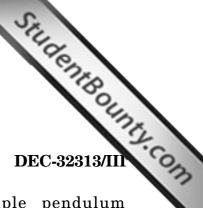







# **PHYSICS**


# Paper III

# Time Allowed : 2<sup>1</sup>/<sub>2</sub> Hours]

[Maximum Marks : 150

Note : This Paper contains Seventy Five (75) multiple choice questions. Each question carries Two (2) marks. Attempt *All* questions.

| 1. | The polar plot of the equation         | 3. | A coin is loaded such that "heads"    |
|----|----------------------------------------|----|---------------------------------------|
| 1. | The polar plot of the equation         |    | occur with twice the frequency as     |
|    | $r = a\theta$                          |    | "tails" when it is tossed. A second   |
| 2. | represents :                           |    | coin is an ideal coin. What is the    |
|    | (A) circle                             |    | probability that when both the coins  |
|    |                                        |    | are tossed simultaneously two "tails" |
|    | (B) spiral                             |    | would occur ?                         |
|    | (C) gaussian                           |    | (A) 0.167                             |
|    | (D) parabola                           |    | (B) <b>0.333</b>                      |
|    | The minimum order of the               |    | (C) 0.5                               |
|    | polynomial that fits exactly to 5 data |    | (D) 0.25                              |
|    | set points is :                        | 4. | The value of $\nabla^2(r^2)$ is :     |
|    | (A) 1 (linear)                         |    | (A) 3                                 |
|    | (B) 2 (quadratic)                      |    | (B) 6                                 |
|    | (C) 4 (quartic)                        |    | (C) 2 <i>r</i>                        |
|    | (D) 5 (quintic)                        |    | (D) zero                              |
|    | :                                      | 3  | [P.T.O.                               |



5. y(x) satisfies the differential equation.

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$$

One solution of this equation is  $Ae^x$ . The second linearly independent solution is :

- (A)  $e^{-x}$
- (B)  $xe^x$
- (C) *xe*<sup>-x</sup>
- (D)  $x^2 + x$
- 6.  $f(z) = \frac{1}{z^2 + a^2}, a > 0$ . The integral of f(z) over a contour comprising the real axis a semi-circle of infinite radius in the upper half plane is :

(A)  $\frac{2\tau}{a}$ 

- (B)  $\frac{2\pi}{a}$
- (C)  $\frac{\pi}{a}$

(D) zero

7. Consider a simple pendulum oscillating in a plane. The pendulum bob has mass m and is suspended by string of length 'l'. If  $\theta$  is the angle made by the string with the vertical, then the kinetic energy of the system in plane polar coordinates is given by :

(A) T = 
$$\frac{1}{2}ml^2$$

(B) 
$$T = mgl \cos\theta$$

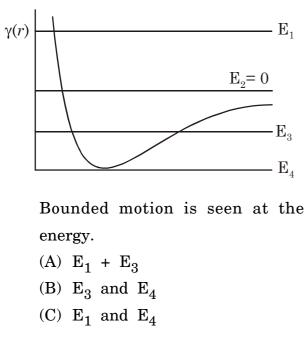
(C) T = 
$$\frac{1}{2}ml^2\dot{\theta}^2$$

(D) T = 
$$\frac{1}{2} m \dot{\theta}^2$$

- 8. The conjugate momentum  $p_{\theta}$  of a simple pendulum of mass m suspended from a support by a string of length l is given by :
  - (A)  $ml\dot{\theta}$ (B)  $m\dot{\theta}$ (C)  $ml^2\dot{\theta}$ (D)  $ml^2$

- 9. If two particles of equal mass m collide elastically with each other and scatter off, then the following statement is correct in the center of mass frame :
  - (A) the velocities of the two particlesare interchanged after thecollision
  - (B) the magnitudes of the velocitiesof the two particles areunchanged by the collision
  - (C) the two particles move off together after the collision
  - (D) the particle with the larger velocity comes to a rest, whereas the other particle stays in motion

**DEC-32313/III** 10. If a particle of mass *m* moves under the action of a gravitational potential  $V(r) = -\frac{MG}{R}$ , then the following


statement is *correct* :

- (A) The motion of the system is confined to a plane
- (B) The energy of the system is the only conserved quantity
- (C) The motion of the particle is always bounded
- (D) There are no initial conditions
   for which the particle can be
   execute uniform circular
   motion

5

DEC-32313/III

- Consider the motion of a planet moving about the run under the action of gravity :
  - (A) The period of rotation of the planet around the center of force is proportional to the square of the semi-major axis of the elliptical orbit.
  - (B) The areal velocity is directly proportional to the angular momentum of the planet
  - (C) The period of revolution is proportional to  $L^2$ .
  - (D) The area of the elliptical orbit is proportional to 'L'.
- 12. Consider a particle moving under the action of the potential in the figure below :



(D) E<sub>2</sub> only

13. The energy levels of onedimensional harmonic oscillator with potential  $v(x) = \frac{1}{2}kx^2$  are given by  $hv\left(n + \frac{1}{2}\right)$  with n = 0, 1,2, 3.... If the potential is changed to  $v(x) = \infty$  for x < 0 and  $v(x) = \frac{1}{2}kx^2$ 

> for x > 0, the energy levels now, will be given by :

(A)  $hv\left(n + \frac{3}{2}\right)$ (B)  $2hv\left(n + \frac{1}{2}\right)$ (C)  $hv\left(n + \frac{1}{2}\right)$ , *n* odd only (D)  $hv\left(n + \frac{1}{2}\right)$ , *n* even only

# DEC-32313/III

- 14. The value of operator  $\overrightarrow{r}$   $\overrightarrow{p}$   $\overrightarrow{p}$   $\overrightarrow{p}$   $\overrightarrow{p}$   $\overrightarrow{r}$   $\overrightarrow{r}$  in quantum mechanics is :
  - (A) *i*ħ
  - (B) zero
  - (C) 3 iħ
  - (D)  $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)$
- 15. The ground state energy of a quantum mechanical system is always :
  - (A) Suppressed (lowered) due to second order perturbation
  - (B) Suppressed (lowered) due tofirst order perturbation
  - (C) Raised due to second order perturbation
  - (D) Raised due to first order perturbation

- 16. A state of a system with spherical symmetric potential has zero uncertainty in simultaneous measurements of operators  $L_x$  and  $L_y$ . Which of the following statements is *true* ?
  - (A) Such a state can never exist
  - (B) The state must be l = 0 state
  - (C) The state has l = 1 with m = 0
  - (D) The state can not be an eigenstate of  $L^2$  operator
- 17. Which of the following is an eigenfunction of Linear momentum operator  $\frac{\hbar}{i} \frac{\partial}{\partial x}$ , such that it describes a particle moving in free space in the direction of negative *x*-axis, with zero uncertainty in the linear momentum ?
  - (A)  $\cos kx$
  - (B)  $e^{ikx}$
  - (C)  $e^{kx}$
  - (D)  $e^{-ikx}$

- 18. The wave function for identical particles is symmetric under particle interchange. Which of the following is a consequence of this property ?
  - (A) Pauli-Exclusion principle
  - (B) Bose-Einstein condensation
  - (C) Heisenberg uncertainty principle
  - (D) Bohr-correspondence principle
- 19. A point charge q is kept at a distance of 2R from the centre of a grounded conducting sphere of radius R. The image charge and its distance from the centre are respectively :
  - (A) -q and  $\frac{R}{2}$ (B)  $-\frac{q}{2}$  and  $\frac{R}{2}$ (C) -q and  $\frac{R}{4}$ (D)  $-\frac{q}{2}$  and  $\frac{R}{4}$

- StudentBounty.com The dimensions of a quantity  $\frac{|\overline{E} \quad \overline{B}|}{\mu_0}$ 20.
  - are :
  - (A)  $ML^2 T^{-2}$
  - (B)  $ML^2 T^{-3}$
  - (C)  $ML^0 T^{-2}$
  - (D)  $ML^0 T^{-3}$
- 21.An electromagnetic wave going through vacuum is described by  $\overline{\mathbf{E}} = \overline{\mathbf{E}}_0 \cos\left(kz - \omega t\right)$ and  $\overline{\mathbf{B}} = \overline{\mathbf{B}}_0 \cos(kz - \omega t)$ . The relation between  $E_0$  and  $B_0$  is :
  - (A)  $\mathbf{E}_0 \mathbf{B}_0 = \frac{\omega}{k}$ (B)  $\mathbf{E}_0 \mathbf{B}_0 = \omega k$ (C)  $\mathbf{E}_0 \mathbf{K} = \mathbf{B}_0 \boldsymbol{\omega}$ (D)  $\mathbf{E}_0 \omega = \mathbf{B}_0 k$
- Electric field at large distance r, from 22. the electric dipole is proportional to : (A)  $r^2$ (B)  $r^{-2}$ (C)  $r^{-3}$ (D)  $r^{-4}$

- 23. An electron enters an uniform electric field region with its velocity perpendicular to the direction of the field. In the field region, the trajectory of the electron is :
  - (A) linear
  - (B) circular
  - (C) parabolic
  - (D) helical

 $e^{-a\epsilon^2}$ 

24. An electric field associated with an electromagnetic radiation is :

 $\overline{\mathbf{E}} = (\hat{x}\mathbf{E}_x + \hat{y}\mathbf{E}_y) e^{i(kz - \omega t)}.$  If  $\mathbf{E}_y = i\mathbf{E}_x$ , then the electromagnetic radiation is :

- (A) plane polarized
- (B) circularly polarized
- (C) elliptically polarized
- (D) unpolarized

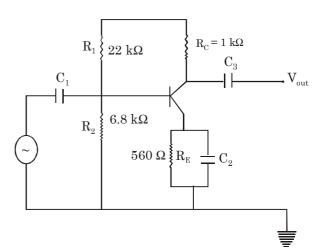
- 25. The Fermi function of a gas of free electrons has the form : (A)  $a = \text{const.}, \ \epsilon = \text{energy}$ (B)  $\frac{1}{\epsilon^2 + a^2} a = \text{const.}, \ \epsilon = \text{energy}$ (C)  $\frac{a}{\epsilon} a = \text{const.}, \ \epsilon = \text{energy}$ (D)  $H(\epsilon < \epsilon_f)$ where (f)  $(\epsilon < \epsilon_f) = 1$ if  $\epsilon \le \epsilon_f$ (f)  $(\epsilon < \epsilon_f) = 0$
- 26. A perfect gas initially occupies a volume 'V' with the number of particles 'N' and energy 'E'. The volume is now doubled, keeping 'N' and 'E' constant. The change in entropy will be :
  (A) Nk<sub>B</sub> ln 2
  (B) Nk<sub>B</sub> ln V
  - (C)  $2Nk_B \ln V$

if  $\in \geq \in_f$ 

(D) 
$$\frac{1}{2}$$
 Nk<sub>B</sub> ln 2V

[P.T.O.

- 27. If the temperature of a black body enclosure is doubled, the total number of photons in the enclosure increases by a factor of :
  - (A) 2
  - (B) 4
  - (C) 6
  - (D) 8
- 28. Consider a system of spin particles with magnetic moment  $\mu$ each. In an applied magnetic field, the spin can either be parallel or antiparallel to 'H' with equal probability. If there are 10 such particles, the total number of microstates will be :
  - (A)  $2^{10}$
  - (B)  $10^2$
  - (C) 20
  - (D) 10
- 29. For a photon gas, the chemical potential is :
  - (A) Large and negative
  - (B) Zero
  - (C) Equal to Fermi energy
  - (D) Large and positive


- StudentBounty.com 30. Three distinguishable particles have a total energy of  $9 \in$ . These particles are distributed over the energy states with energy  $0, \in, 2\in, 3\in$  and  $4 \in$ . The total number of microstates will be :
  - (A) 3
  - (B) 1
  - (C) 10
  - (D) 6
- The noise figure of an amplifier is 31. 3dB. Its noise temperature will be about :
  - (A) 145 K
  - (B) 290 K
  - (C) 580 K
  - (D) 870 K
- 32. Resonance frequency for a free electron in a magnetic field with B = 1 tesla is : (A) 28.00 GHz (B) 14.00 GHz
  - (C) 20.00 GHz

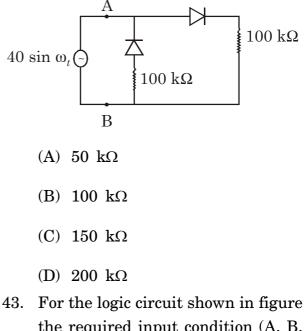
  - (D) 2.80 GHz
- 33. Which of the following detectors is used for the measurement of energy of a particle ?
  - (A) Ionisation chamber
  - (B) G.M. counter
  - (C) Proportional counter
  - (D) Cerenkov counter
- 10



- 34. Which of the following gauge can measure vacuum in the range  $10^{-10}$  to  $10^{-3}$  torr ?
  - (A) McLeod gauge
  - (B) Pirani gauge
  - (C) Penning gauge
  - (D) Ionization gauge
- 35. In a Millikan oil-drop experiment, one of the drops falls at speed V without field and rises at speed V with field E applied. If the field is made E/2, the drop will :
  - (A) fall with speed V/4
  - (B) rise with speed V/2
  - (C) rise with speed 3V/2
  - (D) remain steady
- 36. An oscilloscope is on AC mode with no input. If you touch the input a fifty Hertz signal is seen on the screen, what is the origin and how does it get coupled to the input ?
  - (A) It originates from the power line and is coupled through conducting air
  - (B) It originates from the power line and is coupled through capacitor formed with air as dielectric
  - (C) Originates from the power supply of the oscilloscope
  - (D) Originates from our body as a result of electrical activity in the heart

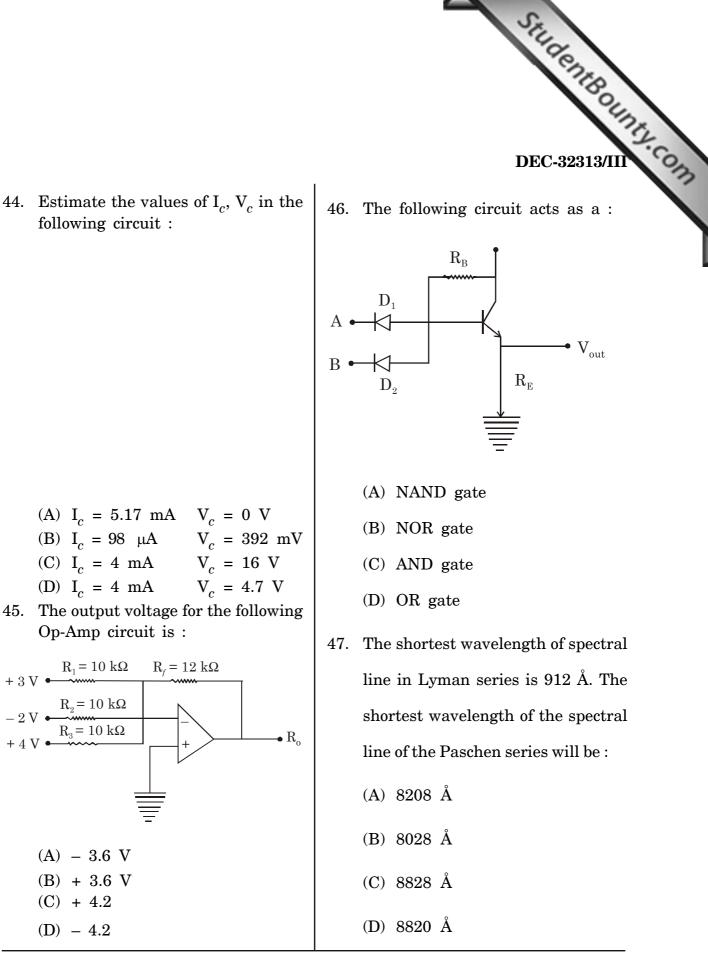
37. The minimum value for emitter bypass capacitor C<sub>2</sub> in the following amplifier is.....[operating frequency 2kHz-10 kHz]




- (A) 1.42 F
- (B) 1.42 mF
- (C) 1.42  $\mu F$
- (D) 1.42 PF
- 38. What kind of MOSFET mode can be used in the switching mode ?
  - (A) Depletion mode
  - (B) Cut-off mode
  - (C) Saturation mode
  - (D) Enhancement mode

11

DEC-32313/III


- 39. For a 12-bit A/D converter the range of input signal is 0 to + 10V. The voltage corresponding to 1 LSB is :
  - (A) 0
  - (B) 0.0012 V
  - (C) 0.0024 V
  - (D) 0.833 V
- 40. For one of the following conditions, clocked J-K flip-flop can be used as DIVIDE BY.2 circuit when the pulse train to be divided is applied at clock input :
  - (A) J = 1, K = 1 and the flip-flop should have active HIGH inputs
  - (B) J = 1, K = 1 and the flip-flop should have active LOW inputs
  - (C) J = 0, K = 0 and the flip-flop should have active HIGH inputs
  - (D) J = 0, K = 0 and the flip-flop should have active LOW inputs
- 41. The following can be used a delay circuit :
  - (A) Astable multivibrator
  - (B) Bistable multivibrator
  - (C) Schmitt trigger circuit
  - (D) Monostable multivibrator

42. A voltage source  $V_{AB} = 40 \sin \omega_t$ is applied to the terminals A and B of the circuit shown below. The impedance by the circuit across the terminal A & B is :



the required input condition (A, B, C) to make the output X = 1 is :

| (A) | 1, | 0, | 1 |
|-----|----|----|---|
| (B) | 0, | 0, | 1 |
| (C) | 1, | 1, | 1 |
| (D) | 0, | 1, | 1 |



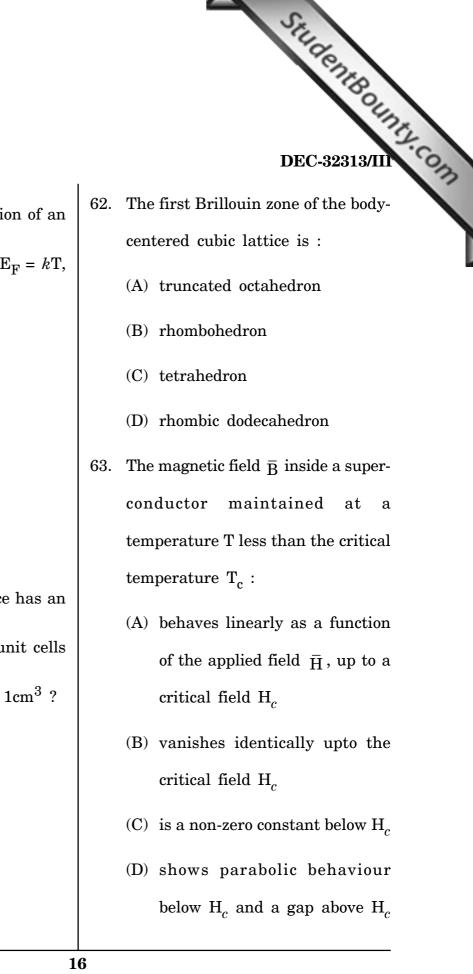
+ 3 V •

+4V

(C) + 4.2

(D) - 4.2

StudentBounty.com Transition for the sodium  $D_2$  line The normal modes of vibration of 51.48. (589.0 nm) is :  $\mathrm{CO}_2$  molecule are observed at 1330 (A)  ${}^{2}P_{_{3\!/}} \rightarrow {}^{2}S_{_{1\!/}}$  $cm^{-1}$ , 667 $cm^{-1}$  (doubly degenerate)  $(B) {}^{2}P_{\frac{1}{2}} \rightarrow {}^{2}S_{\frac{1}{2}}$ and  $2349 \text{ cm}^{-1}$ . The total zero point (C)  ${}^{2}D_{_{3\!/_{2}}} \rightarrow {}^{2}P_{_{1\!/_{3}}}$ energy of the  $\mathrm{CO}_2$  molecule is : (D)  ${}^{2}D_{\frac{5}{2}} \rightarrow {}^{2}P_{\frac{3}{2}}$ (A) 31.1 eV (B) 0.031 eV 52. How many electrons can be put in (C) 0.311 eV an atomic shell corresponding to (D) 3.11 eV n = 5 ?[data :  $h = 6.625 \times 10^{-34}$ (A) 10 J.s.  $c = 3 \times 10^8 \text{m/s}$ (B) 24 (C) 36 49. How many normal modes of (D) 50 vibration does the water molecule How many spectral lines appear in 53. possess? the Zeeman splitting of  ${}^{2}D_{\frac{3}{2}} \rightarrow {}^{3}P_{\frac{1}{2}}$ (A) 9 transition of sodium ? (B) 3 (A) 2 (C) 4 (B) 3 (D) 6 (C) 1 50. Transition for the sodium  $D_1$  line (D) 4 (589.6 nm) is : 54. What is the ground state of a helium (A)  ${}^{2}P_{3/2} \rightarrow {}^{2}S_{1/2}$ atom ? (A)  ${}^{2}P_{1/2}$ (B)  ${}^{2}P_{\frac{1}{2}} \rightarrow {}^{2}S_{\frac{1}{2}}$ (B)  ${}^{1}S_{0}$ (C)  ${}^{2}D_{_{3_{2}}} \rightarrow {}^{2}P_{_{1_{2}}}$ (C)  ${}^{1}S_{1/2}$  $(\mathrm{D}) \ ^{2}\mathrm{D}_{_{5\!/_{2}}} \ \rightarrow \ ^{2}\mathrm{P}_{_{3\!/_{2}}}$ (D)  $2S_0$ 




- 55. Consider a hydrogen atom whose electron is in the state with quantum numbers n = 3, l = 2. To what lower states are radiative transitions possible ?
- (A) n = 3, l = 1 and n = 2, l = 1(B) n = 3, l = 2 and n = 2, l = 0(C) n = 2, l = 0 and n = 1, l = 0(D) n = 3, l = 0 and n = 1, l = 056. A three level system of atoms has N<sub>1</sub> atoms in level E<sub>1</sub>, N<sub>2</sub> in level E<sub>2</sub> and N<sub>3</sub> in level E<sub>3</sub>. If N<sub>2</sub> > N<sub>1</sub> > N<sub>3</sub> and E<sub>1</sub> < E<sub>2</sub> < E<sub>3</sub>, laser emission is possible between the levels :
  - (A)  $E_3 \rightarrow E_1$ (B)  $E_2 \rightarrow E_1$ (C)  $E_3 \rightarrow E_2$
  - (D)  $E_2 \rightarrow E_3$

- 57. The magnetic susceptibility of a paramagnetic substance shows the following behaviour as a function of T.
  - (A) Hyperbolic behaviour
  - (B) Parabolic behaviour
  - (C) is identically zero
  - (D) shows constant behaviour
- 58. The plasma frequency  $\omega_p$  for the electron gas is :

(A) 
$$\propto \frac{1}{\sqrt{m}}$$
  
(B)  $\propto m$ 

- (C)
- (D) independent of m, where m is the mass of electron.
- 59. The energy dissipated per second in a dielectric per unit volume is proportional to :
  - (A)  $\omega$ (B)  $\frac{1}{\omega}$ (C)  $\omega^2$ (D)  $\frac{1}{\omega^2}$ where  $\omega$  is the angular frequency



60. The probability of occupation of an energy level E, when  $E - E_F = kT$ , is :

(A) 0.73

(B) 0.63

(C) 0.27

- (D) 0.50
- 61. A unit cell of a cubic lattice has an edge of 3.6Å. How many unit cells are present in a lump of  $1 \text{cm}^3$ ? (A)  $2.14 \times 10^{22}$ (B)  $1.42 \times 10^{23}$ (C) 6.00 ×  $10^{12}$ (D)  $6.00 \times 10^{23}$

- 64. Above Curie temperature, the ferromagnetic material exhibits B-H curve in the form of :
  - (A) B-H loop
  - (B) Straight line
  - (C) Circle
  - (D) Ellipse
- A d.c. voltage of 1  $\mu$ V applied across 65. a junction formed by sandwiching a thin layer of insulator between two superconductors causes rf current oscillations of a frequency of :
  - (A) 48.36 MHz
  - (B) 4836.00 MHz
  - (C) 4.836 MHz
  - (D) 483.6 MHz

- StudentBounty.com 66. In a semiconductor, the effective masses of holes and electrons are identical. The position of the Fermi level at absolute zero temperature is :
  - (A) near the top of the valence band
  - (B) near the bottom of the conduction band
  - (C) midway between valence and conduction bands
  - (D) below the valence band
- Among the following nuclei, which 67. has the maximum binding energy per nucleon ?  ${}^{16}_{8}\mathrm{O}$ ,  ${}^{56}_{26}\mathrm{Fe}$ ,  ${}^{208}_{82}\mathrm{Pb}$ ,  ${}^{235}_{92}\mathrm{U}$ (A)  ${}^{16}_{8}O$  ${}^{56}_{26}{
  m Fe}$ (**B**)  $^{208}_{82}{\rm Pb}$  $(\mathbf{C})$  ${}^{235}_{92}{
  m U}$ (D)

- Radius of nucleus <sup>27</sup>Al is 3.6 Fermi. 68. The approximate nuclear radius of  $^{64}$ Cu is :
  - (A) 8.5 Fermi
  - (B) 7.2 Fermi
  - (C) 4.8 Fermi
  - (D) 3.6 Fermi
- 69. The magic numbers in nuclear physics arise mainly due to :
  - (A) dipole-dipole interaction
  - (B) spin-orbit interaction
  - (C) short range character of nuclear

## force

(D) coulomb interaction

- StudentBounty.com 70. The decay chain for the  ${}^{238}_{92}$ U nucleus involves eight  $\alpha$ -decays and six  $\beta^-$  decays. The final nucleus at the end of the process will have :
  - (A) Z = 88, A = 206
  - (B) Z = 84, A = 224
  - (C) Z = 82, A = 206
  - (D) Z = 76, A = 200
- Which of the following particles was 71.assumed to be involved in  $\beta$ -decay process, in order to explain continuous spectrum of  $\beta$ -rays ?
  - (A) Higg's Boson
  - (B) Neutrino
  - (C) Pion
  - (D) Muon

- 72. Which of the following statements is true for a compound nuclear reaction?
  - (A) The formation of the compound nucleus and its break-up are independent
  - (B) The break-up of compound nucleus is instantaneous (very short life time)
  - (C) The break-up of a compound nucleus depends on the channel of its formation
  - (D) The Q-value of compound nuclear reaction is always negative
- 73. According to the liquid-drop model, the surface energy part is proportional to :
  - (A)  $A^{2/3}$
  - (B)  $A^{1/3}$
  - (C) A
  - $(D) \ A^2$

StudentBounty.com 74. What is the possible values of Iso Spin -I and its Z-component  $I_3$  for the following system of a particle

$$\pi^{-} + p$$
(A)  $I_3 = -\frac{1}{2}, I = 1$ 
(B)  $I_3 = -\frac{1}{2}, I = \frac{3}{2}$ 
(C)  $I_3 = -\frac{3}{2}, I = -\frac{1}{2}$ 
(D)  $I_3 = \frac{1}{2}, I = \frac{1}{2}$ 
75. The quark structure of  $\Delta^{++}$  is :
(A) UUU
(B) UdU
(C) SSS

(D) ddd



# **ROUGH WORK**