Signature and Name of Invigilator

1. (Signature)

(Name) \qquad
2. (Signature) \qquad (Name) \qquad

DEC - 33213

Time Allowed : $11 / 4$ Hours]

(In figures as in Admit Card)
Seat No. \qquad (In words)
OMR Sheet No.

[Maximum Marks: 100
Number of Questions in this Booklet : 50

विद्यार्थ्यांसाठी महत्त्वाच्या सूचना

1. परिक्षार्थांनी आपला आसन क्रमांक या पृष्ठावरील वरच्चा कोपन्यात लिहावा. तसेच आपणांस दिलेल्या उत्तरपत्रकेचा क्रमांक त्याखाली लिहावा.
2. सदर प्रश्नपत्रिकेत 50 बहुपर्याय प्रश्न आहेत. प्रत्येक प्रश्नास दोन गुण आहेत. या प्रश्नपत्रिकेतील सर्व प्रश्न सोडविणे अनिवार्य आहे. सदरचे प्रश्न हे या विषयाच्या संपूर्ण अभ्यासक्रमावर आधारित आहेत.
3. परीक्षा सुरू झाल्यावर विद्यार्थालाल प्रश्पपत्रिका दिली जाईल. सुरुवातीच्या 5 मिनीटांभध्ये आपण सदर प्रश्पपत्रिका उयडून खालील बाबी अवश्य तपासून पहाव्यात.
(i) प्रश्पपत्रिका उयडज्यासाठी प्रश्पपत्रकेवर लावलेले सील उघडावे. सील नसलेली किंवा सील उघडलेली प्रश्नपत्रिका स्विकारू नये. (ii) पहिल्या पृष्ठावर नमूद केल्याप्रमाणे प्रश्नपत्रिकेची एकूण पृष्ठे तसेच प्रश्नपत्रिकेतील एकूण प्रश्नांची संख्या पडताबून पहावी. पृष्ठे कमी असलेली/कमी प्रश्न असलेली/प्रश्नांचाँचकीचा क्रम असलेली किंवा इतर त्रुटी असलेली सदोष प्रश्नपत्रिका सुरुवातीच्या 5 मिनिटातच पर्येक्षकाला परत देऊन दुसरी प्रश्नपत्रिका मागवून घ्यावी. त्यानंतर प्रश्नपत्रिका बदलून मिळणार नाही तसेच वेळ्ही वाठवून मिळणार नाही याची कृपया विद्यार्थ्यांनी नोंद घ्यावी.
(iii) वरीलप्रमाणे सर्व पडताळ्न पहिल्यानंतरच प्रश्नपत्रिकेवर ओ.एम.आर. उत्तरपत्रकेचा नंबर लिहावा.
4. प्रत्येक प्रश्नासाठी (A), (B), (C) आणि (D) अशी चार विकल्प उत्तरे दिली आहेत. त्यातील योग्य उत्तराचा रकाना खाली दर्राविल्याप्रमाणे ठळकपणे काळ/निबा करावा.
उदा. : जर (C) है योग्य उत्तर असेल तर.

5. या प्रश्नपत्निकोतील प्रश्नांची उत्रेओ. एम.आर. उत्तरपत्रिकेतच दर्शवावीत. इतर हिकाणी लिहीलेली उत्रे तपपसली जोणार नाहीत.

6. प्रश्नपत्रिकेच्या शेवटी जोडलेल्या को-चा पानावरच कच्चे काम करावे.
7. जर आपण ओ. एम. आर. वर नममद केलेल्या ठिकाणा व्यतिरोक्त इतर कोठेही नाव, आसन क्रमांक, फोन नंबरं किंबा ओळख पटेल अशी कोणतीहो ख़ण केलेली आठळून आल्यास अथवा असभ्य भाषेचा वापर किंवा इ़्तर गैगैमारांचा अवलंब केल्योस्स विद्याथ्याला परीक्षेस अपात्र ठरविण्यात येईल.
8. परीक्षा संप्य्यांतर विद्याथ्यनि मेळ ओ.एम.आर. उत्तरपत्रिक पर्वेक्षकांकडे परत करणे आवश्यक आहे. तथापी, प्रश्नपत्रिका व ओ. एम.आर. उत्रपपत्रिकेची द्वितीय प्रत आपल्याबरोबर नेण्यास विद्याथ्योंना परवानगी आहे.
फक्त निक्या किंता काळ्का बॉल पेनचाच वापर करावा.
9. फ़्क निक्या किका काळ्ञा बॉल पे पचाच चापर करावाना.
10. चुकीच्च्या ग्तररासाठी गुण कपात केली जाणार नाही.

Chemical Sciences

Time Allowed : 75 Minutes]
[Maximum Marks : 100
Note : This Paper contains Fifty (50) multiple choice questions. Each question carries Two (2) marks. Attempt All questions.

1. Which of the folloiwng is not a Lewis base?
(A) CN^{-}
(B) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(C) AlCl_{3}
(D) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
2. The bond orders of the $\mathrm{O}_{2}, \mathrm{O}_{2}^{+}$and O_{2}^{-}are respectively :
(A) $2.5,2.0,1.5$
(B) $2.0,2.5,1.5$
(C) 2.0, 1.5, 2.5
(D) $2.0,2.5,2.5$
3. For the concentration cell $\mathrm{Ag} \mid \mathrm{Ag}^{+}$(aq., $0.01 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) \| Ag^{+} (aq, $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) $\mid \mathrm{Ag}$ the EMF of the cell, E at a temperature T equals :
(A) $2.303 \frac{\mathrm{RT}}{\mathrm{F}}$
(B) $-2.303 \frac{\mathrm{RT}}{\mathrm{F}}$
(C) $\mathrm{E}_{\mathrm{Ag}^{+}, \mathrm{Ag}}^{0}+2.303 \frac{\mathrm{RT}}{\mathrm{F}}$
(D) $\mathrm{E}_{\mathrm{Ag}^{+}, \mathrm{Ag}}^{0}-2.303 \frac{\mathrm{RT}}{\mathrm{F}}$
4. The pH of a $1.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ solution of a weak acid HA is 4.0. The dissociation constant of the acid is :
(A) 1.0×10^{-3}
(B) 1.0×10^{-4}
(C) 1.0×10^{-5}
(D) 2.0×10^{-5}
5. The point groups of 1, 2-dichlorobenzene, 1, 3-dichlorobenzene and 1, 4-dichlorobenzene are respectively :
(A) $\mathrm{C}_{2 \mathrm{~V}}, \mathrm{C}_{2 \mathrm{~V}}, \mathrm{D}_{2 \mathrm{~h}}$
(B) $\mathrm{D}_{2 \mathrm{~h}}, \mathrm{D}_{2 \mathrm{~h}}, \mathrm{C}_{2 \mathrm{~V}}$
(C) $\mathrm{C}_{2 \mathrm{~h}}, \mathrm{C}_{2 \mathrm{~h}}, \mathrm{D}_{2 \mathrm{~h}}$
(D) $\mathrm{C}_{2 \mathrm{~V}}, \mathrm{D}_{2 \mathrm{~h}}, \mathrm{C}_{2 \mathrm{~V}}$
6. The term symbol for a particular state of an atom is ${ }^{3} \mathrm{D}_{3}$. The values of L, S and J for this term are respectively :
(A) $3,1,3$
(B) $2,1,3$
(C) 2, 0, 3
(D) $3,2,3$
7. Given that the standard potentials of the $\mathrm{Cu}^{2+} / \mathrm{Cu}$ and $\mathrm{Cu}^{+} / \mathrm{Cu}$ couples are +0.340 V and 0.522 V respectively, the standard potential of $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$couple is :
(A) 0.182 V
(B) 0.862 V
(C) +0.158 V
(D) -0.158 V
8. Which of the following molecules does not possess a centre of symmetry ?
(A) trans-dichloroethene
(B) naphthalene
(C) eclipsed ethane
(D) staggered ethane
9. An ideal gas in a thermally insulated vessel expands, quickly against vacuum. For this process :
(A) the temperature remains constant
(B) a finite, non-zero amount of work is done by the gas
(C) heat flows into the gas
(D) intermolecular interactions decrease upon expansion
10. Standard enthalpies of formation (in $\mathrm{kJ} \mathrm{mol}{ }^{-1}$) of four compounds $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are -200 , -50 , +10 and -100 respectively. For the reaction : $\mathrm{A}+2 \mathrm{C}=3 \mathrm{~B}+4 \mathrm{D}$. The standard enthalpy of reaction, in $\mathrm{kJ} \mathrm{mol}^{-1}$, is :
(A) 40
(B) 0
(C) -340
(D) -370
11. The efficiency of a reversible heat engine, operating between absolute temperatures of T_{1} and T_{2} (where $\mathrm{T}_{2}<\mathrm{T}_{1}$) is :
(A) $1+\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}$
(B) $1-\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}$
(C) $1-\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
(D) $1+\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
12. The osmotic pressure (π) of a solution of a polymer with molecular weight of M is recorded at different concentrations (C, in gl^{-1}) of the polymer and at different absolute temperatures (T). The plot of π / C against T is a straight line, in which :
(A) The intercept is R / M
(B) The intercept is M / R
(C) The slope is M / R
(D) The slope is R / M
13. The reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{P}$ is first order with respect to each of the two reactants. a_{0}, b_{0} are the initial concentrations of A and B, respectively. x is the concentration of P at time t. The appropriate rate equation for this reaction is :
(A) $k=\frac{1}{t\left(a_{0}-b_{0}\right)} \ln \left[\frac{b_{0}\left(a_{0}-x\right)}{a_{0}\left(b_{0}-x\right)}\right]$
(B) $k=\frac{1}{t\left(2 a_{0}-b_{0}\right)} \ln \left[\frac{b_{0}\left(a_{0}-x\right)}{a_{0}\left(b_{0}-x\right)}\right]$
(C) $k=\frac{1}{t\left(2 a_{0}-b_{0}\right)} \ln \left[\frac{b_{0}\left(a_{0}-x\right)}{a_{0}\left(b_{0}-x\right)}\right]$
(D) $k=\frac{1}{t} \ln \left[\frac{b_{0}\left(a_{0}-x\right)}{a_{0}\left(b_{0}-x\right)}\right]$
14. k is the rate constant of a reaction and T is the absolute temperature. The correct plot among the following is :
(A) $\ln k$

(B)

(C)

(D) k

T
15. A catalyst lowers the energy of the :
(A) reactant
(B) product
(C) transition state
(D) intermediate
16. A solid, MX, is formed of a metal ion M^{+}and a halide ion X^{-}. The following data are available :

Process	$\Delta \mathbf{H} / \mathbf{k J} \mathbf{~ m o l}^{\mathbf{- 1}}$
Decomposition of MX(g)	+500
Ionization of M(g)	+400
Sublimation of M(s)	+100
Dissociation of $\frac{1}{2} \mathrm{X}_{2}(\mathrm{~g})$	+150
Electron attachment to $\mathrm{X}(\mathrm{g})$	-400

The lattice energy for MX (in $\mathrm{kJ} \mathrm{mol}^{-1}$) is :
(A) 1150
(B) 750
(C) -1150
(D) -750
17. The correct IUPAC nomenclature of the following compound is :

(A) (2S, 3R)-5—Phenylpentane-

2, 3-diol
(B) (3S, 4R)-1—Phenylpentane-

3, 4-diol
(C) (2R, 3S)—5-Phenylpentane-

2, 3-diol
(D) (3R, 4S)—1—Phenylpentane-

3, 4-diol
18. The following compound, is :

(A) optically inactive and belongs to D-family
(B) optically active and belongs to D-family
(C) optically active and belongs to L-family
(D) optically inactive and belongs to L-family
19. The number of stereoisomers of 2, 3, 4-trichloropentane is :
(A) 2
(B) 6
(C) 8
(D) 4

DEC - 33213/I

20. The correct Fischer projection representation of the following compound

is :
(A)

(B)

(C)

(D)

21. The number of stereoisomers of $\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-$ $\mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$ is :
(A) 4
(B) 2
(C) 6
(D) 8
22. The major product of the following reaction is :

is :

(B)

(C)

(D)

23. The major product of the following reaction is :

(A)

(B)

(C)

(D)

24. Addition of an ester enolate to the carbonyl carbon of another ester gives :
(A) diester
(B) an anhydride
(C) α, β-unsaturated ester
(D) β-keto ester
25. Among the following reducing agents the one that can be used under acidic conditions is :
(A) NaBH_{4}
(B) NaCNBH_{3}
(C) LiAlH_{4}
(D) DIBAL
26. Which of the following rearrangements does not proceed through a nitrene intermediate ?
(A) Beckmann
(B) Curtius
(C) Lossen
(D) Schmidt
27. The major product (Z) of the following reaction is :

(A)

(B)

(C)

(D)

28. Which is the major product in the following reaction ?

(A)

(B)

(C)

(D)

29. Robinson annulation involves :
(A) Two aldol condensation steps
(B) Two Michael addition steps
(C) Aldol condensation followed by Michael addition
(D) Michael addition followed by aldol condensation
30. Among the following, the compound that shows carbonyl stretching at highest wave numbers in IR spectroscopy is :
(A)

(C)

(D)

31.

Y

Z

The number of signals that appear in ${ }^{13} \mathrm{C}$ NMR spectra of compounds Y and Z respectively are :
(A) 5,5
(B) 3,4
(C) 4,5
(D) 5,4
32. Identify the compound that displays the following signals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum : $\delta 1.21(t, 3 \mathrm{H}), 2.2(\mathrm{~s}, 3 \mathrm{H})$, $3.6(\mathrm{q}, 3 \mathrm{H}), 4.2(\mathrm{~s}, 2 \mathrm{H})$:
(A)

(B)
(C)
(D)
33. Which of the following molecules has the highest bond order ?
(A) CO
(B) NO
(C) O_{2}
(D) Cl_{2}
34. The acidic character in the following hydroxides of trivalent cations changes as :
(A) $\mathrm{Al}(\mathrm{OH})_{3}>\mathrm{B}(\mathrm{OH})_{3}>\mathrm{Tl}(\mathrm{OH})_{3}>$ $\mathrm{Fe}(\mathrm{OH})_{3}$
(B) $\mathrm{B}(\mathrm{OH})_{3}>\mathrm{Tl}(\mathrm{OH})_{3}>\mathrm{Al}(\mathrm{OH})_{3}>$ $\mathrm{Fe}(\mathrm{OH})_{3}$
(C) $\mathrm{Tl}(\mathrm{OH})_{3}>\mathrm{Fe}(\mathrm{OH})_{3}>\mathrm{Al}(\mathrm{OH})_{3}$ $>\mathrm{B}(\mathrm{OH})_{3}$
(D) $\mathrm{B}(\mathrm{OH})_{3}>\mathrm{Al}(\mathrm{OH})_{3}>\mathrm{Fe}(\mathrm{OH})_{3}>$ $\mathrm{Tl}(\mathrm{OH})_{3}>$
35. According to VSEPR theory, the shape of XeOF_{4} is predicted to be :
(A) Octahedral
(B) Trigonal bipyramidal
(C) Square pyramidal
(D) distorted octahedral
36. The spin moment of a system can be calculated using the expression :
(A) $[\mathrm{S}(\mathrm{S}+1)]^{1 / 2}$
(B) $[2 \mathrm{~S}(\mathrm{~S}+2)]^{1 / 2}$
(C) $[4 \mathrm{~S}(\mathrm{~S}+1)]^{1 / 2}$
(D) $[n(n+1)]^{1 / 2}$
37. Which of the following complex ions has magnetic moment value same as $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$?
(A) $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$
(B) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(C) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
(D) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
38. Which of the following is a Mossbauer active nucleus ?
(A) ${ }^{2} \mathrm{D}$
(B) ${ }^{12} \mathrm{C}$
(C) ${ }^{78} \mathrm{Se}$
(D) ${ }^{119} \mathrm{Sn}$
39. Which of the following orbitals is most destabilized in trigonal bipyramidal geometry ?
(A) $d_{x z}$
(B) $d_{x y}$
(C) $d_{x^{2}}-y^{2}$
(D) $d_{z^{2}}$
40. The complex ion with CFSE equal to $-12 \mathrm{D} q$ is :
(A) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(B) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(C) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(D) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
41. Which of the following is ESR active ?
(A) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(B) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
(C) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(D) $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{2-}$
42. The term symbol for the ground state in V^{2+} ion is :
(A) ${ }^{4} \mathrm{D}_{3 / 2}$
(B) ${ }^{3} \mathrm{~F}_{9 / 2}$
(C) ${ }^{4} \mathrm{~F}_{3 / 2}$
(D) ${ }^{4} \mathrm{D}_{9 / 2}$
43. The hybridization involved in TiCl_{4} is :
(A) $s p^{3}$
(B) $d s p^{2}$
(C) $s d^{3}$
(D) $s p^{3} d$
44. The total number of isomers possessed by trans$\mathrm{Na}_{3}\left[\mathrm{Co}(\mathrm{OX})_{2} \mathrm{Cl}(\mathrm{SCN})\right]$ is :
(A) 1
(B) 2
(C) 3
(D) 4
45. Which of the following molecules has a C_{n} axis and n number of C_{2} axes?
(A) $\mathrm{SO}_{2} \mathrm{Cl}_{2}$
(B) $\mathrm{B}(\mathrm{OH})_{3}$
(C) NH_{3}
(D) PCl_{3}
46. The colour change of a pH indicator used for a volumetric experiment requires an overtitration of 0.03 ml . If the required volume of titrant is 25.0 ml , the percent relative error in the measurement will be :
(A) $+0.12 \%$
(B) $+0.06 \%$
(C) $+0.03 \%$
(D) -0.03%
47. The oxidation of oxalate with permanganate in basic solution involves the change in oxidation state of manganese from :
(A) Mn^{7+} to Mn^{2+}
(B) Mn^{7+} to Mn^{4+}
(C) Mn^{4+} to Mn^{2+}
(D) Mn^{4+} to Mn^{0}
48. Fe^{+}and NO^{+}can be classified, respectively, as :
(A) soft acid and soft base
(B) hard acid and hard base
(C) soft acid and hard base
(D) hard acid and soft base
49. Which of the following can act as an oxidizing agent ?
(A) $\left[\mathrm{Mn}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$
(B) $\left[\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$
(C) $\left[\mathrm{Co}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$
(D) $\left[\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{3}\right]$
50. Which of the following carbonyl clusters should possess bridging carbonyls ?
(A) $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$
(B) $\left[\mathrm{Co}_{4}(\mathrm{CO})_{12}\right]$
(C) $\left[\mathrm{Ir}_{4}(\mathrm{CO})_{12}\right]$
(D) $\left[\mathrm{Os}_{4}(\mathrm{CO})_{16}\right]$

ROUGH WORK

ROUGH WORK

