ELECTRONIC SCIENCE Paper II

Time Allowed : 75 Minutes]
[Maximum Marks : 100
Note : This Paper contains Fifty (50) multiple choice questions, each question carrying Two (2) marks. Attempt All questions.

1. For a certain 12 V zener diode, a 10 mA change in zener current produces a 0.1 V change in zener voltage. The zener impedance for this current, change is :
(A) 0.1 ohm
(B) 1 ohm
(C) 10 ohm
(D) 100 ohm
2. Which of the following statements is correct :
(A) more number of electron-hole pairs will be generated in silicon than in germanium at room temperature
(B) less number of electron-hole pairs will be generated in silicon than germanium at room temperature
(C) number of electron-hole pairs generated are equal both in silicon and germanium at room temperature
(D) Conductivity of silicon is more than that of germanium at room temperature
3. The process of growth, by which an amount of material is set down upon a crystalline substrate while the overall single-crystal structure is still preserved, is known as. \qquad .
(A) Impurity diffusion
(B) Doping
(C) Epitaxy
(D) Ion implantation
4. A major factor that limits the high frequency gain of MOS transistors is. \qquad .caused by overlapping of the gate electrode and the drain.
(A) Overall impedance
(B) Parasitic capacitance
(C) Parasitic conductance
(D) Overall conductance
5. Metallization in IC fabrication is carried by :
(A) CVD technique
(B) EB evaporation technique
(C) ALD technique
(D) Oxidation technique
6. A circuit consists of two resistances R_{1} and R_{2} in parallel. The total current passing through the circuit is I_{T}, then the current passing through R_{1} is :
(A) $\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \mathrm{I}_{\mathrm{T}}$
(B) $\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1}} \mathrm{I}_{\mathrm{T}}$
(C) $\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \mathrm{I}_{\mathrm{T}}$
(D) $\frac{\mathrm{I}_{\mathrm{T}}}{\mathrm{R}_{1}\left[\mathrm{R}_{1}+\mathrm{R}_{2}\right]}$
7. Laplace transform of first derivative of a function $f(t)$ is :
(A) $\frac{\mathrm{F}(\mathrm{S})}{\mathrm{S}}$
(B) $\mathrm{SF}(\mathrm{S})-f(0)$
(C) $\mathrm{F}(\mathrm{S})-f(0)$
(D) $\mathrm{SF}(\mathrm{S})-\mathrm{S} f(0)$
8. Z-transform of $x(n)=\delta(n-k)$ for $k>0$ is:
(A) Z^{K}
(B) 1
(C) $\mathrm{Z}^{-\mathrm{K}}$
(D) K
9. One of the following properties of transfer function is correct :
(A) The transfer function is not a ratio of polynomials in S
(B) All complex poles and zeros must not occur in conjugate pairs
(C) The real parts of all poles must
be positive
(D) The coefficients of numerator polynomial $P(S)$ and denominator polynomial Q(S)
must be real
10. What is the driving-point impedance of the following circuit (consider 1-1 port as input)?

(A) 3Ω
(B) 5Ω
(C) 4Ω
(D) 2.2Ω
11. The average value of a half wave rectifier voltage with a peak value of 200 V is :
(A) 63.7 V
(B) 127.3 V
(C) 141 V
(D) 0 V
12. A DC voltage regulated power supply normally uses :
(A) only amplifier circuit
(B) only negative feedback
(C) amplifier and error feedback
(D) only filter circuit
13. Two inputs $\sin \omega t$ and $\cos \omega t$ are fed to two terminals of a differential amplifier. The output will be :
(A) $\sin \omega t+\cos \omega t$
(B) $\sin \omega t-\cos \omega t$
(C) 0
(D) $\sin \omega t \cdot \cos \omega t$
14. For an inverting amplifier, the input is fed through a resistance R_{1} and let R_{2} be the feedback resistance. Then the input resistance is approximately :
(A) $\mathrm{R}_{1}^{2} / \mathrm{R}_{2}$
(B) $\mathrm{R}_{2}^{2} / \mathrm{R}_{1}$
(C) $\sqrt{\mathrm{R}_{1} \mathrm{R}_{2}}$
(D) R_{1}
15. If A is the amplifier gain and B is the feedback factor, then condition for generating oscillations is :
(A) $\mathrm{AB}=-1$
(B) $\mathrm{AB}=+1$
(C) $\mathrm{AB}=0$
(D) $\mathrm{AB}=\infty$
16. The most suitable gate for comparing two bits is :
(A) AND
(B) OR
(C) NAND
(D) XOR
17. On a Karnaugh map, grouping the 0's produces :
(A) a product of sums expression
(B) a sum of products expression
(C) a "don't care" condition
(D) AND-OR logic
18. A 4-bit parallel adder can add :
(A) two 4-bit binary numbers
(B) two 2-bit binary numbers
(C) four bits at a time
(D) four bits in a sequence
19. A modulus 5 ring counter requires a minimum of :
(A) ten flip-flops
(B) five flip-flops
(C) four flip-flops
(D) twleve flip-flops
20. A memory with 256 addresses has:
(A) 256 address lines
(B) 6 address lines
(C) 1 address line
(D) 8 address lines
21. Which of the following is an example of embedded system for data communication?
(A) USB for mass storage
(B) Digital camera
(C) Network router
(D) Music player
22. What is the minimum number of I/O lines required to interface a 16 key matrix keyboard ?
(A) 16
(B) 8
(C) 32
(D) 4
23. What is the minimum number of interface lines required for implementing I2C interface ?
(A) 2
(B) 1
(C) 3
(D) 4
24. The serial port of the standard 8051 architecture is :
(A) Simplex
(B) Half duplex
(C) 'Receive' buffered
(D) 'Transmit' buffered
25. Which is the addressing mode for the instruction MOVC A, @ A + DPTR ?
(A) Direct
(B) Indexed
(C) Immediate
(D) Register
26. What will be the output of the following C program module ? main()
\{ int i, j;
$\mathrm{i}=0$;
do
$\{\quad j=i * i ;$
i++;
\} while (j < = 6);
print ("\%d \%d", i, j);
\}
(A) 24
(B) $3 \quad 4$
(C) 49
(D) $4 \quad 4$
27. The resolution of a SVGA monitor is :
(A) 320×200
(B) 320×400
(C) 640×640
(D) 640×480
28. The data structure which allows storage of multiple values in the same variable name with a subscript is called as :
(A) Array
(B) Tree
(C) List
(D) Que
29. Which of the following is not a serial port?
(A) USB
(B) Centronix port
(C) RS232 C
(D) 9 pin D connector on a PC motherboard
30. The correct sequence for file handling in C is :
(A) Define file pointer, use fopen, read/write data, close
(B) Use fopen, define file pointer, read/write data, close
(C) Use fopen, close, define file pointer, read/write data
(D) Define file pointer, read/write data use fopen, close
31. A transmission line has a VSWR of 2, The reflection coefficient is :
(A) $\frac{1}{3}$
(B) 0
(C) $\frac{1}{4}$
(D) $\frac{1}{2}$
32. A strip transmission line is formed over a dielectric medium with $\epsilon_{r}=4$. The width of the strip is 6 mm and the thickness of dielectric is 2 mm . The characteristic impedance of this line is :
(A) $\frac{1}{20} \sqrt{\frac{\mu_{0}}{\epsilon_{0}}}$
(B) $\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}$
(C) $2 \sqrt{\frac{\mu_{0}}{\epsilon_{0}}}$
(D) $\frac{1}{10} \sqrt{\frac{\mu_{0}}{\epsilon_{0}}}$
