) $\text{EX}_{(1)} = \frac{n}{n-1}$, where $X_{(1)} = \underset{i}{\text{Min }} X_i$
- (B) EX_1 is finite
- (C) $EX_{(n)} = \frac{n}{n+1}, X_{(n)} = Max_i X_i$

(D) $EX_{(1)}$ and $EX_{(n)}$ do not exist

- 24. The non-zero roots of the equation $(1 + z)^5 = (1 - z)^5$:
 - (A) are real
 - (B) some are real and some are purely imaginary
 - (C) are purely imaginary
 - (D) are complex numbers not lyingon *x*-axis or *y*-axis

7

Studenteount, com

Or

To obtain a critical (region | value (or cut-off point) in testing a statistical hypothesis, we need the distribution of a test statistic :

(A) without any assumption

(B) under H₁

(C) under H₀

(D) all of the above

25. Let $z \in \mathbb{C}$. The inequality |z + 1|

> |z - 1| is :

(A) true iff Re z > 0

(B) Always true

(C) Never true

(D) True iff Im z > 0

In the usual two way classification model with one observation per cell

Or

$$\begin{split} \mathbf{E}(y_{ij}) = \ \alpha_i = \ \beta_j, \ \mathbf{V}(y_{ij}) = \ \sigma^2, \\ i = 1.....a; \\ j = 1.....b \end{split}$$

Which parametric function is not estimable ?

(A)
$$\alpha_1 - \beta_1$$

(B) $\alpha_1 + \beta_1$
(C) $\alpha_1 - \alpha_2$
(D) $\beta_1 - \beta_2$

26. $f(z) = \operatorname{cosec}$ has :

- (A) infinitely many simple poles and $z = \infty$ a double pole
- (B) z = 0 an essential singularity, $z = \infty$ a double pole
- (C) infinitely many simple poles and double pole at $z = \infty$ and essential singularity at z = 0
- (D) infinitely many simple poles and z = 0 essential singularity

Studentbountt, Com FEB - 30213/II

Which of the following pairs represents linear regression line ?

(A)
$$\hat{y} = 3x + 5; \hat{x} = 2y - 3$$

- (B) $\hat{y} = 2x + 4; \hat{x} = 0.5y 2$
- (C) $\hat{y} = 1.5x + 1; \hat{x} = -0.5y + 0.8$

(D)
$$\hat{y} = 3x^2 + 4; \hat{x} = 0.2y^2 + 1$$

ðπi

27. If C is the circle |z - 2| = 2, then

$$\int_{C} \frac{dz}{z-5} =$$

- (A) 0
- (B) 2πi
- (C)
- (D)

In a linear model $E(y_i) = \alpha + \beta x_i$; i = 1....n and $V(y_i) = \sigma^2$. and $\hat{\beta}$ are least squares estimators of α and β respectively.

Or

If
$$s^2 = \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2$$
 then

unbiased estimator of $\,\sigma^2$ is :

(A)
$$\frac{s^2}{(n-2)}$$

(B) $\frac{s^2}{(n-1)}$
(C) $\frac{s^2}{n}$
(D) $\frac{ns^2}{(n-1)}$
28. Let $f(z)$ be analytic in D = $\{z \mid |z| < 1\}$
 $< 1\}$ and $f\left(\frac{1}{n}\right) = 0$ $n = 2, 3, \dots$.
Then :
(A) f may not have any zero other than ones given
(B) $f \equiv 0$ in D
(C) in addition to $\{\frac{1}{n} \mid n = 2, 3, \dots\},$ the only zero of f in D is 0
(D) $f(z) = 0$ for $z \in (-1, 1)$ but f may not be zero at any other point

In a RBD with b blocks and vtreatments a single yield is missing. If B and T respectively denote the total of block and treatment which contain the missing value and G is the grand total, then estimate of the missing value is given by :

(A) (vb + bT - G)/(b - 1)(v - 1)(B) (C) (D) 29. The value of is : (A) 2^{99} (B) 3^{99} (C) -2^{99} (D) -3^{99} Or

Given below is a 2^3 design with 3 factors A,B,C in two blocks B_1 and B_2 . Identify *x* and *y* so that the block contrast $B_1 - B_2$ represents main effect A :

B₁: (1) x c bc
B₂: a ab y abc
(A)
$$x = ac, y = b$$

(B) $x = a, y = ac$
(C) $x = b, y = ac$
(D) $x = ac, y = a$

$$\int_0^{1+i} (x-y+ix^2)dz$$

along the straight line from z = 0to z = 1 + i is :

(A)
$$\frac{i}{3}$$

(B) $i(1 + i)$
(C) $\frac{1}{3}(i - 1)$
(D) $\frac{1}{6}(i - 3)$

		FEB - 30213/II
		FEB - 30213/11
Or		Or
The degrees of freedom for the error		When data are collected in a
in a Latin Square design with 5		statistical study for only a portion
rows, 5 columns and 5 treatments		or subset of all elements. If interest
with two missing observations is :		we are using a :
(A) 22		(A) Census
(B) 10		(B) Sampling frame
(C) 12		(C) Population
(D) 14		(D) Sample
31. Let G = $\{1, -1\}$. Then the group	32.	In S_n , the number of distinct cycles
(G, ●) is :		of length $r < n$ is :
(A) isomorphic to $(\mathbf{Z}, +)$		(A) <i>r</i> !
(B) homomorphic image of (\mathbf{Z}_5 , +)		(B) $(n - r)!$
(C) isomorphic to (\mathbf{Z}_5 , +)		(C) $n ! / (n - r) !$
(D) a homomorphic image of $(\mathbf{Z}, +)$		(D) $\frac{1}{r} \cdot \frac{n!}{(n-r)!}$
1	1	[P.T.O.

Which of the following is *not* the goal of descriptive statistics ?

- (A) Summarizing data
- (B) Displaying aspects of the collected data
- (C) Reporting numerical findings
- (D) Estimating characteristics of the population
- 33. If p is a group of order p^n , (n > 1),
 - (A) O(Z(G)) need not be a power of p
 - $(B) \ Z(G) \ is \ not \ singleton$
 - (C) Z(G) is not commutative
 - (D) Z(G) need not be a normal subgroup of G

Or

Which of the following statements is *correct* ?

- (A) In a statistics problem, characteristics of a sample are assumed to be unknown
- (B) Probability reasons from the population to the sample (deductive reasoning) whereas inferential statistics reasons from the sample to the population (inductive reasoning)
- (C) Hypothesis testing and estimation by confidence intervals are the least important types of inferential statistical procedures
- (D) In a probability problem, characteristics of sample are assumed to be unknown

- 34. If G is a group of order 108 then :
 - (A) G has a unique normal subgroup
 - (B) G is cyclic
 - (C) G is non-communicative
 - (D) G is not simple

Which of the following statements is *correct* ?

- (A) Color of ten automobiles recently purchased at a certain dealership is an example of a univariate data set
- (B) Height and weight for each basketball player on Pune University team is an example of bivariate data set
- (C) The systolic blood pressure, diastolic blood pressure, and serum cholesterol level for each patient participating in a research study is an example of multivariate data set
- (D) All of the above statements are correct

35. G is a group of order *pq* where *p* and*q* are primes.

Then :

- (A) G is solvable only if G is abelian
- (B) G is solvable only if p > q and $q \neq p - 1$
- (C) G is solvable only if p = q
- (D) G is always solvable

Or

The expected number of heads in 300 tosses of a fair coin is :

- (A) 300
- (B) 250
- (C) 200
- (D) 150

- 36. Let R be a commutative ring. Then :
 - (A) Every ideal of R is maximal
 - (B) R is a field if and only if R does not have a proper non-zero ideal
 - (C) Every proper ideal of R is prime
 - (D) A proper ideal of R is maximal if and only if it is prime

Which of the following is *not* a measure of center ?

- (A) The mean
- (B) The variance
- (C) The median
- (D) The trimmed mean
- 37. In which of the alternatives a subset W of a vector space $\mathbf{R}^{3}(\mathbf{R})$ is not a subspace ?
 - (A) W = { $(a, b, 0) | a, b \in \mathbf{R}$ }
 - (B) W = {(a, b, c) | a + b + c = 0}

(C) W = {
$$(a, b, c) | a^2 + b^2 + c^2 < 1$$
}

(D) W = {
$$(a, a, 0) | a \in \mathbf{R}$$
}

Or

Economic Order Quantity (EOQ) in Inventory problem, results in :

- (A) reduced chances of stock outs
- (B) miximization of set-up cost
- (C) equalization of carrying cost and procurement cost
- (D) favourable procurement price
- 38. Let D denote the derivative which we view as a linear map on the space of differential functions and k be a non-zero integer. Then the eigenvectors of D² are :
 - (A) $\sin x$ and $\sin kx$
 - (B) $\cos x$ and $\cos kx$
 - (C) $k \sin x$ and $k \cos x$
 - (D) sin kx and cos kx

For a two person game, in game theory with A and B, the minimizing and the maximizing players, the optimal strategies are :

- (A) maximax for A and minimax for B
- (B) minimin for A and maximin for B
- (C) maximin for A and minimax for B
- (D) minimax for A and maximin for B
- 39. If $T : \mathbf{R}^{3}(\mathbf{R}) \to \mathbf{R}^{2}(\mathbf{R})$ is defined by $T(x_{1}, x_{2}, x_{3}) = (x_{1}, x_{2})$, then which of the following alternatives is not true for T.
 - (A) T is a linear transformation
 - (B) T is an isomorphism
 - (C) Range of T = \mathbf{R}^2
 - (D) Ker T = {(0, 0, x_3) | $x_3 \in \mathbf{R}$ }

Sequencing problem involving processing of two jobs on 'n' machines :

Or

- (A) cannot be solved graphically
- (B) can be solved graphically
- (C) has a condition that the processing of two jobs must be in the same order
- (D) none of the above
- 40. Let V be a finite dimensional space over \mathbb{C} and let $T: V \to V$ be a linear map. Assume that all the eigenvalues of T are equal to 0. Then :
 - (A) T is not nilpotent
 - (B) T is diagonalizable
 - (C) There is an integer r > 1 such that $T^r = 0$ (zero map)
 - (D) T is a zero map

Studenteount FEB - 30213/II

Or For a "Poisson exponential single server and infinite population" queuing model, which of the following is *not* correct :

(A)
$$E(m) = \lambda E(w)$$

(B) $E(n) = \lambda E(v)$

(C)
$$E(n) = E(m) -$$

(D)
$$E(v) = E(w) + \frac{1}{u}$$

41. Let dim V > dim W and let
$$T \cdot V \rightarrow W$$
 be a linear map. Then :

- (A) Ker $T = \{0\}$
- (B) dim Ker T = dim Im T
- (C) Ker T is not $\{0\}$
- (D) T is invertible

Or

The types of probability sampling are :

- (A) random sampling, snowball sampling and lottery method
- (B) computer methods, lottery methods and snowball sampling
- (C) simple random and systematic sampling
- (D) random numbers, random sampling and computer methods

42. The dimension of the subspace of \mathbf{K}^n consisting of those vectors $A = (a_1,, a_n)$ such that $a_1 + +$ $a_n = 0$ is : (A) n(B) n - 1(C) n/2(D) $\frac{n-1}{2}$ *Or*

A cluster sampling is when :

- (A) units are clustered together after the study to enhance data analysis
- (B) in the first instance groups of people are chosen for the study
- (C) a quota of people is chosen for the study
- (D) units are clustered together after sample selection for data analysis

- 43. Let $a \in \mathbf{K}$ and $a \neq 0$. For the matrix
 - 0
 - (A) the eigen-vectors of the matrix generate 2-dimensional space
 - (B) the eigen-vectors of the matrix generate 1-dimensional space
 - (C) if $\mathbf{K} = \mathbf{R}$, then the characteristic polynomial and minimal polynomial are same
 - (D) the eigen-vectors are orthogonal

In a study of attitudes to university policies, a researcher interviewed 150 first-year students, 130 secondyear students and 100 third-year students. The sampling procedure used in this study was :

- (A) probability sampling
- (B) stratified sampling
- (C) quota sampling
- (D) temporal sampling

- StudentBounty.com 44. Consider a homogeneous equation y'' + ay' + by = 0. Its characteristic equation has a root *r* of multiplicity two. Then the Wronskian W of the solutions of the equation is :
 - (A) W = e^{2rx} (B) W = xe^{2rx} (C) W = xe^{r^2x} (D) W = $e^{r^2 x}$

Or

A researcher decides to increase the size of his random sample from 1500 to 4000. The effect of this increase is to :

- (A) reduce the variability of the estimate
- (B) reduce the bias of the estimate
- (C) increase the standard error of the estimate
- (D) have no effect because the population size is the same

17

StudentBount, Com

45. The partial differential equation which represents all surfaces of revolution about *z*-axis is represented by :

(A)
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 0$$

(B) $x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = 0$
(C) $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = 0$
(D) $y \frac{\partial z}{\partial x} - x \frac{\partial z}{\partial y} = 0$
Or

Which of the following statements is *incorrect* about the sampling distribution of the sample mean ?

- (A) The standard error of the sample mean will decrease as the sample size increases
- (B) The sample mean is unbiased for the true (unknown) population mean
- (C) The sampling distribution shows how the sample mean will vary among repeated samples
- (D) The sampling distribution shows how the sample is distributed around the sample mean

- 46. The order of the differential equation of the family of circles of variable radius *r* with centres on the *x*-axis is :
 - (A) 2
 - (B) 3
 - (C) 4
 - (D) 5

Or

Multiple correlation coefficient *cannot* be negative because :

- (A) it is the maximum among all possible correlation coefficients between the dependent variable and a linear combination of the independent variables
- (B) There are enough independent variables having positive correlation with the dependent variable
- (C) We take the positive square root
- (D) We reject the negative value

47. The solution of homogeneous initial value problem is

 $y = 2e^{10x} + \sin 3x,$

then the least possible order of the differential equation is :

- (A) 1
- (B) 2
- (C) 3
- (D) 4

Or

Hotelling T^2 statistic is a multivariate generalization of :

- (A) Chi-square statistic
- (B) Student *t*-test
- (C) Snedecor's F-statistic
- (D) Mahalanobis' D²-statistic
- 48. The set of all spheres with centres on the *z*-axis and of radius *a* is represented by the :
 - (A) first order ordinary differential equation
 - (B) first order partial differential equation
 - (C) second order ordinary differential equation
 - (D) second order partial differential equation

Or

Which of the following statements is *false* ?

- (A) A physical interpretation of the sample mean x̄ demonstrates how it measures the centre of a sample
- (B) The sample median is very sensitive to extremely small or extremely large data values (outliers)
- (C) The sample median is the middle value when the observations are ordered from smallest to largest
- (D) The sample mean is very sensitive to extremely small or extremely large data values (outliers)

StudentBounts. FEB - 30213/II

- 49. Consider the equation $L(y) = y'' + a_1y' + a_2y = 0$, where a_1 and a_2 are real constants. Then every solution of L(y) = 0 tends to zero as $x \to \infty$ if :
 - (A) $a_1 > 0$
 - (B) $a_1 < 0$
 - (C) $a_1 = 0$
 - (D) $a_1 \neq 0, a_2 > 0$
 - Or

Let $\{y_n, n > 1\}$ be a sequence of independent standard normal variables.

Let $X_n = Y_n^3 - 1$, n > 1. Then

is :

(A) 1

(B)
$$\int_{-\infty}^{0} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}} dx$$

(C) $\int_{-\infty}^{-1} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}} dx$
(D) $\frac{1}{2}$

50. Let ϕ_1 and ϕ_2 be differentiable functions on an interval I and W(ϕ_1 , ϕ_2) be the Wronskian of ϕ_1 , ϕ_2 . Consider the following two statements

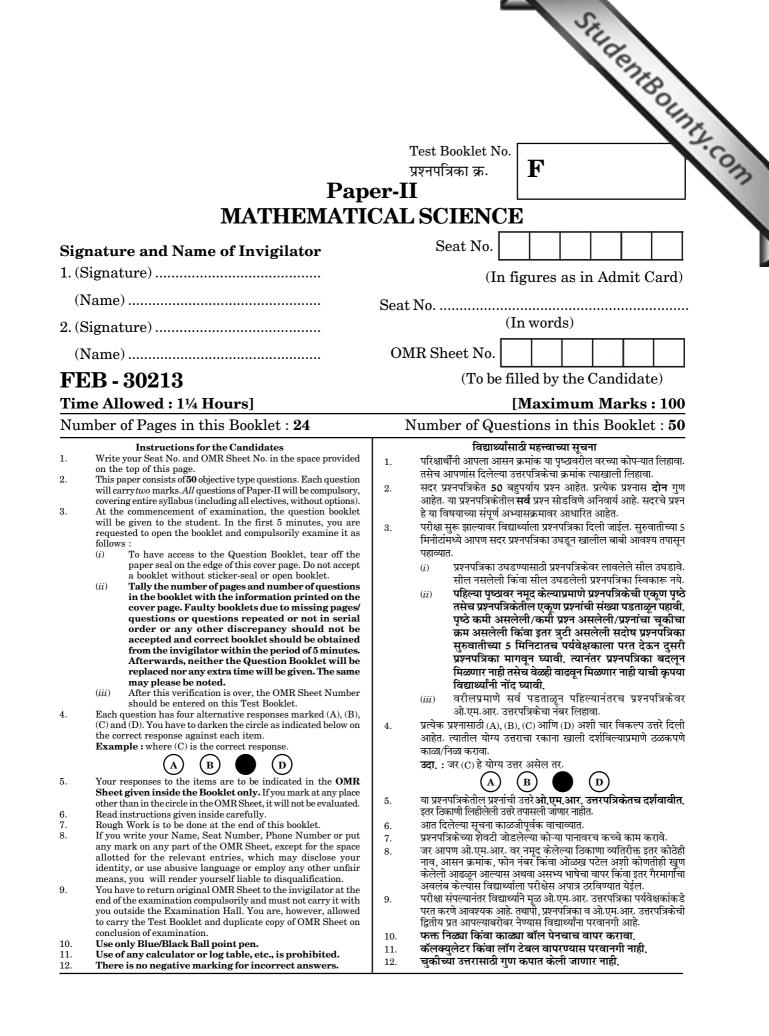
- (I) $W(\phi_1, \phi_2) (x_0) \neq 0$ for some $x_0 \in I \Rightarrow \phi_1, \phi_2$ are linearly independent
- (II) ϕ_1, ϕ_2 are linearly independent functions on I \Rightarrow W(ϕ_1, ϕ_2) $(x) \neq 0$

then :

- (A) both (I) and (II) are false
- (B) both (I) and (II) are true
- (C) only (I) is true
- (D) only (II) is true

Or

In almost all non-parametric tests, which of the following assumptions is always true ?


- (A) The form of the distribution function (*df*) is known
- (B) The df is discrete
- (C) The distribution is normal
- (D) The df is continuous

ROUGH WORK

ROUGH WORK

www.StudentBounty.com