

वेळ : $1\frac{1}{2}$ (दीड) तास

2011

Code: RDM

प्रश्नपुस्तिका क्रमांक BOOKLET No.

प्रश्नपुस्तिका

यंत्र अभियांत्रिकी स्वयंचल अभियांत्रिकी/ यंत्र अभियांत्रिकी/स्वयंचल अभियांत्रिकी

Student Bounty Com एकुण प्रश्न : 150 एकुण गुण: 300

सुचना

(1) उमेदवारांनी अेकूण 150 प्रश्न सोडवावयाचे आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकड्न लगेच बदल्न घ्यावी.

आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

परीक्षा-क्रमांक शेवटचा अंक केंद्राची संकेताक्षरे

- वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सचनेप्रमाणे न विसरता नमद करावा.
- या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सूचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमुद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमुद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमूळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य **घालविता पुढील प्रश्नाकडे वळावे**. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- प्रस्तृत परीक्षेच्या उत्तरपत्रिकांचे मुल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची अचुक उत्तरेच उत्तरपत्रिकेत नमुद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ः विशेष सचना ः

सदर प्रश्नपत्रिका विभाग - 'अ', 'ब', 'क' विभागांमध्ये विभागण्यात आली आहे. त्यापैंकी 'विभाग - अ - Mechanical Engineering – Automobile Engineering' मधील प्रश्न (प्र.क्र. 1 – 120) हे अनिवार्य आहेत. तर 'विभाग – ब – Mechanical Engineering' (प्र.क्र. 121 – 150) किंवा 'विभाग – क – Automobile Engineering' (प्र.क्र. 151 – 180) यापैकी एकाच विभागातील प्रश्न सोडविणे बंधनकारक आहे', याची कृपया उमेदवारांनी नोंद घ्यावी.

ताकोद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

उघड सील 40 सूचनेविना पर्यवेक्षकांच्या

विभाग अ (PART A) MECHANICAL ENGINEERING -**AUTOMOBILE ENGINEERING**

				3
				AL ENGINEERING - LE ENGINEERING addenly loaded, is the strain
Α			3	.00
		विभाग अ (PART A) ME	CHANICA	L ENGINEERING -
		AUI	OMOBIL	E ENGINEERING
1.		strain energy stored in a body rgy stored when load is applied		iddenly loaded, is the strain
	(1)	equal to	(2)	1/2
	(3)	twice	(4)	4 times
2.	The	design of a thin cylinder shell i	s based or	1
	(1)	hoop stress		
	(2)	arithmetic mean of the hoop as	nd longitu	dinal stress
	(3)	geometric mean of the hoop an	d longitud	linal stress
	(4)	longitudinal stress		
3.	The	bending moment on a section is	s maximur	m where shear force is
	(1)	minimum	(2)	maximum
	(3)	changing sign	(4)	zero
4.		en a bar is subjected to a change stress induced in the bar is	of temper	rature and its deformation is prevented,
	(1)	tensile stress	(2)	compressive stress
	(3)	shear stress	(4)	thermal stress
5.	Hoo	ke's law holds good up to		
	(1)	Yield point	(2)	Elastic limit
	(3)	Plastic limit	(4)	Breaking point
6.	The	Poisson's ratio for steel varies f	rom	
	(1)	0.23 to 0.27	(2)	0.25 to 0.33
	(3)	0·31 to 0·34	(4)	0·32 to 0·42
7.	The	point of contraflexure is a point	t where	
	(1)	shear force changes sign	(2)	bending moment changes sign
	(3)	shear force is maximum	(4)	bending moment is maximum

- 8. Factor of safety is defined as the ratio of
 - (1) ultimate stress to working stress
 - (2) working stress to ultimate stress
 - (3) breaking stress to ultimate stress
 - (4) ultimate stress to breaking stress
- 9. The plane of maximum shear stress has normal stress that is
 - (1) maximum

(2) minimum

(3) zero

- (4) None of the above
- 10. Bending moment M and torque T is applied on a solid circular shaft. If the maximum bending stress equals to maximum shear stress developed, then M is equal to
 - (1) T/2
- (2) T
- (3) 2T
- (4) 4T
- 11. The slope at the free end of a cantilever carrying a 'UDL', W N/m over a span L is
 - $(1) \quad \frac{WL^2}{24 EI}$
- $(2) \quad \frac{WL^2}{48EI}$
- $(3) \quad \frac{WL^4}{8EI}$
- $(4) \quad \frac{\text{WL}^3}{6 \,\text{EI}}$

- 12. In short column failure occurs by
 - (1) Pure buckling
 - (2) Combination of bending and direct compression
 - (3) Direct compression only
 - (4) None of the above
- 13. The diameter of the core circular column of diameter 'd' under any load shall be
 - (1) d/8
- (2) d/6
- (3) d/4
- (4) d/2
- 14. A sudden change in shear force diagram between any two points indicates that there is
 - (1) Point load at both the points
 - (2) No loading between two points
 - (3) UDL between two points
 - (4) Uniformly varying load between two points

15.	Prin	ncipal planes are planes having	5	
	(1)	Maximum shear stress	(2)	No shear stress
	(3)	Minimum shear stress	(4)	None of the above
16.	Posi	ition feedback device on NC Ma	achine is	
	(1)	Shaft encoder	(2)	Linear scales
	(3)	Inductosyn	(4)	Any of the above
17.	The	surface finish obtainable in ul	trasonic ma	achining is of the order of
	(1)	0.2 to $0.5~\mu m$ CLA	(2)	2 to 5 μm CLA
	(3)	20 to 50 μm CLA	(4)	200 to $500\;\mu m$ CLA
18.	In n (1)	netal cutting operation, shear a made by the plane of shear w	_	_
	(2)	made by shear plane with the	e tool àxis	
	(2) (3)	made by shear plane with the made by shear plane with cer		of workpiece
		•		of workpiece
19.	(3)	made by shear plane with cer None of the above	ntral plane	
19.	(3)	made by shear plane with cer None of the above	ntral plane	
19.	(3) (4) Whi	made by shear plane with cer None of the above le grinding, the increase in wh	ntral plane	with constant-feed rate, results in
	(3) (4) Whi (1) (3)	made by shear plane with cer None of the above le grinding, the increase in wh shining surface	ntral plane eel speed, v (2) (4)	with constant-feed rate, results in abrasive mark on workpiece glazing of wheel
	(3) (4) Whi (1) (3)	made by shear plane with cer None of the above le grinding, the increase in wh shining surface reduction of chip size	eel speed, v (2) (4)	with constant-feed rate, results in abrasive mark on workpiece glazing of wheel
19. 20.	(3) (4) Whi (1) (3)	made by shear plane with cer None of the above le grinding, the increase in wh shining surface reduction of chip size orthogonal cutting of metals, cu	eel speed, v (2) (4)	with constant-feed rate, results in abrasive mark on workpiece glazing of wheel
	(3) (4) Whi (1) (3) In o	made by shear plane with cer None of the above le grinding, the increase in wh shining surface reduction of chip size orthogonal cutting of metals, cu perpendicular to the direction	eel speed, v (2) (4)	with constant-feed rate, results in abrasive mark on workpiece glazing of wheel

- 21. Vanadium is added to steel as an alloying element to
 - (1) increase temperature resistance
 - (2) increase shock resistance
 - (3) modify yield and tensile strength properties
 - (4) soften the material

				SE
RDM		6		Tento
ואוטו				100
2.	The	relative spacing of abrasive grains of the wheel.	s in a	grinding wheel is referred to as truing shaping
	(1)	dressing	(2)	truing
	(3)	turning	(4)	shaping
3.	In _	system, all the measureme	nts ar	re taken from a single reference point.
	(1)	Open loop	(2)	Closed loop
	(3)	Absolute	(4)	Incremental
4.	Whi	ch factor decides the selection of gri	nding	wheel?
	(1)	Abrasive	(2)	Grain size
	(3)	Grade	(4)	Structure
5.	Dep	th of cut of drill of diameter D is		
	(1)	D	(2)	D/2
	(3)	1.5 D	(4)	1·2 D
3.	Gea	r finishing operation is called as		
	(1)	Shaping	(2)	Milling
	(3)	Hobbing	(4)	Burnishing
7.	The	drill spindles are provided with star	ndard	taper known as
	(1)	Morse taper	(2)	Seller's taper
	(3)	Chamfer taper	(4)	Brown taper
8.	Nod	ular cast iron is produced by adding		to the molten cast iron.
	(1)	nickel	(2)	chromium
	(3)	copper	(4)	magnesium
9.	In a	basic NC machine, programmed ins	struct	ions are stored in
	(1)	Punched tape	(2)	Graphic terminal
	(3)	Head box	(4)	None of the above
		DE BUIGH MUBK		

(1) tungsten

(2) chromium

(3) silicon

(4) cobalt

31. In electro-discharge machining, dielectric is used to

- (1) help in the movement of the sparks
- (2) control the spark discharges
- (3) act as coolant
- (4) All of the above

32. Internal gears can be made by

(1) hobbing

- (2) shaping with pinion cutter
- (3) shaping with rack cutter
- (4) milling

33. In drilling operation, the metal is removed by

(1) shearing

- (2) extrusion
- (3) shearing and extrusion
- (4) shearing and compression

34. The type of tool used on milling machine and broaching machine is

- (1) single point cutting tool
- (2) two point cutting tool
- (3) three point cutting tool
- (4) multi-point cutting tool

35. Discontinuous chips are formed during machining of

(1) brittle metals

(2) ductile metals

(3) hard metals

(4) soft metals

36. The lead screw of a lathe with nut forms a

(1) rolling pair

(2) sliding pair

(3) screw pair

(4) turning pair

37. The periodic time of one oscillation for a simple pendulum is

- (1) $2\pi \sqrt{\frac{g}{l}}$
- (2) $\frac{1}{2\pi}\sqrt{\frac{g}{l}}$
- (3) $2\pi \sqrt{\frac{l}{g}}$
- $(4) \quad \frac{1}{2\pi} \sqrt{\frac{l}{g}}$

SPACE FOR ROUGH WORK

Student Bounty.com

RDM

8

- Student Bounts, com 38. The power from the engine to the rear axle of an automobile is transmitted by m of
 - **(1)** Worm and worm wheel
- (2)Spur gears

Compound gears (3)

- Hooke's joint (4)
- 39. The gears are termed as medium velocity gears, if their peripheral velocity is
 - **(1)** 1 - 3 m/s

3 - 15 m/s(2)

(3)15 - 30 m/s

- 30 50 m/s
- 40. The gear train usually employed in clocks is a
 - (1) simple gear train

- (2) reverted gear train
- sun and planet gear (3)
- **(4)** differential gear
- 41. The size of cam depends upon
 - Base circle (1)

Pitch circle (2)

(3)Prime circle

- Pitch curve
- The velocity of the belt for maximum power is 42.
 - **(1)**

- 43. Vee-belt E-type cross-sections are generally used in
 - (1) Automobiles
 - **(2)** Small Engines
 - When driver and driven units are far off
 - (4) Heavy duty machine
- 44. For a machine to be self sustaining, the relation between ϕ = angle of friction and α = slope of threads, is
 - (1) $\alpha = \phi$

(2) $\alpha < \phi$

(3) $\alpha > \phi$ (4) $\frac{\alpha}{\phi}$ = constant

- 45. Cylindrical type cam is one
 - (1) with cylindrical roller follower
 - (2) with cylindrical shape of follower
 - (3) with circumferential contour cut in surface of cylinder which rotates about its axis
 - (4) with circular type of motion of follower
- 46. Dynamics of machine deals with
 - (1) the relative motion between the parts neglecting the consideration of forces
 - (2) the forces acting on the parts of the machines
 - (3) the apparatus for applying mechanical power
 - (4) the number of inter-related parts, each having a definite motion
- 47. A disc is spinning with angular velocity ω rad/sec about the axis of spin. The couple applied to the disc causing precision will be :

where ω_p = angular velocity of precision of axis of spin and I = mass momentum inertia of disc.

 $(1) \quad \frac{1}{2} \ I \, \omega^2$

(2) $I \omega^2$

(3) $\frac{1}{2} I \omega \omega_p$

- (4) Ιωω_n
- 48. A Pentagraph is a mechanism or kinematic arrangement comprising
 - (1) a lower pair

(2) two lower pairs

(3) three lower pairs

- (4) 10 links
- **49.** The maximum efficiency of screw jack is $(\mu = \tan \phi)$
 - $(1) \quad \frac{1 \sin \phi}{1 + \sin \phi}$

 $(2) \quad \frac{1 + \sin \phi}{1 - \sin \phi}$

 $(3) \quad \frac{1}{1} - \frac{\tan \phi}{\tan \phi}$

- $(4) \quad \frac{1 + \tan \phi}{1 \tan \phi}$
- 50. A differential gear in an automobile is a
 - (1) simple gear train

- (2) epicyclic gear train
- (3) compound gear train
- (4) None of the above

Student Bounty.com

- 51. A Hartnell governor is a
 - (1) pendulum type

(2) spring loaded type

(3) dead weight type

- (4) inertia type
- 52. When the two pulleys of different diameters are connected by means of open belt drive, then the angle of contact taken into consideration should be of the
 - (1) larger pulley

- (2) smaller pulley
- (3) average of two pulleys
- (4) None of the above
- 53. A fixed gear having 200 teeth is in mesh with another gear having 50 teeth. The two gears are connected by arms. The number of turns made by the smaller gear for one revolution of arm about the center of the bigger gear is
 - (1) 2
- (2) 3
- (3) 4
- (4) 5
- **54.** The relation between number of pairs (p) forming a kinematic chain and the number of links (l) is
 - $(1) \quad l = 2p 2$

(2) l = 2p - 3

(3) l = 2p - 4

- (4) l = 2p 5
- 55. The component of the acceleration, perpendicular to the velocity of the particle, at the given instant is called
 - (1) Radial component

(2) Tangential component

(3) Coriolis component

- (4) None of the above
- 56. In a capillary tube, the weight of the liquid raised is supported by
 - (1) friction of tube

- (2) vertical component of surface tension
- (3) atmospheric pressure
- (4) vapour pressure
- 57. The pressure head of fluid is the ratio of intensity of pressure to
 - (1) specific weight

(2) specific gravity

(3) fluid height

(4) density

			15%
A	1	11.	TRAILE
58.	Velocity potential function when equate of	ed to a	series of constants yields the equation path lines
	(1) stream lines	(2)	path lines
	(3) equipotential lines	(4)	u and v
59.	The differential equation of fluid in a radial direction and	curved	l path relates the pressure gradient in
	(1) normal acceleration	(2)	tangential acceleration
	(3) level differences in liquid surface	(4)	angular momentum
60.	One poise is equivalent to		
	(1) 360 kg/m-hr	(2)	1 dyne sec/cm ²
	(3) $\frac{1}{9.81}$ kgf sec/m ²	(4)	All of the above
61.	The boundary layer thickness in turbu	lent flo	ow varies as
	(1) $\mathbf{x}^{2/3}$ (2) $\mathbf{x}^{4/5}$	(3)	$x^{1/7}$ (4) $x^{3/7}$
62.	The rate of flow through a venturimete	er vari	es as
	(1) $\sqrt{\text{H}}$ (2) H	(3)	$H^{3/2}$ (4) H^2
63.	Pascal's law states that pressure at a	point i	s equal in all directions
	(1) in a liquid at rest	(2)	in a fluid at rest
	(3) in a laminar flow	(4)	in a turbulent flow
64.	The difference in pressure head m manometer for a 20 cm difference of m		
	(1) 2·72 m (2) 2·52 m	(3)	2·0 m (4) 0·2 m
65.	A flow through an expanding tube at o	constar	nt rate is called
	(1) steady uniform flow	(2)	unsteady uniform flow
	(3) steady non-uniform flow	(4)	unsteady non-uniform flow

P.T.O.

- 66. Atmospheric pressure held in terms of water column is
 - (1) 7.5 m
- (2) 8·5 m
- (3) 9.81 m
- 67. The coefficient of friction for laminar flow through a circular pipe is given by
 - (1) $F = \frac{0.0791}{Re^{1/4}}$

 $(2) \quad \frac{16}{\text{Re}} = F$

(3) $F = \frac{64}{Re}$

- $(4) \quad \mathbf{F} = \frac{12}{\text{Re}}$
- 68. The capillary rise or fall of a liquid is given by
 - (1) $h = \frac{\sigma \cos \theta}{4 \rho g d}$

(2) $h = \frac{2\sigma\cos\theta}{\rho gd}$

(3) $h = \frac{8\sigma\cos\theta}{\rho gd}$

- (4) $h = \frac{9\sigma}{\rho} \frac{\cos\theta}{gd}$
- 69. A hot wire anemometer is a device used for measuring
 - (1) viscosity

(2) velocity of gas

(3) pressure of gases

- (4) velocity of liquid
- 70. Bulk modulus of elasticity
 - (1) is independent of temperature
 - (2) increases with pressure
 - (3) is independent of pressure and viscosity
 - (4) is larger when fluid is more compressible
- 71. The viscosity of water at 20°C is
 - (1) 1/10 poise

(2) 1/100 poise

(3) 1 poise

- (4) None of the above
- 72. Predict the pressure in kPa at an elevation of 2000 m in an isothermal atmosphere, assuming T = 20°C and $P_{atm} = 100$ kPa.
 - (1) 87
- (2) 82
- (3) 79
- (4) 71

							SE
Α					13		not suitable for
73.	Due	to variation	of ver	nturimeter c	onstant, v	enturimeters are	not suitable for
	(1)	Low velocity	7		(2)	High velocity	
	(3)	Low pressur	re		(4)	High pressure	Ì
74.	Stea	ady flow occu	rs who	en			
	(1)	Pressure do	es not	change alor	ng flow		
	(2)	Velocity doe	s not	change			
	(3)	Conditions of	change	gradually	with time		
	(4)	Conditions	do not	change with	h time at a	ny time	
75.	In t	urbulent flow	in a	pipe, we kn	ow the		
	(1)	Reynolds nu	ımber	is greater th	han 10,000		
	(2)	fluid particl	es mo	ve in straigh	nt line		
	(3)	head loss va	ries li	nearly with	flow rate		
	(4)	shear stress	varie	s linearly w	ith radius		
76.	Kelv	vin-Planck's l	aw de	als with			
	(1)	Conservatio	n of w	ork	(2)	Conservation o	f heat
	(3)	Conservatio	n of n	nass	(4)	Conversion of h	neat into work
77.	A c	ycle consistin	g of t	wo constant	volumes a	and two isothern	nal processes is known
	(1)	Carnot cycle	•		(2)	Joule cycle	
	(3)	Diesel cycle			(4)	Stirling cycle	
78.	reve		ngine	operates be	tween T ₂	K and 400 K. If	nd T ₂ K and another both the engines have
	(1)	800 K	(2)	1000 K	(3)	1200 K	(4) 1400 K
79 .	The	absolute zer	o tem	perature is			
	(1)	– 273°C	(2)	27 3 °C	(3)	2 3 7°C	$(4) - 237^{\circ}C$

P.T.O.

				SE
RDN	ı	1.	4	perpendicular to its axis, then it centrifugal compressor turbo compressor
80.	If tl	he flow of air through the compress	or is j	perpendicular to its axis, then it
	(1)	reciprocating compressor	(2)	centrifugal compressor
	(3)	axial flow compressor	(4)	turbo compressor
81.	Ene	rgy resources derived from natural	organ	ic materials are called
	(1)	geothermal energy	(2)	fossil fuels
	(3)	biomass	(4)	All of the above
82.	Ene	ergy available in fuels is stored as		
	(1)	heat energy	(2)	chemical energy
	(3)	atomic energy	(4)	explosive energy
83.	Bra	yton cycle process is		
	(1)	Two isentropic and two constant vo	olume	S
	(2)	Two isentropic and two constant pr	ressur	es
	(3)	One constant pressure, one constant	nt vol	ume, two adiabatics
	(4)	Two isothermals and constant volu	me ar	nd constant pressure
84.	Whi	ch one of the following is a heterog	eneou	s system ?
	(1)	The cooling fluid in a radiator	(2)	Atmospheric air
	(3)	Cooking gas in a cylinder	(4)	A mixture of ice, water and steam
85.	The	- -	impr	oves as a result of all of the following
	(1)	Heating of air before compression	(2)	Inter-cooling of air
	(3)	Reheating of gas	(4)	Multi-stage expansion
86.	In g	gas turbine, compressor used is		
	(1)	Reciprocating type	(2)	Centrifugal type
	(3)	Axial flow type	(4)	Lobe type

- 87. The entropy may be expressed as a function of
 - (1) Pressure and temperature
- (2) Volume and pressure

(3) Heat and work

- (4) All of the above
- 88. Maxwell's thermodynamic relations are valid for
 - (1) Closed system only
 - (2) All processes of thermodynamics
 - (3) Only reversible process
 - (4) A thermodynamic system in equilibrium
- 89. Which one of the following introduces irreversibility in the actual Carnot engine operation?
 - (1) Friction between moving parts
 - (2) Higher operating speed
 - (3) Lower operating speed
 - (4) Changes in pressure and temperature during cycle
- 90. The universal gas constant of a gas is the product of molecular weight of the gas and
 - (1) gas constant

- (2) specific heat at constant pressure
- (3) specific heat at constant volume
- (4) None of the above

- 91. In a throttling process
 - (1) W = 0

(2) E = 0

(3) $\Delta H = 0$

- (4) All of the above
- 92. With decrease in cut-off, the efficiency of diesel cycle
 - (1) increases

(2) decreases

(3) remains constant

(4) None of the above

SPACE FOR ROUGH WORK

P.T.O.

_				SEE
RDM	I		16	CENTE
93.	For reciprocating a that may be possible	_	ne law of	compression desired is isothern
	(1) very low spee	ds		
	(2) very high spec	eds		
	(3) any speed as	speed does not af	fect the co	ompression law
	(4) None of the a	bove		
94.	Mean effective pre-	ssure at a given o	compression	on ratio is maximum when the air-fuel
	(1) higher than s	toichiometric	(2)	lower than stoichiometric
	(3) equal to stoicl	niometric	(4)	None of the above
95.	In the Orsat appar	atus, KOH soluti	ion is use	d to absorb
	(1) Carbon monor	xide .	(2)	Carbon dioxide
	(3) Oxygen		(4)	None of the above
96.	The radiator tubes	are manufacture	ed by usin	ng
	(1) cast iron		(2)	aluminium
	(3) brass		(4)	steel
97.	The brake shoes a	re curved to confo	orm to the	e inner diameter of the
	(1) tyre		(2)	wheel
	(3) pedal	•	(4)	brake drum
98.	A liquid that boils	at a relatively hi	igh tempe	erature is said to have
	(1) a low viscosity	у	(2)	a high viscosity
	(3) a high volatili	ty	(4)	a low volatility
99.	Gudgeon pins are	made of		
	(1) cast iron		(2)	hardened and ground steel
	(3) piston materia	al itself	(4)	cork

		ــــــــــــــــــــــــــــــــــــــ	•	8
4		17	,	Top
100.	The	ease with which a liquid changes to	vapo	our is called its
	(1)	Vapourability	(2)	Volatility
	(3) 	Boiling point	(4)	our is called its Volatility Viscosity
.01.		mean effective pressure of diesel ease if cut-off ratio	cycle	having fixed compression ratio wil
	(1)	Increases	(2)	Decreases
	(3)	Independent of CR	(4)	Depends upon other factors
02.	In a	SI engine, advancing of spark timin	ng wi	11
	(1)	Increase knocking tendency		
	(2)	Reduce knocking tendency		
	(3)	Not have any effect on knocking		
	(4)	Depend on intensity of spark only		
03.	In a	CI engine, squish is created		
	(1)	towards the end of compression stro	ke	
	(2)	at the end of suction stroke		
	(3)	at the beginning of suction stroke		
	(4)	during the combustion		
04.	More	e CO is generally formed when		
	(1)	mixture is rich in fuel	(2)	mixture is lean in fuel
	(3)	dust is present in fuel	(4)	engine is 4 stroke
05.	Wha	t will happen if petrol is used in die	esel e	ngine ?
	(1)	Black smoke will be produced		
	(2)	Low power will be produced		
	(3)	Higher knocking will occur		
	(4)	The engine will not run		

107.	For	petrol engines, the method of gover	ning	employed is
	(1)	quantity governing	(2)	quality governing
	(3)	hit and miss governing	(4)	None of the above
108.	Whi	ch of the following components is al	osent	in C.I. engine ?
	(Ì)	Carburettor	(2)	Piston Rings
	(3)	Water Jackets	(4)	Fuel Injector
109 .	The	main purpose of a thermostat in an	eng	ine cooling system is to
	(1)	allow engine to warm-up quickly		
	(2)	prevent the coolant from boiling		
	(3)	pressurize the system		
	(4)	indicate to the driver the coolant to	emper	rature
110.	Tur	bocharger engines are those in which	h cha	arge density is increased by
	(1)	Separate air compressors		
	(2)	Compressors driven by exhaust gas	turb	ine
	(3)	Cooling inlet air		
	(4)	None of the above		
111.	In a	ny atom the number of electrons in	the	last orbit (valence orbit) is limited to
	(1)	12	(2)	10
	(3)	8	(4)	4
112.	Whi	ch interrupt has highest priority?		
	(1)	INTR	(2)	TRAP
	(3)	RST 7.5	(4)	RST 6.5
113.	An 1	unijunction transistor (UJT) has		
	(1)	2 p-n junctions and 2 leads	(2)	1 p-n junction and 3 leads
	(3)	4 p-n junctions	(4)	4 leads

								Sil			
A					19			de			
114.		ertain Zene at is the Ze			a 50 mV cha	ange in V _Z for	a 2·5 m	A chang			
	(1)	12.5 Ω			(2)	20 Ω					
	(3)	307-5 Ω			(4)	None of the a	bove				
115.	The	bandwidth	ofan	ideal op-an	np is						
	(1)	0 to ∞ ope	erating	frequency r	range						
	(2)	0 to 1 ope	erating f	frequency r	ange						
	(3)		_	g frequency	y range						
	(4)	None of t	he abov	e 							
116.	The characteristics of op-amp do not change										
	(1)	with temp	perature	only							
	(2)	with char	ige in cu	irrent only		-					
	(3)	with char	nge in vo	oltage only							
	(4)	with temp	perature	e, current a	nd voltage						
117.	DC	forward vo	ltage is	needed to	emit light in	n case of					
	(1)	LED			(2)	LCD					
	(3)	Both LEI	and Lo	CD	(4)	Neither LED	nor LCD) 			
118.	Whi	ch logic ga	te is sir	nilar to the	e function of	two parallel s	witches !	?			
	(1)	AND	(2)	NAND	(3)	OR	(4)	NOR			
119.	The	critical de	pth met	er is used	to measure						
	(1)	velocity o	f flow in	an open c	hannel						
	(2)	depth of i	flow in a	an open cha	annel						
	(3)	hydraulic	jump								
	(4)	depth of	channel								
 120.	The	piston con	npressio	n rings are	made of						
	(1)	cast iron	_	steel	(3)	aluminium	(4)	bronze			
		D BOUGH \	NODI		-						

विभाग ब (PART B) MECHANICAL ENGINEERING

							1	E.
RDM	!				20			GETTE
		विभ	ाग ब (]	PART B) M	ECHANIC	AL ENGINE	EERING	OH
121.		-		e jet strikin eel never ex		on a series	of flat pla	tes mounted of
	(1)	40%	(2)	50%	(3)	60%	(4)	70%
122.					_	ocity of 20 m ate, if the pl		normally a flat
	(1)	1500 N	(2)	1668 N	(3)	1700 N	(4)	1768 N
 123.	Jet	pumps are	often u	sed in proce	ss industry	for their		
	(1)	high efficie	ency		(2)	easy mainte	nance	•
	(3)	large capa	city		(4)	None of the	above	
 124.	An	impulse tur	bine	_ _				
	(1)	is always o	perate	d submerged	l			
	(2)	makes use	of dra	ft tube				
	(3)	is most su	ited for	low head in	stallation			
	(4)	operates b	y initia	l complete c	onversion t	o kinetic enei	gy	
125.	stro	ke length a	nd 0.03	m ² cross-se	ctional are	a will have t	heoretical	
	(1)	0·01 m ³ /s	(2) 	0·02 m ³ /s	(3) 	0.6 m ³ /s	(4)	10 m ³ /s
126.	nor	mally on a f	lat pla	te moving a	way from it	at 10 m/sec	. If cross-s	and it impinges ectional area of ed on the plate 2000 N
		10 N						
	(1)	10 N						
127.	(1) A fa	ast centrifug	-	np impeller v		12 1 1 1 1		
127.	(1) A fa (1)	ast centrifug forward fa	cing bl	ades	(2)	radial blade		
127.	(1) A fa	ast centrifug	cing bl	ades		radial blade		
	(1) A fa (1) (3)	ast centrifug forward fa backward	cing bla	ades	(2) (4)	propeller ty		
	(1) A fa (1) (3)	ast centrifug forward fa backward	cing bla	ades blades	(2) (4)	propeller ty		

							3
A					21		naft power is called ciency
199	The	ratio of nov	ver miv	on to the flu	id by the	oumn to the ch	naft power is called
. 20.	(1)	manometri			(2)	hydraulic effic	cioney
	(3)	overall effic		chey		•	erency Frainzau
	(0)				(4)	mechanical ef	
30.	The	circuit in w	hich h	ydraulic mot	or is locate	ed after the sp	eed control valve is
	(1)	metered cir	rcuit		(2)	meter-in circu	uit
	(3)	meter-out o	circuit		(4)	bleed-off circu	ıit
31.	In a	ctual practi	ce, one	tonne of ref	rigeration	is equivalent t	
	(1)	3.0 kW	(2)	3.5 kW	(3)	4.0 kW	(4) 4·5 kW
33.			ing on	a Carnot cyc	=	s between 305 ting machine.	K and 260 K. Determin
	(1)	5·78			(2)	6.78	
	(3)	0.147			(4)	None of the a	bove
34.		apour compi e occurs afte		system, the	highest te	mperature of th	ne refrigerant during th
	(1)	evaporation	n (2)	compression	ı (3)	condensation	(4) expansion
35.		iqua-ammon respectively	ia and	Li-Br water	absorption	n refrigeration	system, the refrigerant
	(1)	water and	water		(2)	water and Li-	
	(3)	ammonia a	ınd Li-	Br	(4)	ammonia and	water
136.	In p (1) (2) (3) (4)	oressure entlesub-cooling superheate wet vapour None of the	liquid d vapo region	region our region n	to the righ	t of saturated	liquid line represents

137.	Dur	ring humidification process, dry bulk	temp	perature
	(1)	increases	(2)	decreases
	(3)	remains constant	(4)	None of the above
138.	For	summer air-conditioning, the relati	ve hu	midity should not be less than
	(1)	40% (2) 60%	(3)	75% (4) 90%
 139.		temperature of air recorded by the sture present in it, is called	nermo	meter, when it is not affected by the
	(1)	Wet bulb temperature	(2)	Dry bulb temperature
	(3)	Dew point temperature	(4)	None of the above
140.	In c	cooling towers, the heat is dissipated	mai	nly by
	(1)	Convection	(2)	Conduction
	(3)	Radiation	(4)	Evaporation
141.	Proc	cess type of plant layout is suitable	in	
	(1)	Batch and Mass production	(2)	Jobshop and Mass production
	(3)	Jobshop and Batch production	(4)	None of the above
142.	Tole	erances are specified		
	(1)	to obtain desired fits		
	(2)	because it is not possible to manuf	acture	e in size exactly
	(3)	to obtain high accuracy		
	(4)	to have proper allowance		
143.		ecision making process to determin when it is to be completed is	e whe	en a job is to be started in a machine
	(1)	Scheduling	(2)	Routing
	(3)	Master scheduling	(4)	Aggregate planning

					100		
_					Eden		
\			23		1.0		
44.		The order in which different jobs are being taken up in a machine or process called (1) Scheduling (2) Sequencing					
	(1)	Scheduling	(2)	Sequencing			
	(3)	Routing	(4)	Aggregate plann	ing		
l 5.	Opt	ical flats are made of					
	(1)	quartz (2) glass	(3)	plastic	(4) steel		
46.	Obje	ect of time study is to determine	the time	taken by			
	(1)	expert worker	(2)	new employee			
	(3)	apprentice	(4)	average worker			
17.	Mos	t important characteristic of mea	suring in	nstrument, in ger	neral, is		
	(1)	Precision	(2)	Accuracy			
	(3)	Reputability	(4)	Sensitivity			
48.		least count of a metric vernier ching with 24 divisions of scale (=	•			
48.			=	•			
	mat (1)	ching with 24 divisions of scale (1 main s	scale division = 0	5 mm) is		
	mat (1)	ching with 24 divisions of scale (0.005 mm (2) 0.01 mm	1 main s	scale division = 0	5 mm) is		
	mat (1) The	ching with 24 divisions of scale (0.005 mm (2) 0.01 mm thread micrometer measures	1 main s	scale division = 0	5 mm) is		
	(1) The	ching with 24 divisions of scale (0.005 mm (2) 0.01 mm thread micrometer measures major diameter of the thread	1 main s	scale division = 0	5 mm) is		
	(1) The (1) (2)	ching with 24 divisions of scale (0.005 mm (2) 0.01 mm thread micrometer measures major diameter of the thread minor diameter of the thread	1 main s	scale division = 0	5 mm) is		
49.	mat (1) The (1) (2) (3) (4)	ching with 24 divisions of scale (0.005 mm (2) 0.01 mm thread micrometer measures major diameter of the thread minor diameter of the thread effective diameter of the thread	1 main s	scale division = 0	5 mm) is		
49.	mat (1) The (1) (2) (3) (4)	ching with 24 divisions of scale (0.005 mm (2) 0.01 mm thread micrometer measures major diameter of the thread minor diameter of the thread effective diameter of the thread root diameter of the thread	1 main s	scale division = 0	·5 mm) is (4) 0·05 mm		

विभाग क (PART C) AUTOMOBILE ENGINEERING

			S.					
			ILE ENGINEERING Ply rating and its size					
RDM		24	TO					
	विभाग क (PART C) A	UTOMOB	LE ENGINEERING					
151.	The load carrying capacity of a ty	re refers to						
	(1) Aspect ratio	(2)	Ply rating and its size					
	(3) Type of rubber	(4)	Tyre pressure					
152.	The purpose of torque convertor in	n automobi	le is					
	(1) Automatically multiplying engine torque							
	(2) Automatically multiplying en	gine speed						
	(3) Automatically control the spe	3) Automatically control the speed of engine						
	(4) Automatically multiplying ve	hicle torque						
153.	X-member of a car frame ensures	improved						
	(1) bending strength of side mem	nbers						
	(2) resistance to vertical shock lo	ads acting	simultaneously on both front wheels					
	(3) resistance to side force due to	transverse	e wind load					
	(4) resistance of wearing and tor	sional strer	ngth of front end of frame					
154.	In the integral type of power bra	ke, the dia	phragm acts directly on the hydraulic					
	(1) master cylinder	(2)	wheel cylinder					
	(3) multiplier unit	(4)	None of the above					
155.	In the transmission, the reverse in	dler gear al	lways meshes with					
	(1) counter shaft drive gear	(2)	counter shaft low gear					
	(3) main shaft reverse gear	(4)	counter shaft reverse gear					
156.	Slip joint in automotive driveline	is used for						
	(1) accommodating change in length of driveshaft							
	(2) connecting the driveshaft to gear box							
	(3) damping the vibrations of dri	ve train						
	(4) transmitting the torque		,					
15 7 .	The crumple zones of automotive	body						
	(1) reduce the production cost							

SPACE FOR ROUGH WORK

(2) increase aesthetic appeal of a vehicle

(3) absorb shock during collision (4) reduce interior noise in a vehicle

				SE				
A		2!	5	vertical, when viewed from the from the castor camber				
158.		ard tilt of front wheels of a vehicle,	from	vertical, when viewed from the from				
	(1)	toe in	(2)	castor				
	(3)	steering axis inclination	(4)	camber				
159.	Tors	sional coil springs used in automotiv	e clu	tch plate				
	(1)	(1) ensure smooth engagement of clutch assembly						
	(2)	damp engine torsional vibrations						
	(3)	are provided for applying axial forc	e on	the pressure plate				
	(4)	do not provide damping at all						
160.	Checking engine oil level before starting a long journey is an example of							
	(1)	predictive maintenance	(2)	breakdown maintenance				
	(3)	preventive maintenance	(4)	engine overhaul				
161.	Foll	owing should be used for tightening	engi	ne cylinder head bolts :				
	(1)	Torque wrench	(2)	Ring spanners				
	(3)	Open-ended spanners	(4)	Allen wrenches				
162.	The	The term CAN, with reference to automotive electronics, stands for						
	(1)	Controllable Artificial Networks		·				
	(2)	Computer Assisted Networks						
	(3)	Controller Area Networks						
	(4) ———	None of the above						
163.				in commercial catalysts to remove NO.				
	(1)	Aluminium	(2)	Rhodium				
	(3)	Platinum	(4)	None of the above				
164.		iesel engine has excessive black sme se could be the cause ?	oke v	when started in the morning. Which of				
	(1)	A bad fuel injector nozzle	(2)	A restricted fuel filter				
	(3)	A blocked fuel tank vent	(4)	A leaking fuel return line				

							SE
RDM					26		from ve synchronise
			_				Oll
,165.				_	into high cou		from
	(1)	engine mi	_		(2)		
	(3)	drive key	sheared ———	i ————————————————————————————————————	(4)	None of t	the above
166.	Air	resistance	to a car	at 20 kn	n/hr is R. The	air resist	cance at 40 km/hr would be
-	(1)	R	(2)	2R	(3)	4R	(4) R ²
167.	Cat	alytic conve	erter tro	uble is in	dicated by		
	(1)	high CO a	and HC	levels in	the exhaust g	as	
	(2)	a rotten e	gg smel	1			
	(3)	high engi	ne noise	level			
- c	(4)	low H ₂ O l	level in	the exhau	ıst gas		•
168.	Bac	k-fire can t	ake pla	ce			
	(1)	in both th	e intak	e and exh	aust manifold	s	
	(2)	only in th	e exhau	ıst manifo	ld		
	(3)	only in th	e crank	case	· ·		
	(4)	only in th	e intake	e manifold	l		
169.	The	carbon fro	m cylin	der head	is removed wi	ith	
	(1)	Scraper			(2)	Hammer	
	(3)	Water			(4)	Caustic s	soda
170.	Thi	rd party ins	surance	safeguaro	ds the interes	t of	
	(1)	third part	y only		(2)	driver on	aly
	(3)	driver and	d third	party	(4)	owner, th	nird party and vehicle
171.	The	validity of	insuraı	nce regist	ration and ago	e of vehicl	le are respectively as
	(1)	3 years, li	fe time		(2)	1 year, 1	5 years
	(3)	5 years, 1	0 years		(4)	Life time	e (any time), 20 years
172.	Indi	ia started t	o adopt	Europear	n emission no	rms in the	e year
	(1)	2000	(2)	2001	(3)	1999	(4) 2002

73. Payment of DTT (Day Time Tax) for LMV (Transport) is mandatory vehicles registered after May (1) 1998 (2) 1999 (3) 2000 (4) 20 74. Outside rear view mirror is of type. (1) Convex (2) Flat (3) Concave (4) 'A' grade glass 75. Life Time Tax (LTT) on two wheelers in Maharashtra is based upon	for the h
74. Outside rear view mirror is of type. (1) Convex (2) Flat (3) Concave (4) 'A' grade glass	for the h
74. Outside rear view mirror is of type. (1) Convex (2) Flat (3) Concave (4) 'A' grade glass	for the h
74. Outside rear view mirror is of type. (1) Convex (2) Flat (3) Concave (4) 'A' grade glass	002
74. Outside rear view mirror is of type. (1) Convex (2) Flat (3) Concave (4) 'A' grade glass	
(3) Concave (4) 'A' grade glass	
	-
75. Life Time Tax (LTT) on two wheelers in Maharashtra is based upon	
(1) value/cost of the vehicle (2) engine capacity	
(3) unladen weight (4) registered laden weight	
76. Total seating capacity of Maxi cabs should not exceed more than the driver.	excluding
(1) 6 (2) 12 (3) 10 (4) 14	1
77. The exhaust gas recirculation (EGR) system is employed for controlling	g emission of
(1) CO (2) CO and HC	
(3) HC, CO and CO_2 (4) NO_X	
78. First automobile industry set up in India during 1949 is	
(1) Premier Automobiles Ltd. (2) Automobile Product of In	dia
(3) Mahindra and Mahindra Ltd. (4) Bajaj Tempo Ltd.	
79. One Time Tax (OTT) is included on the basis of	
(1) % of company cost vehicle (2) % of cost of vehicle	
(3) % of total cost of road tax paid (4) None of the above	
80. Power assisted steering is associated with	
(1) improving the fuel efficiency (2) increasing the speed of the	he vehicle
(3) increasing the driver fatigue (4) minimising the driver fat	tigue

'सूचना - (पृष्ठ 1 वरून पुढे....)

- Student Bounty.com प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरत्दीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतः बरोबर (9) परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. **मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या** उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

মছৰ ক. 201. The Catch varies inversely with the size of the:

- (1) nozzle
- (2) droplet
- (3) obstruction
- (4) sprayer

ह्या प्रश्नाचे योग्य उत्तर "(3) obstruction" हे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल, आता खालीलप्रमाणे प्र.क्र. **201** समोरील उत्तर-क्रमांक " \mathfrak{I} " चा कंस खालीलप्रमाणे पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

(1) (2) प्र.क्र. 201.

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK