	महाराव्ट्र आर्फ्रियां जिन्ही (श्वापत्व) सेवा मुञ्ज पर सिंग् परीक्षा दि: १५ व ११ डिसेंबर, २०१२- दिसका क्रमांक KLET No. 22000 प्रश्नपुस्तिका	
	प्रश्नपुस्तिका	
बेळ	स्थापत्य अभियांत्रिकीएकूण प्रश्न : 100: 2 (दोन) तासपेपर – Iएकूण गुण : 200	
	सूचना	
(1)	सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या	
	प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही	
	प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी. परीक्षा-क्रमांक	
(2)	आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.	
(3)	वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.	नये
(5)	आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये. सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. धाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच	सील उघडू
	शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.	ना हे स
(6)	उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.	सूचनेवि
(7)	प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची अचूक उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.	1.00
	ताकीद	Hab
प प्र ळ भ क	ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती तीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची त/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही तन्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित तायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा पर्ये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल. तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा	पर्यवेक्षकांच्या

Antenne States

at the second from the second for the second for the second for the second the second second second second second

SHORE ON A DESCRIPTION OF THE ADDRESS OF A DESCRIPTION OF A

אלא ביון ללימה הקלט אלאו שינה אלא מישהיםן אירובלי ולו עליו ליויר אירו או לייני או אלי מי יוא לי מלואי

a stand where the second s

2

The first of the second second

्यात्र में भी में में में में में मार्ग के समय स्थान के में में में में मार्ग के में मार्ग के में मार्ग के में

		3	ren.
	In Residential building, kitchen shou	ald have	aspect.
	(1) Eastern (2) Southern	(3)	South-Eastern (4) Northern
	Workability of concrete can be measured	ured by	aspect. South-Eastern (4) Northern
	(1) Slump test	(2)	Compaction factor test
	(3) Kelly ball test	(4)	All the above
	For a rectangular room, better propo	ortion is	to adopt length as times
	(1) 1 to 1.2 (2) 1.2 to 1.7	(3)	1.2 to 1.5 (4) $1.5 to 1.7$
D Strate House	The laboratory slump test result of degree of workability of such concret		a concrete is between 25 – 50 mm. The
	(1) very low (2) low	(3)	medium (4) high
att in the second	Black cotton soil is a product of deco	ompositic	on of
	(1) Granite	(2)	Marble
	(3) Basalt	(4)	Sandstone
U.C. Scool	The strength achieved by a brick de	pends on	
	(1) composition of brick earth	The state of the s	
	(3) burning and cooling process	(4)	All the above
	Capacity of concrete to bear imposed	l stresses	s safely is called as
- Ander		(2)	Shear strength
A NOT A THE A	(1) Compressive strength		
	 (1) Compressive strength (3) Durability 	(4)	Resistance
			A LOUR DE LE
	(3) DurabilityState whether the following statement	nts are t	
The for the second second with a second	(3) DurabilityState whether the following statemera. Consistency test is used to de	nts are t etermine	rue or false : the percentage of water required fo
and the second se	(3) DurabilityState whether the following statemera. Consistency test is used to de preparing cement paste.	nts are t etermine	rue or false : the percentage of water required fo

U01			4	A LET					
	-			128					
9.		ability of construction material is		-un					
	(1)	Resistance to crushing	(2)	Resistance to weathering					
	(3)	Shear strength	(4)	Resistance to weathering Compressive strength					
10.	Seasoning of timber means								
	(1)	removing the moisture content	(2)	reducing weight of timber					
	(3)	Both (1) and (2)	(4)	None of the above					
11.		is the quantity of fin	ne agg	regate required per 50 kg of cement of					
	M 1	50 - 1 : 2 : 4 grade of concrete.							
	(1)	0·340 kg	(2)	0.053 kg					
	(3)	0.035 kg	(4)	0.070 kg					
12.	Arti	ficial method of seasoning timber i	s						
	(1)	boiling	(2)	chemical seasoning					
	(3)	water seasoning	(4)	All of the above					
13.	Late	erite is used in							
	(1)	carving and ornamental works	(2)	fire resistance works					
	(3)	electrical switchboards	(4)	heavy engineering works					
14.	In r	nedium carbon steel, carbon conten	t vari	es from					
	(1)	0.25% to 0.60%	(2)	0.10% to 0.25%					
	(3)	0.60% to 0.75%	(4)	0.75% to 1.00%					
15.	Ligł	nt weight concrete is also known as	5						
	(1)	low concrete	(2)	lean concrete					
and a	(3)	transparent concrete	(4)	cellular concrete					
16.	The	process of tempering is applied to	steel	in hardening process for improving					
	(1)	ductility	(2)	strength					
	(3)	roughness	(4)	All of the above					

StudentBounty.com A cantilever beam 'AC' of uniform cross-section carries a uniformly distributed load 17. over the portion 'AB' of length 'l' as shown. Slope at free end 'C' will be

Shrinkage strain developed in post-tensioning beam when prestressing force transfer 18. at the age of 't' days is

(1)	0.003	(2)	0.002	(3)	0.0035	(4)	0.001.
(1)	$\overline{\log_{10}(t+2)}$	(2)	$\log_{10}(t+2)$	(0)	$\log_{10}(t+2)$	(4)	$\log_{10}(t+1)$

- at any section in a given beam is equal to ____ at corresponding 19. The section in conjugate beam.
 - slope, shear force (1)

A

- (2) deflection, shear force
- slope, bending moment (3)
- (4) slope, deflection

 $(4) \quad wl^2$

A beam of span 'L' carries a U.D.L. of 'w' per m run and prestressing force in the 20. cable is 'P'. What will be the eccentricity of parabolic cable at centre (i.e. dip) so as to nullify the bending effect ?

(1)
$$\frac{3 L^2}{3 P}$$
 (2) $\frac{3 w L^2}{5 P}$ (3) $\frac{w L^2}{8 P}$ (4) $\frac{w L^3}{8 P}$

A cast iron beam is a T-section as shown. It is supported and carrying a uniformly 21. distributed load. Which of the following is the correct bending stress distribution diagram if the element is stressed perfectly within plastic limit ?

In pretensioned system, when prestressed force is transferred by releasing tendon, 22. the end of wire swells and develops wedge effect. At the end, prestressing force becomes zero. This is known as

(2)

(4)

Shear effect

Bursting effect

Hoyer effect (1)

(3)Wobbling effect

SPACE FOR ROUGH WORK

P.T.O.

7

A

StudentBounts.com 28. The prestressed concrete is considered as a combination of steel and concrete, steel taking tensile force passing through the tendon and concrete tak compressive force passing through the C.G. of stress distribution so that the two materials form a resisting couple to resist external moment. This concept is called as

- strength concept (1)(2)stress concept
- load balancing concept (3)(4)moment concept

If AC is principal plane, then magnitude of principal tensile stresses will be 29.

- In a post-tensioning system, high tension steel wires 5 mm to 8 mm diameter about 30. 12 in number are arranged to form a group into a cable with a spiral spring inside. This system is known as
 - (1)The Freyssinet System
 - (2)The Magnel Blaton System
 - (3)P.S.C. Monowire System
 - (4)C.C.L. Standard System

SPACE FOR ROUGH WORK

				8			1710 4
31.					mly varying loa n slope at end	ad of int B is	$\frac{7 \text{ WL}^3}{360 \text{ EI}}$
	$(1) \frac{5 \text{ WL}^3}{360 \text{ EI}}$	(2)	$\frac{9 \text{ WL}^3}{360 \text{ EI}}$	(3)	$\frac{3 \text{ WL}^3}{360 \text{ EI}}$	(4)	$\frac{7 \text{ WL}^3}{360 \text{ EI}}$
32.	If a moment moment at t			ged end of a	prismatic prop	ped can	ilever, then the
	(1) M	(2)	M/2	(3)	M/3	(4)	M/4 ·
33.	maximum be support. Wh	ending mo en the loa	ment and s	hear force o		at a dist	will cause the ance x from left ment will be
	(1) $wxL^2/(2)$				wx $(L - x)/L$		
	(3) $wx^2(L \cdot$	$-x)/L^{2}$		(4)	WL(L - x)/L		
34.	Maximum n system unde			orces that o	an be determi	ned in c	concurrent force
	(1) zero	(2)	2	(3)	3	(4)	6
1	and the literature of the second s						THE TRUE PLANE AND A DECK
35.	distributed supported en	load of in nd is	tensity 'w'	throughout	the span L. T	Then rea	rying uniformly ction at simply
35.	distributed	load of in nd is	tensity 'w'	throughout		Then rea	Contraction of the second second second
	distributed supported en (1) $\frac{5}{8}$ wL A two span	load of in nd is (2) continuou per unit n	tensity 'w' $\frac{3}{8}$ wL us beam ha run over th	throughout (3) ving equal ne whole be	the span L. T $\frac{8}{5} \text{ wL}$ spans each of	Then rea (4) length <i>l</i>	ction at simply
35.	distributed supported en (1) $\frac{5}{8}$ wL A two span u.d.l. of w	load of in nd is (2) continuou per unit n	tensity 'w' $\frac{3}{8}$ wL us beam ha run over th	throughout (3) ving equal ne whole be upport is (2)	the span L. T $\frac{8}{5}$ wL spans each of eam. The beam wl ² /8	Then rea (4) length <i>l</i>	ction at simply $\frac{3}{2}$ wL is subjected to
	distributed supported en (1) $\frac{5}{8}$ wL A two span u.d.l. of w bending more	load of in nd is (2) continuou per unit n	tensity 'w' $\frac{3}{8}$ wL us beam ha run over th	throughout (3) ving equal ne whole be upport is (2)	the span L. T $\frac{8}{5}$ wL spans each of cam. The beam	Then rea (4) length <i>l</i>	ction at simply $\frac{3}{2}$ wL is subjected to
	distributed supported en (1) $\frac{5}{8}$ wL A two span u.d.l. of w bending mod (1) $wl^2/4$ (3) $wl^2/12$ A beam fixe	load of in nd is (2) continuou per unit i ment at th d at one en	tensity 'w' $\frac{3}{8}$ wL us beam ha run over the middle su nd and free	(3) ving equal he whole be upport is (2) (4) at the other	the span L. The span L. The spans each of the spans each of the spans. The beam $wl^2/8$ $wl^2/16$	(4) length <i>l</i> h has co	ction at simply $\frac{3}{2}$ wL is subjected to
36.	distributed supported en (1) $\frac{5}{8}$ wL A two span u.d.l. of w bending mod (1) $wl^2/4$ (3) $wl^2/12$ A beam fixe	load of in nd is (2) continuou per unit i ment at th d at one en entire spa	tensity 'w' $\frac{3}{8}$ wL us beam ha run over the middle su nd and free	throughout (3) ving equal he whole be upport is (2) (4) at the other the deflecti	the span L. The span L. The spans each of the spans each of the spans. The beam $wl^2/8$ $wl^2/16$ the subject of the subject of the spans.	(4) length <i>l</i> h has co	ction at simply $\frac{3}{2}$ wL is subjected to onstant EI. The
36.	distributed supported en (1) $\frac{5}{8}$ wL A two span u.d.l. of w bending mon (1) $wl^2/4$ (3) $wl^2/12$ A beam fixe 'w' over the	load of in nd is (2) continuou per unit in ment at th d at one en entire spa EI	tensity 'w' $\frac{3}{8}$ wL us beam ha run over the middle su nd and free	throughout (3) ving equal he whole be upport is (2) (4) at the other the deflecti (2)	the span L. The span L. The spans each of the spans each of the spans. The beam $wl^2/8$ $wl^2/16$ for end is subject on at free end	(4) length <i>l</i> h has co	ction at simply $\frac{3}{2}$ wL is subjected to onstant EI. The
36.	distributed supported en (1) $\frac{5}{8}$ wL (1) $\frac{5}{8}$ wL A two span u.d.l. of w bending mod (1) $wl^2/4$ (3) $wl^2/12$ A beam fixe 'w' over the (1) $wL^4/8$	load of in nd is (2) continuou per unit in ment at th d at one en entire spa EI EI	tensity 'w' $\frac{3}{8}$ wL us beam ha run over the middle su nd and free	throughout (3) ving equal he whole be upport is (2) (4) at the other the deflecti (2)	the span L. The span L. The spans each of the spans each of the spans. The beam $wl^2/8$ $wl^2/16$ for end is subject on at free end wL ³ /3 EI	(4) length <i>l</i> h has co	ction at simply $\frac{3}{2}$ wL is subjected to onstant EI. The

over the whole span. Then the bending moment is zero at	over ntal nsile e to						
 39. A cable is supported at both ends at the same level and is subjected to U.D.L. of the entire span. If y_c is the central dip and T is the span of a cable, then horizor thrust developed at the support is wl³/8y_c wl²/8y_c wl²/8y_c 40. U₁ and U₂ are the strain energies stored in a prismatic bar due to axial tenforces P₁ and P₂ respectively. The strain energy U stored in the same bar du combined action of P₁ and P₂ will be U = U₁ + U₂ 41. "The bending moment at any point of an arch axis is proportional to the vertificter between the theoretical arch" is the statement of Mohr's theorem Eddy's theorem 42. A' three-hinged symmetrical parabolic arch is subjected to a u.d.l. of w per unit over the whole span. Then the bending moment is zero at 	over ntal nsile e to						
 39. A cable is supported at both ends at the same level and is subjected to U.D.L. of the entire span. If y_c is the central dip and T is the span of a cable, then horizor thrust developed at the support is wl³/8y_c wl²/8y_c wl²/8y_c 40. U₁ and U₂ are the strain energies stored in a prismatic bar due to axial tenforces P₁ and P₂ respectively. The strain energy U stored in the same bar du combined action of P₁ and P₂ will be U = U₁ + U₂ 41. "The bending moment at any point of an arch axis is proportional to the vertificter between the theoretical arch" is the statement of Mohr's theorem Eddy's theorem 42. A' three-hinged symmetrical parabolic arch is subjected to a u.d.l. of w per unit over the whole span. Then the bending moment is zero at 	over ntal nsile e to						
 40. U₁ and U₂ are the strain energies stored in a prismatic bar due to axial ten forces P₁ and P₂ respectively. The strain energy U stored in the same bar due combined action of P₁ and P₂ will be U = U₁ + U₂ 41. "The bending moment at any point of an arch axis is proportional to the vertilitation intercept between the theoretical arch" is the statement of Mohr's theorem Eddy's theorem 42. A three-hinged symmetrical parabolic arch is subjected to a u.d.l. of w per unit over the whole span. Then the bending moment is zero at 	e to						
forces P_1 and P_2 respectively. The strain energy U stored in the same bar du combined action of P_1 and P_2 will be (1) $U = U_1 + U_2$ (2) $U = U_1 \times U_2$ (3) $U < U_1 + U_2$ (4) $U > U_1 + U_2$ 11. "The bending moment at any point of an arch axis is proportional to the vert intercept between the theoretical arch" is the statement of (1) Mohr's theorem (2) Eddy's theorem (3) Castigliano's theorem (4) Theorem of least work 12. A three-hinged symmetrical parabolic arch is subjected to a u.d.l. of w per unit over the whole span. Then the bending moment is zero at	e to						
 (3) U < U₁ + U₂ (4) U > U₁ + U₂ (4) U > U₁ + U₂ (4) U > U₁ + U₂ (5) U < U₁ + U₂ (6) U > U₁ + U₂ (7) Wohr's theorem the theoretical arch" is the statement of (1) Mohr's theorem (2) Eddy's theorem (3) Castigliano's theorem (4) Theorem of least work (4) A' three-hinged symmetrical parabolic arch is subjected to a u.d.l. of w per unit over the whole span. Then the bending moment is zero at 	tical						
 41. "The bending moment at any point of an arch axis is proportional to the vert intercept between the theoretical arch" is the statement of Mohr's theorem Eddy's theorem (1) Mohr's theorem (2) Eddy's theorem (3) Castigliano's theorem (4) Theorem of least work 42. A' three-hinged symmetrical parabolic arch is subjected to a u.d.l. of w per unit over the whole span. Then the bending moment is zero at	tical						
intercept between the theoretical arch" is the statement of(1) Mohr's theorem(2) Eddy's theorem(3) Castigliano's theorem(4) Theorem of least work42. A' three-hinged symmetrical parabolic arch is subjected to a u.d.l. of w per unit over the whole span. Then the bending moment is zero at	tical						
 (3) Castigliano's theorem (4) Theorem of least work 42. A' three-hinged symmetrical parabolic arch is subjected to a u.d.l. of w per unit over the whole span. Then the bending moment is zero at 							
42. A three-hinged symmetrical parabolic arch is subjected to a u.d.l. of w per unit over the whole span. Then the bending moment is zero at							
over the whole span. Then the bending moment is zero at							
	A three-hinged symmetrical parabolic arch is subjected to a u.d.l. of w per unit run over the whole span. Then the bending moment is zero at						
(1) supports (2) quarter spans							
(3) crown (4) All the three above							
43. When one of the supports of a beam is at a lower level as compared to the othe will cause a moment at both ends. The magnitude of this moment introduced slope deflection equation is							
(1) $-\frac{3 \operatorname{EI} \delta}{l^2}$ (2) $-\frac{4 \operatorname{EI} \delta}{l^2}$ (3) $-\frac{6 \operatorname{EI} \delta}{l^2}$ (4) $-\frac{2 \operatorname{EI} \delta}{l^2}$							
14. A two-hinged parabolic arch is subjected to u.d.l. w over entire span. Then horizontal thrust is	the						
(1) $wl^2/3h$ (2) $wl^2/4h$							
(1) $wl^2/3h$ (2) $wl^2/4h$ (3) $wl^2/6h$ (4) $wl^2/8h$							
SPACE FOR ROUGH WORK	a standing						

U01		10		16
45.	The distance between rivet cent force is	ers measure	d along transv	verse to the diret
	(1) Gauge	(2)	Pitch	
	(3) End distance	(4)	Maximum pit	ch
46.	Determine the rivet value of 20 if it is in single shear. Gross ar shear and bearing are 80 MPa a	rea of rivet i	s 363.05 mm^2	
	(1) 64.5 kN	(2)	645 kN	
	(3) 29·044 kN	(4)	290·44 kN	di tan Tangan sa
47.	The effective length of fillet weld	l of length 20	00 mm and siz	e 12 mm is
	(1) 188 mm (2) 176 mm	(3)	388 mm	(4) 200 mm
49.	(3) V groove weldThe net effective cross-sectioned to the gusset plate is	(4) area of a sin	Fillet weld	ion connected by one leg
		man and the	2 4	5 4
	(1) $\frac{3 A_1}{3 A_1 + A_2}$ (2) $\frac{5 A_1}{5 A_1 + A_2}$	- (3)	$\frac{3A}{3A}$	$(4) \frac{5 A_1}{5 A_2 - A_1}$
		3	····1 ···2	······································
50.	The effective length of compression in position at both ends but not		and the second se	
	(1) 0.65 L (2) 0.8 L	(3)	$\mathbf{L}_{t}(0, \mathbb{R}^{n})$	(4) 1.5 L
	The axial force in each lacing in	double lacin	g system is	
51.	N7		Stall Breezewaller	
51.	(1) $\frac{\mathbf{v}}{\mathbf{v}}$	(2)	$\frac{V}{2n\sin\theta}$	
51.	(1) $\frac{v}{4n\sin\theta}$		OV	
51.	V	(4)	2V	
51.	$4n\sin\theta$ (3) $\frac{V}{n\sin\theta}$	(4)	$\frac{2v}{n\sin\theta}$	and the second sec

Α		11		(Chr.
52.	The beam is subjected to U.D.L. of 41 section modulus for the section. Assu			f beam is 8 m
	(1) $2 \times 10^6 \text{ mm}^3$	(2)	$2 \times 10^3 \text{ mm}^3$	State of the state
	(3) $2.5 \times 10^6 \text{ mm}^{3}$	(4)	$2.5 \times 10^3 \text{ mm}^3$	
53.	What is the effective length of beam is lateral bending, as per IS 800 : 200		ession flange is res	trained fully agains
	(1) L ·(2) 0.8 L	(3)	0·85 L	(4) 0.7 L
54.	As per IS 800 : 1984, the thickness of	of slab b	ase is	41 (Balla) (B)
	(1) $\frac{3w}{\sigma_{bs}}\left(a^2 - \frac{b^2}{4}\right)$	(2)	$\frac{3w}{\sigma_{bs}} \bigg(\frac{a^2 - b^2}{4} \bigg)$	
	(3) $\sqrt{\frac{3w}{\sigma_1}\left(a^2-\frac{b^2}{4}\right)}$	(4)	$\sqrt{\frac{3w}{\sigma_{bs}}}\left(\frac{a^2-b^2}{4}\right)$	
	$V^{\sigma}_{bs} (4)$		$\sqrt{\sigma_{\rm bs}} \left(4 \right)$	the second second
55.	Intermediate vertical stiffners are req			d/t _w ratio of the wel
55.	Intermediate vertical stiffners are req			d/t _w ratio of the wel (4) 75
	Intermediate vertical stiffners are req exceeds	uired in (3)	plate girder when 90	
	Intermediate vertical stiffners are req exceeds (1) 85 (2) 80	uired in (3)	plate girder when 90	
	Intermediate vertical stiffners are req exceeds (1) 85 (2) 80 In plate girder, flanges are designed	uired in (3) to resist	plate girder when 90	(4) 75
56.	Intermediate vertical stiffners are req exceeds (1) 85 (2) 80 In plate girder, flanges are designed (1) Shear force	uired in (3) to resist (2) (4)	plate girder when 90 t Bending moment Torsional moment	(4) 75
56.	Intermediate vertical stiffners are req exceeds (1) 85 (2) 80 In plate girder, flanges are designed (1) Shear force (3) Axial force	uired in (3) to resist (2) (4)	plate girder when 90 t Bending moment Torsional moment	(4) 75
55. 56. 57.	Intermediate vertical stiffners are req exceeds (1) 85 (2) 80 In plate girder, flanges are designed (1) Shear force (3) Axial force The flange splice in plate girder show	uired in (3) to resist (2) (4) uld be so	plate girder when 90 t Bending moment Torsional moment	(4) 75
	Intermediate vertical stiffners are req exceeds (1) 85 (2) 80 In plate girder, flanges are designed (1) Shear force (3) Axial force The flange splice in plate girder show (1) maximum shear location	uired in (3) to resist (2) (4) uld be so (2) (4) ich are	plate girder when 90 t Bending moment Torsional moment elected at minimum shear lo minimum momen	(4) 75 ocation t location
56.	Intermediate vertical stiffners are req exceeds (1) 85 (2) 80 In plate girder, flanges are designed (1) Shear force (3) Axial force The flange splice in plate girder show (1) maximum shear location (3) maximum moment location Structural members of the truss wh	uired in (3) to resist (2) (4) uld be so (2) (4) ich are	plate girder when 90 t Bending moment Torsional moment elected at minimum shear lo minimum momen	(4) 75 ocation t location

.

33. Minimum depth of foundation is calculated using Rankine's formula in which ϕ is the angle of repose, q_0 is the safe bearing capacity and γ is the unit weight of soil. The value is

(1)	$\frac{q_0}{\gamma} \left(\frac{1 + \sin \phi}{1 - \sin \phi} \right)^2$	(2) $\frac{q_0}{\gamma} \left(\frac{1-\cos\phi}{1+\cos\phi}\right)^2$
(3)	$\frac{q_0}{\gamma} \left(\frac{1-\sin\phi}{1+\sin\phi} \right)^2$	(4) $\frac{q_0}{\gamma} \left(\frac{1+\cos\phi}{1-\cos\phi}\right)^2$

SPACE FOR ROUGH WORK

- StudentBounty.com If a retaining wall is to be constructed to retain water of height 'H' and 'w 64. weight of water, then water pressure acting on retaining wall will be
 - (2) $K_{p}wH^{2}/2$ (1) $K_a w H^2/2$ (4) wH^2 $wH^2/2$ (3)
- As per IS 456 : 2000, maximum bending moment at a support next to end support 65. of a three span continuous beam having each span 'L' subjected to U.D.L. in the form of dead load (W_d) and live load (W_L) is given by

(1)
$$\frac{1}{10} W_{d}L^{2} + \frac{1}{9} W_{L}L^{2}$$

(2) $\frac{1}{9} W_{d}L^{2} + \frac{1}{10} W_{L}L^{2}$
(3) $\frac{1}{10} W_{d}L^{2} + \frac{1}{16} W_{L}L^{2}$
(4) $\frac{1}{12} W_{d}L^{2} + \frac{1}{16} W_{L}L^{2}$

- Area of torsional reinforcement provided in a two-way slab at corners where both 66. adjacent edges are continuous is
 - (1) $\frac{3}{4} A_{st} x^{+}$ (2) $\frac{3}{4} A_{st} y^{+}$ (3) $\frac{3}{8} A_{st} x^{+}$ (4) 0
- A singly reinforced rectangular section, $b \times d$ is effective c/s, f_{ck} and f_v are the 67. characteristic strengths of concrete and steel respectively. The depth of neutral axis is calculated as

(1)
$$\frac{0.85 f_{ck} bd}{f_{y}}$$
 (2) $\frac{0.87 f_{y} A_{st}}{0.36 f_{ck} bd}$ (3) $\frac{0.87 f_{y} A_{st}}{0.36 f_{ck} bd^{2}}$ (4) $\frac{0.87 f_{y} A_{st}}{0.36 f_{ck} bd^{2}}$

68. The maximum strain in steel at failure in limit state method of design is considered as

(1)
$$\frac{f_y}{1.15 E_s} + 0.002$$
 (2) $\frac{f_y}{1.15 E_s} + 0.0035$
(3) $\frac{f_y}{1.5 E_s} + 0.0035$ (4) $\frac{1.5 f_y}{E_s} + 0.002$

SPACE FOR ROUGH WORK

A

StudentBounty.com In case of simply supported beam subjected to U.D.L. w throughout the s 69. develops maximum B.M. at the mid-span, the cracks formed during the fail beam at mid-span are

horizontal inclined at 45° (1)(2)

inclined at 60° (3)(4) vertical

70. In a slab cast monolithically with cantilever beam, the beam is above the slab so as to give plain soffit. Then the beam is designed as

(1)Rectangular section (2)Flanged section

(3)Doubly reinforced section (4)None of the above

- 71. The load carrying capacity of a circular column with helical reinforcement is how much % more than that of column with lateral ties ?
 - (1)5% (2)10% (3)15% (4)20%
- For the design of a staircase, if R is the riser, T is the tread and D is the thickness 72. of waist slab, then the load of waist slab per m width of stair in plan will be

SPACE FOR ROUGH WORK

A

StudentBounty.com There is a post-tensioned prestressed concrete beam with effective simply support 73. span of 8 m. This beam with rectangular cross section is prestressed with parabol cable with 200 kN force, having eccentricity 200 mm above neutral axis at mid-span and 200 mm below it at support. The cable can be replaced by an equivalent effect

- Principal tensile stresses at any section and at any fiber in a prestressed concrete 74. beam are influenced by
 - Horizontal prestress in concrete (1)
- Vertical prestress in concrete (2)
- Shear stress in concrete (3)
- All of the above (4)
- Effeciency of a rectangular prestressed concrete section with dimensions b = 0.5 d is 75. (1) bd (2)0.5 bd (3)0.5 (4) 0.333
- Which of the following statements is/are true with reference to a load balancing 76. cable ? Statement I : The flexural stresses are uniform at any section throughout the span at service stage.
 - Statement II : The flexural stresses are zero in the extreme fibers at any section throughout the span at service stage.
 - Statement III : The shear stresses are zero at any section throughout the span at service stage.
 - (1)I only

(3)

I and III only (2)

(4)None of these

SPACE FOR ROUGH WORK

II and III only

	pre-tension beam is		teel due to shrinkage in conce 0 ⁵ MPa. 200 MPa
19.19	(1) 60 MPa	(2)	200 MPa
	(3) 20 MPa	(4)	0·02 f _s MPa
78.	The net resultant stresses a thrust must be passing from		a section are zero means the resultant
	(1) extreme top fiber	(2)	neutral axis
	(3) upper kern point	(4)	lower kern point
79.		in steel due to fi	n, jacking force is applied from one end riction between steel and surrounding
	(1) Jacking end		
	(2) Mid span		
	(3) Anchored end	A DE MARCE	per an
	(4) Loss of stresses in stee	due to friction is	s uniform throughout the span
80.		n with reference t), to avoid cracking of extreme fiber at o limit state of servicability, maximum
	(1) $0.7 \sqrt{f_{ck}}$	(2)	0.5 f _{ck}
- D. E	(3) $0.24 \sqrt{f_{ck}}$	(4)	f _{ck}
81.	Vertical limits within which concrete element is called a	And the second sec	rovided in a post-tensioned prestressed
	(1) Anchorage zone	(2)	End block
ada	(3) Transmission length z	one · (4)	Safe cable zone
82.	Minimum grade of concrete construction are	to be used for pro	e- and post-tension prestressed concrete
82.		no se oraș delevene	e- and post-tension prestressed concrete M30 in both cases

3

	Stell
A	17
83.	The resist bursting tension, designed reinforcement is distributed in the zo from the loaded face of the end block, where $2y_0$ is depth of equivalent prises (1) $0y_0$ to $2y_0$ (2) $0y_0$ to y_0 (2) $0y_0$ to $2y_0$ (2) $0y_0$ to y_0
	(1) $0y_0$ to $2y_0$ (2) $0y_0$ to y_0
	(3) $0.2y_0$ to $2y_0$ (4) $0.2y_0$ to y_0
84.	What is the correct order of increase in ultimate moment of resistance of
	I. Pre-tension section
	II. Post-tension bonded section
	III. Post-tension unbonded section,

keeping all other parameters same.

- I, II and III (1)
- (3)II, III and I

- III, II and I (2)
- All sections will have same UMR (4)

Deflection of a simply supported prestressed concrete beam of span \mathcal{C} and flexural 85. rigidity 'EI', due to a straight cable carrying prestressing force 'P' and eccentricity 'e' below the neutral axis is

(1)	$\frac{5 \operatorname{Pe} l^2}{48 \operatorname{EI}} \uparrow$	(2) $\frac{\operatorname{Pe} l^2}{8 \operatorname{EI}} \downarrow$
(3)	$\frac{\operatorname{Pe}l^2}{8\operatorname{EI}}$	(4) $\left(\frac{\operatorname{Pe}l^2}{8\operatorname{EI}} + \frac{5\operatorname{Pe}l^2}{48\operatorname{EI}}\right)^{\uparrow}$

86. A cantilever beam of span 'L' is supporting a udl of intensity 'w'. Most suitable cable profile will be

SPACE FOR ROUGH WORK

U01		18	3	19.	
87.	The shortcoming of bar chart is				
	(1)	lack of degree of details	(2)	activity inter-relationship	
	(3)	does not show progress of work	(4)	activity inter-relationship All the above	
88.	Amo	Among the following, who is considered as the father of scientific management?			
	(1)	Max Weber	(2)	Henry Fayol	
	(3)	F.W. Taylor	(4)	Elton Mayo	
89.	Prog	Program Evaluation and Review Technique is used when			
	(1)	repetitive type of work exists		ten verturienter totte the damage	
	(2)	time estimation is uncertain		Part of the second states of	
	(3)	time estimation is very easy			
	(4)	cost optimization is of prime import	tance	manaria alaga ana manina ana	
90.	Which of the following is the main contribution of scientific management ?				
	(1)	(1) A rational approach to solve organisation problem			
	(2)	(2) Development of principles of management			
	(3)	3) Correlation between improved working conditions and high production			
	(4)	All of the above			
91.	The	The sequence to be followed while developing the network diagram is			
	a.	defining objectives			
	b.	sequencing the activities			
	c. '	breaking down the structure			
	d.	developing the relation between eve	ents		
	(1)	a, c, b, d (2) a, b, c, d	(3)	a, d, c, b (4) c, a, b, d	
92.	In what way does ABC analysis help the manager ?				
	(1)	To purchase material at low price	(2)	To exercise selective control	
	(3)	To purchase material very fast	(4)	To select good quality material	
93.	The optimistic time, pessimistic time and most likely time required for completion activity is 4, 11 and 6 days respectively. The expected time is				
	(1)	5 days	(2)	6 days	
	(3)	5.5 days	.(4)	6.5 days	
	(0)				

StudentBounts.com demand, Co is ordering cost, Cc is inventory carrying cost and S is unit price of a item ? (1) EOQ = $\sqrt{\frac{2MC_o}{SC_o}}$ (2) EOQ = $\sqrt{\frac{M C_o C_c}{2S}}$ (3) EOQ = $\sqrt{\frac{M C_c}{S C_c}}$ (4) EOQ = $\sqrt{\frac{2MS}{C_{o}C_{o}}}$ The optimistic time, pessimistic time and most likely time required for completion of 95. an activity is 4, 8 and 6 days respectively. The variance of time estimate is 0.4356(2) 0.450 (3)0.400 (4) 0.500(1)96. Which of the following Acts specially covers safety legislation of construction industry in India ? (1)Contract Labour Act (2)Workmen's Compensation Act (3)Inter State Migrant Workers Act There is no safety legislation oriented to construction industry (4)97. Most of the accidents in construction industry happen due to (1)lack of education and training negligence and ignorance (2)(3)Both (1) and (2) None of the above (4)98. CPM network is (1)Activity oriented Event oriented (2)(3)Labour oriented (4)Money oriented 99. The fire safety requirements of the building are designed as per (1)IS 1645 - 1960 IS 1256 - 1967 (2)(3)IS 1647 - 1960 (4)IS 1646 - 1960 100. Optimum duration of project corresponds to which of the following ? (1)Direct project cost (2)Indirect project cost (3)Crash project cost (4)Total project cost SPACE FOR ROUGH WORK

19

Which of the following is the formula for Economic Order Quantity if M is an

A

94.

U01

सूचना - (पृष्ठ 1 वरुन पुढे....)

- StudentBounts.com प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त (8) उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरत्दीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतः बरोबर (9)परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमूना प्रश्न

Pick out the correct word to fill in the blank :

Q. No. 201. I congratulate you ____ _____ your grand success.

> (3) on (4) about (1) for (2) at

> > (4)

ह्या प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खालीलप्रमाणे प्र.क्र. 201 समोरील उत्तर-क्रमांक "③" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्रश्न क्र. 201. (1) (2)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या प्रविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK