		प्रश्नपुस्तिका		
		विद्युत व यंत्र	BOOKLET NO.	DDE : एकूण प्रश्न : 150
		ावधुत प पत्र अभियांत्रिकी		एकूण प्रश्न : 150
<u>ୁ</u>	: 2 <u>1</u> (अडीच) तास			एकूण गुण : 300
(1)	सदर प्रश्नपुस्तिकेत 150 अनिवार्य प्रश	स्नूचना न आहेत अमेदवारांनी प्रश्नांची उत्ते	रे लिहिण्यास समवात करण्याप	ार्वी या प्रश्नप्रस्तिकेत सर्व
• • •	प्रश्न आहेत किंवा नाहीत याची खात्री र		-	
	लगेच बदलून घ्यावी.	परीक्षा-क्रमांक		
(2)	आपला परीक्षा-क्रमांक ह्या चौकोनांत		*	<u> </u>
7	न विसरता बॉलपेनने लिहावा.	केंद्राच	वी संकेताक्षरे	शेवटचा अंक
(3)	वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच	या उत्तरपत्रिकेवर विशिष्ट जागी उत्त	रपत्रिकेवरील सूचनेप्रमाणे न वि	
-	उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरक्रमांक नमूद करताना तो संबंधित 1 काळ्या शाईंचे बॉलपेन वापरावे, पेरि	प्रश्नक्रमांकासमोर छायांकित करून		घ्यावी. ह्याकरिता फक्त
	सर्व प्रश्नांना समान गुण आहेत. यास्तव वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सो प्रश्नाकडे वळावे. अशा प्रकारे शेवटच परतणे सोईस्कर ठरेल.	डविणे श्रेयस्कर आहे पण एखादा प	प्रश्न कठीण वाटल्यास त्याव	र वेळन घालविता पुढील 🛛
(6) 🤻	उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खं	ोडता येणार नाही. नमूद केलेले उत्तर	खोडून नव्याने उत्तर दिल्यास ते त	ग्पासले जाणार नाही.
, ,	प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल तसेच ''उमेदवाराने वस्तुनिष्ठ बहुप नमूद करावीत. अन्यथा त्यांच्या उ करण्यात येतील''.	र्यायी स्वरूपाच्या प्रश्नांची दिलेल	या चार उत्तरांपैकी सर्वात यो	नाच गुण दिले जातील. '' ग्य उत्तरेच उत्तरपत्रिकेत 🗖
		ताकीद		
	<u> </u>	_ 	<mark>प्रश्नपुस्तिका आयोगाची</mark> प	ਘਆ⊒ ਤਸਤ ਕੀ` ′0

वर्षांच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल. तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

2

StudentBounty.com

;

. . •

۰. ۲۰

and the second second second second

									.00	
4					3	•	· ,	,		
•	Mol	lier diagram fo	or a pure	substance is	a plot of	<u> </u>	•			
	(1)	T - S	(2)	h - S	(3)	P - V	(4)	Non	e of the abov	
•	The steam whose dryness fraction is to be determined, is at a pressure of 40 bar. Expected dryness fraction is approximately 0.85. The result can be obtained by :									
	(1) employing only throttling calorimeter									
	(2)	employing se	eparating	g and throttlin	ng calorin	neter				
	(3)	employing t	wo throt	tling calorime	ters					
	(4)	None of the a	above as	dryness fract	ion is too	low to be d	etermir	ned b	y a calorime	
•	Whi	ch of the follow	wing is a	n/are irrever	sible proc	ess/process	es ?			
	(1)	Any process	involvin	g friction						
	(2)	Heat transfer	across a	a finite tempe	rature dif	ference				
	(2) (3)	Heat transfer Turbulent flo		a finite tempe	rature dif	ference				
			w	a finite tempe	rature dif	ference				
•	(3) (4) Elor	Turbulent flo	ow ove. aight bar	r of length L,	Modulus	of Elasticity				
	(3) (4) Elor	Turbulent flo All of the abo	ow ove. aight ban g vertica	r of length L, ally from a fix	Modulus ed ceiling	of Elasticity due to its c	own we		(W) is :	
	(3) (4) Elor A, v (1) A ca	Turbulent flo All of the abo ngation of a str which is hangin	ow ove. aight ban g vertica (2) iform se	r of length L, ally from a fix 2WL/AE ction carries a	Modulus ed ceiling (3) a point loa	of Elasticity due to its c WA/2LE ad, P at the	own we	eight (4)	(W) is : 2WA/LE	
-	(3) (4) Elor A, v (1) A ca store (1)	Turbulent flo All of the abo ngation of a stru- which is hangin WL/2AE WL/2AE mitilever of un ed by cantileve Pl ³ /6EI	ow ove. aight ban g vertica (2) iform se r is : (Mo (2)	r of length L, ally from a fix 2WL/AE ction carries a odulus of Elas P ² l ³ /6EI	Modulus ed ceiling (3) a point loa sticity = E) (3)	of Elasticity due to its o WA/2LE ad, P at the P ³ l ³ /6EI	own we	eight (4) d. Tř (4)	(W) is : 2WA/LE ne strain ener Pl/6EI	
-	(3) (4) Elor A, v (1) A ca store (1)	Turbulent flo All of the abo ngation of a stru- which is hangin WL/2AE mitilever of un ed by cantileve	ow ove. aight ban g vertica (2) iform se r is : (Mo (2)	r of length L, ally from a fix 2WL/AE ction carries a odulus of Elas P ² l ³ /6EI	Modulus ed ceiling (3) a point loa sticity = E) (3)	of Elasticity due to its o WA/2LE ad, P at the P ³ l ³ /6EI	free en	eight (4) d. Th (4)	(W) is : 2WA/LE ne strain ener Pl/6EI	
-	(3) (4) Elor A, v (1) A ca store (1)	Turbulent flo All of the abor- ngation of a stru- which is hangin WL/2AE mitilever of un- ed by cantileve $Pl^3/6EI$ an element in	ow ove. aight ban g vertica (2) iform se r is : (Mo (2)	r of length L, ally from a fix 2WL/AE ction carries a odulus of Elas P ² l ³ /6EI	Modulus ed ceiling (3) a point loa sticity = E) (3)	of Elasticity due to its o WA/2LE ad, P at the P ³ l ³ /6EI	free en	eight (4) d. Th (4)	(W) is : 2WA/LE ne strain ener Pl/6EI	
•	(3) (4) Elor A, v (1) A ca store (1) For (1)	Turbulent flo All of the abor- ngation of a stru- which is hangin WL/2AE mitilever of un- ed by cantileve $Pl^3/6EI$ an element in	ow ove. aight ban g vertica (2) iform se r is : (Mo (2) pure she (2)	r of length L, ally from a fix 2WL/AE ction carries a odulus of Elas P ² l ³ /6EI ar the princip 45°	Modulus ed ceiling (3) a point loa sticity = E) (3) pal planes (3)	of Elasticity due to its of WA/2LE ad, P at the $P^3l^3/6EI$ are oriented 90°	free en	eight (4) d. Th (4) .r.t x-	(W) is : 2WA/LE ne strain ener Pl/6EI 	

.

CO	ł				4				130
•		antilever beam of ection at the free					ad, W acting at t asticity =E)	he free	e end. Maximur Wl ² /3EI
	(1)	W <i>l</i> ² /2EI	(2)	Wl ³ /3EI		(3)	Wl ³ /EI	(4)	W <i>l</i> ² /3EI
4	Mar	rtensite forms du	ring _		cooling	g of a	ustenite.		
	(1)	isothermal	(2)	gradual		(3)	slow	(4)	fast
D.	For	high temperatur	e appl	ications		ma	aterials are to be	avoid	ed.
	(1)	fine grained			(2)	coar	rse grained		
	(3)	iron-based			(4)	Nor	ne of the above		
1.		0.35 wt% C stee entite just below	•				d be the percenta	age of	total ferrite and
					iperat	uic :			
	(1)	50% and 50%			•		70% and 30%	(4)	95% and 5%
2.	(1)	50% and 50%	(2)	5% and 9	95%	(3)		(4)	95% and 5%
	(1)		(2) ng is r	5% and 9	95%	(3) k haro		(4)	95% and 5%
	(1) Whi	ich of the followi	(2) ng is r ource	5% and 9	95% to wor	(3) k haro Disl	dening ?	(4)	95% and 5%
	(1) Whi (1) (3)	ich of the followi Frank - Reed so	(2) ng is r ource gth	5% and 9	25% to wor (2) (4)	(3) k hard Disl Non	dening ? ocations ne of the above.		95% and 5%
	(1) Whi (1) (3)	ich of the followi Frank - Reed so Cohesive stren	(2) ng is r ource gth	5% and 9	to wor (2) (4)	(3) k hard Disl Non	dening ? ocations ne of the above.].	
3.	(1) Whi (1) (3) (1)	ich of the followi Frank - Reed so Cohesive stren is a most	(2) ng is r burce gth powe (2)	5% and 9 not related a erful solid s Chromiu	to wor (2) (4)	(3) k hard Disl Non n stree	dening ? ocations ne of the above. ngthener for stee].	
•	(1) Whi (1) (3) (1)	ich of the followi Frank - Reed so Cohesive stren is a most Tungsten	(2) ng is r pource gth (2) emper	5% and 9 not related a erful solid s Chromiu	to wor (2) (4)	(3) k hard Disl Non n stree	dening ? ocations ne of the above. ngthener for stee].	
•	(1) Whi (1) (3) (1) The	ich of the followi Frank - Reed so Cohesive stren, is a most Tungsten purpose of marte	(2) ng is r ource gth (2) emper arping	5% and 9 not related s erful solid s Chromius ing is :	to wor (2) (4) solution	(3) k hard Disl Non n stree	dening ? ocations ne of the above. ngthener for stee].	
•	(1) Whi (1) (3) (1) The (1)	ich of the followi Frank - Reed so Cohesive stren, is a most Tungsten purpose of marte to minimise wa	(2) ng is r burce gth (2) emper arping stortio	5% and 9 not related erful solid s Chromiu ing is : n and cracl	to wor (2) (4) solution m	(3) k hard Disl Non n stree	dening ? ocations ne of the above. ngthener for stee].	
3.	 (1) Whit (1) (3) (1) (1) The (1) (2) 	ich of the followi Frank - Reed so Cohesive stren, is a most Tungsten purpose of marte to minimise wa to maximise di	(2) ng is r pource gth (2) emper arping stortio ercenta	5% and 9 not related erful solid s Chromiu ing is : n and cracl	to wor (2) (4) solution m	(3) k hard Disl Non n stree	dening ? ocations ne of the above. ngthener for stee].	
2. 3. 4. 5.	 (1) Whit (1) (3) (1) (1) (1) (2) (3) (4) A cystal 	ich of the followi Frank - Reed so Cohesive stren, is a most Tungsten purpose of marte to minimise wa to maximise di to maximise pe	(2) ng is r pource gth (2) emper arping stortio ercenta ness. rod is	5% and 9 not related a erful solid s Chromiu: ing is : n and cracl ge of Baini	to wor (2) (4) solution m king te	(3) k hard Disl Non n stree (3)	dening ? ocations ne of the above. ngthener for stee Phosphorus	1. (4)	Manganese

www.StudentBounty.com

StudentBounty.com Hard particles of 2 micrometre diameter are dispersed in a Cu matrix. The average distance 16. between particles is 20 μ m. Find the stress of particles to the alloy. Take G=41 G N/m² and b = 0.64 nm

5

(1)	$\tau = 1.312 \text{ MN}/\text{m}^2$	(2)	$\tau = 1.121 \text{ N/m}^2$
(3)	$\tau = 2.86 \text{ N/m}^2$	(4)	$\tau = 1.928 \text{ MN}/\text{m}^2$

17. Overall heat transfer coefficient is calculated in case of :

- purely conduction phenomenon (1)
- (2)purely convection phenomenon
- combined conduction convection phenomenon (3)
- (4)purely radiation phenomenon
- 18. For infinite parallel planes with emissivities ϵ_1 and ϵ_2 , the interchange factor for radiation from surface 1 to surface 2 is given by :
 - $\frac{\epsilon_1 \epsilon_2}{\epsilon_1 + \epsilon_2 \epsilon_1 \epsilon_2} \quad (2) \quad \frac{1}{\epsilon_1} + \frac{1}{\epsilon_2} 1 \quad (3) \quad \epsilon_1 + \epsilon_2$ (4) $\epsilon_1 \epsilon_2$ (1)
- 19. Which of the following statements is incorrect?
 - At thermal equilibrium, the emissivity and absorptivity are same. (1)
 - (2)Glasses are transparent to thermal radiations at short wavelengths
 - The emissivity of a smooth surface is lower compared to a rough surface of the same (3)material.
 - Selective surfaces have same value of emissivity throughout the entire range of (4) wavelength.

Modes of mass transfer are : 20.

- (1)diffusion (2)convection
- (4) All of the above (3) change of phase
- In the general heat transfer correlation for flow through tubes $N_u = 0.023 \ \text{Re}^{0.8} \ \text{P}_r^n$ the 21. value of n for fluid cooling is :
 - 0.3 (4) 0.4 0.1 (2)0.2 (3) (1)

SPACE FOR ROUGH WORK

Α

CO4

- StudentBounts.com In steady state conduction with thermal conductivity given by $k = k_0(1 + \beta T)$ where β 22. positive, a slab of given thickness and given temperature drop will conduct :
 - more heat at lower temperature levels (1)
 - more heat at higher temperature levels (2)
 - will be the same (3)
 - (4) more data is required to comment

23. In a binary mixture of two gases A and B, the diffusion coefficient can be obtained by :

(1)
$$D_{AB} = \frac{\frac{3}{T^2}}{P}$$
 (2) $D_{AB} = \frac{\frac{3}{P^2}}{T}$ (3) $D_{AB} = \frac{\frac{2}{T^3}}{P}$ (4) $D_{AB} = \frac{\frac{2}{P^3}}{T}$

24. With usual notations, the effectiveness of heat exchanger is generally represented by :

(1)
$$\frac{C_n}{C_{\min}} \cdot \frac{T_{h_1} - T_{h_2}}{T_{C_2} - T_{C_1}}$$
 (2) $\frac{C_c}{C_{\min}} \cdot \frac{T_{C_2} - T_{C_1}}{T_{h_1} - T_{h_2}}$
(3) $\frac{C_c}{C_{\min}} \cdot \frac{T_{h_1} - T_{h_2}}{T_{h_2} - T_{C_1}}$ (4) $\frac{C_n}{C_{\min}} \cdot \frac{T_{h_1} - T_{h_2}}{T_{h_1} - T_{C_1}}$

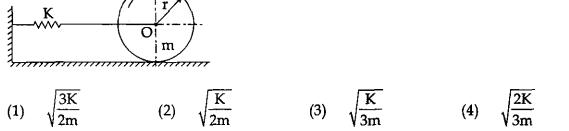
Arrange the following materials in the increasing order of their thermal conductivity. 25. Copper, Carbon steel, Nichrome, Silver

- Carbon steel, Silver, Nichrome, Copper (1)
- (2) Copper, Nichrome, Silver, Carbon steel
- Nichrome, Carbon steel, Copper, Silver (3)
- Silver, Copper, Carbon steel, Nichrome (4)

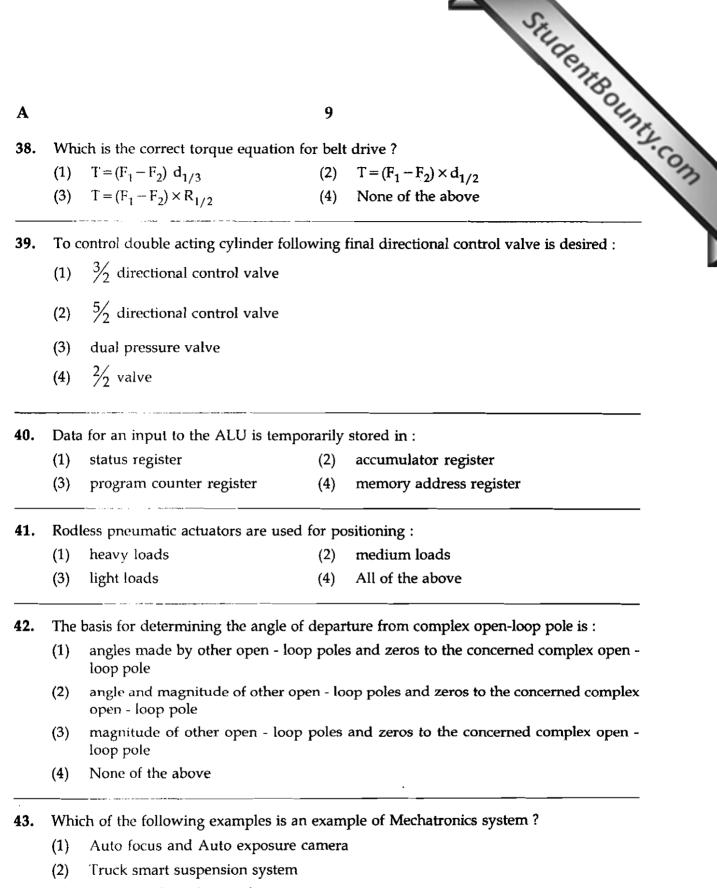
26. Consider the following statements regarding condensation heat transfer.

- For a single tube, horizontal position is preferred over vertical position for better (a) heat transfer.
- Heat transfer coefficient decreases if the vapour stream moves at high velocity. (b)
- Condensation of steam on an oily surface is dropwise. (c)
- Condensation of pure benzene vapour is always dropwise. (d)

Of these statements :

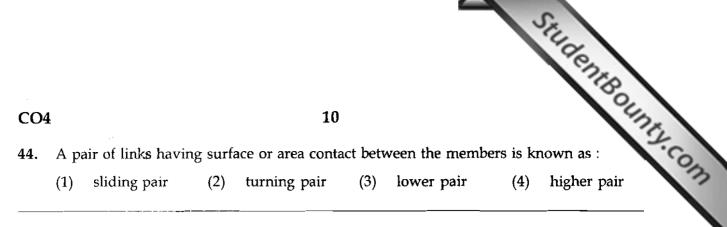

- (1)(a) and (b) are correct (2) (b) and (d) are correct
- (4) (3) (a) and (c) are correct
- (c) and (d) are correct

SPACE FOR ROUGH WORK

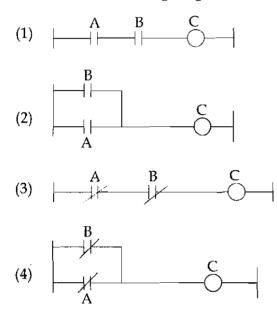

www.StudentBounty.com

L						7					19	8
7.	Stre	ss concer	ntration f	actor	is ratio of :							1
	, (1)	$k_c = \frac{Ac}{c}$	tual max Averag	cimum ge stre	1 stress ess	(2)	k _c =	Average maximum	stress		Studenty	
	(3)	$k_c = \frac{M}{r}$	Ainimum naximum	<u>1 stres</u> 1 stres	<u>s</u> s	(4)	k _c =	Average minimum	stress stress			
8.	A ro	otating sh	aft subje	cted t	o a steady,	transv	verse -	bending loa	ad will h	pe d	esigned for	·:
	(1)	fully re	versed st	ress		(2)	repe	ated stress				
	(3)	fluctuat	ting stres	s		(4)	stati	c stress				
.								ge error for f ne range of :		y ra	atio less tha	n or
9.			if value c			itio lie	es in tÌ		-	cy ra 4)	ntio less tha 0.65 to 0.7	
	equa (1)	al to 0.6, i 0 to 1.0	if value o	of the (2)	damping ra 0.2 to 0.9	itio lie	es in th (3)	ne range of : 0.3 to 0.8	(4)	0.65 to 0.7	
	equa (1) Ope	al to 0.6, i 0 to 1.0 ning and	if value c	of the (2) of doc	damping ra 0.2 to 0.9 or using hyc	tio lie draulie	es in th (3) c door	ne range of : 0.3 to 0.8	(exampl	4) e of	0.65 to 0.7	
	equa (1)	al to 0.6, i 0 to 1.0 ning and underd	if value o	of the (2) of doc	damping ra 0.2 to 0.9 or using hyc	itio lie	es in the contract of the cont	ne range of : 0.3 to 0.8	(exampl d syster	4) e of	0.65 to 0.7	
	equa (1) Ope (1)	al to 0.6, i 0 to 1.0 ning and underd	if value of closing of amped s	of the (2) of doc	damping ra 0.2 to 0.9 or using hyc	draulie (2)	es in the contract of the cont	ne range of : 0.3 to 0.8 closer is an cally dampe	(exampl d syster	4) le of n	0.65 to 0.7	
60.	equa (1) Ope (1) (3) The	al to 0.6, i 0 to 1.0 ning and underd overdau time bet	closing of amped system ween the	of the (2) of doc system stem	damping ra	draulia (2) (4) mplit	es in th (3) c door critic undo undo	ne range of : 0.3 to 0.8 closer is an cally dampe	(exampl d syster	4) 	0.65 to 0.7	
30.	equa (1) Ope (1) (3) The calle	al to 0.6, i 0 to 1.0 ning and underd overdaa time bet ed the per	if value of closing of amped system ween the riod of be	of the (2) of doc system stem e poin eating	damping ra 0.2 to 0.9 or using hyc ts of zero a	tio lie draulie (2) (4) mplit m by :	es in th (3) c door critic und und	ne range of : 0.3 to 0.8 closer is an cally dampe amped syste	(example d system em of maxi	4) 	0.65 to 0.7	
60.	equa (1) Ope (1) (3) The calle (1)	al to 0.6, is 0 to 1.0 ning and underd overdan time bet ed the per $\frac{2\pi}{(\omega - \omega_r)}$	if value of closing of amped system mod of be	of the (2) of doc system stem e poin eating (2)	damping ra 0.2 to 0.9 or using hyd ts of zero a and is give	tio lie draulie (2) (4) mplit	es in the state of	The range of : 0.3 to 0.8 closer is an cally damped amped system r the points $\frac{(\omega_n - \omega)}{2\pi}$	(example d system em of maxi	4) 	0.65 to 0.7	

3.	Match the following :						8	can cause failure of turbine can cause wheels of locomotive to rise off the track
	Mate	ch the	follov	wing	:			
	(a)	Imba	alance	in di	esel er	ngine	(i)	can cause failure of turbine
	(b)	Vibra	ation	in ma	chine	tools	(ii)	can cause wheels of locomotive to
		duri	ng me	etal cu	ıtting			rise off the track
	(c)	Blad	e and	disk	vibrat	ion	(iii)	can cause failure of bridge
	(d)	Wine	d indu	uced v	vibrati	on	(iv)	can give rise to chatter
	Ans	wer oj	ption	5:				
		(a)	(b)	(c)	(d)			
	(1)	(ii)	(i)	(iv)	(iii)			
	(2)	(iii)	(iv)	(i)	(ii)			
	(3)	(117)	(:)	10-5	1			
	(\mathbf{U})	(iv)	(i)	(ii)	(iii)			
	(4)	(ii)	(i) (iv)	(11) (i)	(111) (iii)	×		
	(4)	(ii)	(iv)	(i)	(iii)	in curve	e at any p	articular strain is called as :
•	(4)	(ii)	(iv) Inder	(i)	(iii)		e at any p iance	_
 Į.	(4) The (1) Whi	(ii) area u resili	(iv) Inder ience more	(i) stress comn	(iii) - stra (2)	compl	iance	(3) strain energy (4) Toughness
	(4) The (1) Whi	(ii) area u resili ch is u	(iv) Inder ience more	(i) stress comm s ?	(iii) - stra (2)	compl	iance	_
	(4) The (1) Whi fluct	(ii) area u resili ch is u tuating Sode	(iv) inder ience more g load	(i) stress comm s ? line	(iii) - stra (2)	compl used fa	iance tigue faile	(3) strain energy (4) Toughness ure criteria for designing parts subjected to
	(4) The (1) Whi fluct (1) (3)	(ii) area u resili ch is u tuating Sode Mod	(iv) inder ience more g load erberg ified	(i) stress comm s ? line - Good	(iii) - stra (2) nonly dman	compl used fa	iance tigue faile (2) (4)	(3) strain energy (4) Toughness ure criteria for designing parts subjected to Goodman line
	(4) The (1) Whi fluct (1) (3)	(ii) area u resili ch is u tuating Sode Mod	(iv) inder ence gload erberg ified speed	(i) stress comm s ? line - Good shaft	(iii) - stra (2) nonly dman	compl used fa line s to vibr	iance tigue faile (2) (4)	(3) strain energy (4) Toughness ure criteria for designing parts subjected to Goodman line
•	 (4) The (1) Whither the second secon	(ii) area u resili ch is u tuating Sode Mod ritical long	(iv) inder ence gload erberg ified speed	(i) stress comn s ? line - Good shaft al dir	(iii) - stra (2) nonly dman t tends	compl used fa line s to vibr	iance tigue faile (2) (4)	(3) strain energy (4) Toughness ure criteria for designing parts subjected to Goodman line
	(4) The (1) Whi fluct (1) (3) At c (1)	(ii) area u resili ch is u tuating Sode Mod ritical long trans	(iv) inder ience more load rberg ified speed itudin	(i) stress comm s ? line - Good shaft al direc	(iii) - stra (2) monly dman t tends rection ction	compl used fa line s to vibr	iance tigue faile (2) (4)	(3) strain energy (4) Toughness ure criteria for designing parts subjected to Goodman line Gerber parabola



SPACE FOR ROUGH WORK



- (3) Automated production line
- (4) All of the above.

SPACE FOR ROUGH WORK

45. Which of the following diagrams is NAND function ?

- 46. If the axes of the first and the last wheels of a compound gear coincide, it is called a :
 - (1) simple gear train (1)
- (2) compound gear train
 - (3) epicyclic gear train
- (4) reverted gear train
- 47. Which of the following components can be manufactured by powder metallurgy methods ?
 - (a) Carbide tool tips
 - (b) Bearings
 - (c) Filters
 - (d) Brake linings

Select the proper answer from the following :

- (1) (a), (c) and (d) (2) (b) and (c)
- (3) (a), (b) and (d) (4) (a), (b), (c) and (d)

SPACE FOR ROUGH WORK

Α			11				.00
48.	The	angle between the face ar	nd the flank o	of the s	single point c	utting t	ool is known
	(1)	rake angle (2) cle	arance angle	(3)	lip angle	(4)	point angle
49.	In g	as welding carburising flan	ne is obtained	by :			
	(a)	excess of acetylene					
	(b)	excess of oxygen					
	(c)	excess of hydrogen					
	(d)	None					
	Whi	ch of the statements given	above is/are	correct	?		
	(1)	(a) only	(2)	(с) оп	ly		
	(3)	(a) and (b) only	(4)	(d) or	վy		
50.	New	nton's law of viscosity is giv	en by the rela	ation :			
	(1)	$\tau = \mu^2 \cdot \frac{\mathrm{d}u}{\mathrm{d}y} \qquad (2) \tau =$	$\sqrt{\mu} \cdot \frac{du}{dy}$	(3)	$\tau = \mu \frac{\mathrm{d}u}{\mathrm{d}y}$	(4)	$\tau = (\mu)^{3/2} \cdot \frac{\mathrm{d}u}{\mathrm{d}y}$
51.	Inter	nsity of turbulence is :	·····			<u> </u>	
	(1)	the average K. E. of turbu	llence.				
	(2)	the violence of turbulent f fluctuations.	luctuations a	nd is m	easured by th	e RMS v	value of velocit
		the mean time interval be	tween the rev	versals	in the sign of	velocity	fluctuation
	(3)	the mean time title val be			0		
	(3) (4)	None of the above.			-		
52.	(4)						Ja
2.	(4)	None of the above.	xist in hydrau	ılic pur			
52.	(4) Whi	None of the above.	xist in hydrau	ılic pur Frictio	nps ?		
52.	(4) Whie (1) (3)	None of the above. ch of the following losses e Impeller recirculation loss	xist in hydrau es (2) (4)	ilic pur Frictio All of	nps ? on losses the above		
	(4) Whie (1) (3)	None of the above. ch of the following losses e Impeller recirculation loss Shock losses	xist in hydrau es (2) (4)	ilic pur Frictio All of turbin	nps ? on losses the above	?	

CO4	ł.				12				0		
54.	Whi	ch of the follow	ving stat	ements is t	true ?						
	(1)	The viscosity temperature	7 of liq1	aid increa	ses bu	t that	of gases dee	creases v	with increase		
	(2)	temperature.									
	(3)	There is no ef	fect of r	ise in temp	eratur	e on v	iscosity of liqu	ids and	gases.		
	(4) In gases, molecular activity decreases with rise in temperature.										
55.	Pres	sure inside a w	ater dro	plet is give	en by t	he rela	ation :				
	(1)	$P = \frac{4\sigma}{d}$	(2)	$P = \frac{3\sigma}{d}$		(3)	$P = \frac{8\sigma}{d}$	(4)	$P = \frac{16\sigma}{d}$		
56.	Rep	eatability of me	asuring	process is	called	as :					
	(1)	Accuracy			(2)	Prec	ision				
	(3)	Sensitivity			(4)	Inte	rchangeability	7			
57.	In p	erfect Gaussian	distrib	ution for \pm	1δ of .	u whi	ch is correct v	alue ?			
	(1)	60%	(2)	66.66%		(3)	33.33%	(4)	68%		
58.	Whi	ch of the follow	ving inst	ruments is	/are u	sed fo	or angle meas	urement i	?		
	(1)	Universal Bev	val Proti	actor	(2)	Sine	Bar				
	(3)	Autocollimat	or		(4)	All e	of the above				
<u> </u>	Ina	kially loaded el	astic me								
571	<u>л</u> г (1,	uniy roaded el		naci suan							

- Se

- (2) inversely proportional to pressure and directly proportional to Young's modulus.
- (3) inversely proportional to area and inversely proportional to pressure.
- (4) directly proportional to area and inversely proportional to Young's modulus

SPACE FOR ROUGH WORK

Total Range of input values possible for a given output is :

63. Which of the following dispatching rules tends to minimize job flow time ?

- FCFS : First Come, First Serve (1)
- (2)SPT : Shortest Processing Time
- LPT : Longest Processing Time (3)
- (4) EDD : Earliest Due Date
- The most appropriate sequencing rule to use if the goal is to dynamically track the progress 64. of jobs and establish relative priority on a common basis :
 - (1)Shortest Processing Time
 - (2)Earliest Due Date
 - (3)Critical ratio
 - Johnson's ratio (4)

SPACE FOR ROUGH WORK

P.T.O.

www.StudentBounty.com

- 61. Which among the following has negative temperature coeffcient of resistance ?
 - K type thermocouple (1)
 - (3)
 - (4)Thermocouple
 - Thermistor

(b) Strain gauge wire should have low elastic limit

Following statements are related to the strain gauge wires :

Strain gauge wire should have high resistance

StudentBounty.com (c) Strain gauge wire should be insensitive to temperature in both its physical and electrical properties.

13

Of these _

- (1)(a) is true and (b) and (c) are false
- (2)(b) is true and (a) and (c) are false
- (3)(a) and (c) are true and (b) is false
- (4) All (a), (b), and (c) are true.

- (2)Resistance temperature detector

Α

60.

62.

(1)

(3)

(a)

- StudentBounty.com To find the optimal solution to a linear programming problem using the graphical metho **65**.
 - find the feasible point that is closest to the origin (1)
 - (2)find the feasible point that is at the highest location
 - find the feasible point that is farthest away from the origin (3)
 - (4) None of the above.

Which of the following most closely describes net material requirements ? 66.

- Gross requirement Planned order receipts (1)
- (2) Gross requirement - On Hand - Planned order receipts
- Gross requirement On Hand + Planned order receipts (3)
- (4) None of the above

A master production schedule specifies : 67.

- the financial resources required for production (1)
- what component is to be made, and when (2)
- (3)what product is to be made, and when
- (4) the labour hours required for production
- A firm uses simple exponential smoothing with $\alpha = 0.02$ to forecast demand. The forecast **68**. for the first week of January was 400 units, where as actual demand turned out to be 450 units. Forecast the demand for the second week of January.
- 410 395 (1)(2)(3) 405.7 (4) None of the above 69. In PERT, each activity requires :
 - (1)an optimistic time a most likely time (2) All of the above (3)a pessimistic time (4)

SPACE FOR ROUGH WORK

À					15			04
7 0 .	W/bi	ch of the state	monte civon h		in / ara corra			StudentBour
v.	(a)		C motor is an		-			
	(a) (b)		or is always u			on control		
	(c)		merator is pre				ions	
	(d)	None of the	<u>^</u>			P		•-1.
	(1)	(a) only		(2)	(d) only			
	(3)	(a) and (b)		(4)	(b) and (c)		·
•	In t	wo - phase A	C servomoto	r, stat	tor windin	gs are disŗ	placed from	each other by
	(1)	120°	(2) 90°		(3)	180°	(4)	None of these
2.	In a by :	3 - phase ind	uction motor,	the va	ariable mec	hanical loa	d is electric	ally represented
	(1)	a variable re	sistance only.					
	(2)		ductance only		. `	· · ,		
	(3)		pacitance onl		, 14 -	·. · · ·		
				rocieta	ince and va	riable indu	ctance.	
	(4)	a combinatio	on of variable	1691940	· · · · · · · · · · · · · · · · · · ·			
3.		power transfor						nd is highest at
3.		power transfor	rmer, η _{max}					nd is highest at
73.	For	power transfor power increases, inc	rmer, η _{max} r factor.	7				ind is highest at
3.	For (1)	power transfor power increases, inc decreases, inc	rmer, η _{max} r factor. creasing, unity	/ ing				ind is highest at
73.	For (1) (2)	power transfor power increases, ind decreases, in increases, de	rmer, η _{max} r factor. creasing, unity acreasing, lead	/ ing ing				und is highest at
73.	For (1) (2) (3) (4) In a	power transfor power increases, in decreases, in increases, de decreases, de	rmer, η _{max} r factor. creasing, unity creasing, lead creasing, lagg ecreasing, unit he exciting cut	/ ing ing y rrent h	with as two con	po ponents - 1	wer factor a	
	For (1) (2) (3) (4) In a	power transfor increases, ind decreases, in increases, de decreases, de transformer th - loss compor	rmer, η _{max} r factor. creasing, unity creasing, lead creasing, lagg ecreasing, unit he exciting cut	/ ing ing y rrent h ng leak	with nas two con cage impeda	ponents - r ance drop :	wer factor a	
	For (1) (2) (3) (4) In a core	power transfor power increases, ind decreases, ind increases, de decreases, de transformer th - loss compor both of them	rmer, η _{max} r factor. creasing, unity creasing, lead creasing, lagg ecreasing, unit he exciting cur hent. Neglectir	/ ing ing y rrent h ng leak	with nas two con cage impeda voltage by 9	ponents - r ance drop : 0°.	wer factor a	ind is highest at
	For (1) (2) (3) (4) In a core (1)	power transfor power increases, in decreases, in increases, de decreases, de transformer th - loss compor both of them both of them	rmer, η_{max} r factor. creasing, unity acreasing, lead ecreasing, lagg ecreasing, unit he exciting cut hent. Neglectir a lag the impre- are in phase ags the impre-	/ ing ing y rrent h g leak essed v with t	with nas two con cage impeda voltage by 9 he impresse	ponents - r ance drop : 0°. ed voltage.	wer factor a	

-

StudentBounty.com A 3 - phase synchronous motor connected to infinite bus is operating at half of full lo 75. with normal excitation. When the load on the synchronous motor is suddenly increased

16

- its speed will first decrease and then become synchronous. (1)
- its speed will remain unchanged. (2)
- its speed will first increase and then become synchronous. (3)
- its speed will fluctuate around synchronous speed and then become synchronous. (4)
- The starting torque of an induction motor will be maximum when : 76.
 - started by an auto transformer (1)
 - (2)started by star delta starting
 - (3)directly switched on
 - started by reactance starting (4)
- A 3 phase synchronous motor driving a constant load torque draws power from the 77. infinite bus at a loading power factor. If the excitation is increased :
 - the power angle decreases while power factor increases. (1)
 - (2)the power angle increases while power factor decreases.
 - both power angle and power factor increase. (3)
 - both power angle and power factor decrease. (4)

78. Under the ABC system of inventory priorities a class A item is :

- the 20% of high value items that account for around 80% the total stock value. (1)
- (2)the 80% of high value items that account for around 20% the total stock value.
- the 80% of high value items that account for around 80% the total stock value. (3)
- (4)None of the above

79. The Regulatory Commission while determining the cross subsidy reduction roadmap for the Distribution licensees may consider factors :

- (1) Tariff shock to affected consumers
- (2)Future increases in distribution and retail costs
- (3) Changes in consumer mix
- (4)All of the above

SPACE FOR ROUGH WORK

				iller .	
A			17	que that seek the elimination of was JIT	ROUT
80.		manufacturing philosophy tinuous improvement :	and techni	que that seek the elimination of was	te a
	(1)	MRP	(2)	JIT	
	(3)	Theory of constraints	(4)	All of the above	
81.				estem is disconnected, the potential diff	
81.				rstem is disconnected, the potential diff at across the low resistance will increase, decrease	
81.	acro	oss high resistance will	and th	at across the low resistance will	
81. 82.	acro (1) (3) The	oss high resistance will increase, increase decrease, decrease	and th (2) (4) used for c	at across the low resistance will increase, decrease decrease, increase perating voltage uptovolt an	
	acro (1) (3) The	oss high resistance will increase, increase decrease, decrease low voltage (LT) cables are	and th (2) (4) used for c	at across the low resistance will increase, decrease decrease, increase perating voltage uptovolt an	

83. The sag of conductors supp at the same level is given by Approximate formulae as where, Sag-s, L-length, W-weight of conductor per meter length (kg), T-tension.

(1)	$Sag(s) = \frac{W^2 L^3}{24T^2}$	(2)	Sag (s) = $\frac{WL^2}{8T}$
(3)	Sag (s) = $\frac{WL^2}{4T}$	(4)	Sag (s) = $\frac{WL^3}{8T}$

- 84. According to the Electricity Act, 2003, "Subsidizing Consumer Category" means the consumer category :
 - (1) which pays tariff more than its cost of supply as determined by the Commission.
 - (2) which pays tariff less than its cost of supply as determined by the Commission.
 - (3) which pays tariff more or less than its cost of supply as determined by the Commission.
 - (4) Both (2) and (3).

SPACE FOR ROUGH WORK

StudentBounty.com

85. The string η of the overhead insulator is given by :

	$\sqrt{3}$ voltage across the string
(1)	$\eta_{\text{string}} = \overline{\text{no.of strings} \times \text{voltage across the lowermost unit}}$

3 voltage across the string

(2) $\eta_{\text{string}} = \frac{1}{\text{no.of strings} \times \text{voltage across the uppermost unit}}$

voltage across the string

(3) $\eta_{\text{string}} = \frac{1}{\text{no.of strings} \times \text{voltage across the lowermost unit}}$

voltage across the string

- (4) $\eta_{\text{string}} = \frac{1}{(\text{no.of strings} 1) \times \text{voltage across the lower unit}}$
- 86. The transfer function of the system is :
 - (1) Laplace transform of its impulse response and is applicable to linear time invariant system only
 - (2) Fourier transform of its impulse response and is applicable to linear time invariant system only
 - (3) Laplace transform of its step response and is applicable to linear time invariant system only
 - (4) Fourier transform of its step response and is applicable to linear time invariant system only

87. Potentiometer is used as an error detector and its performance is characterised by :

- (1) Resolution (2) Linearity and loading error
- (3) Life and noise (4) All of the above

88. Synchro control transformer is an electro-mechanical device which produces :

- (a) Single phase voltage
- (b) Three phase voltage
- (c) Voltage proportional to 'sine' of the angle of rotor with respect to stator magnetic field.
- (d) Voltage proportional to 'tan' of the angle of rotor with respect to stator magnetic field.

Which of the above statements is/are correct?

- (1) (a) only (2) (b) only
- (3) (a) and (c) (4) (b) and (d)

SPACE FOR ROUGH WORK

A				19									
						k (s	+ 3)	$\frac{1}{j}$ $\frac{1}{4}$ $\frac{1}{j}$ Th					
89.		transfer function of a	i system is gi	ven by	$T.F=\overline{s}$ (s	s + 2 + j4) (s + 2 -	<u>j 4)</u> . Th					
	-	oles the system has :				_							
	(1)	One (2	?) Two		(3)	Three	(4)	Four					
90.	A feedback control system :												
	(a)	(a) reduces sensitivity to variation in parameters in forward path.											
	(b)	(b) reduces sensitivity to variation in parameters in feedback path.											
	(c)) increases sensitivity to variation in parameters in feedback path.											
	(d)	(d) do not reduce the sensitivity to variations in parameters in feedback path.											
	Whi	ch of the above state	ements is/ar	e correc	et?	`							
	(1)	(a) and (b)		(2)	(a) an	d (d)							
	(3)	(a) only		(4)	(a) an	d (c)							
91.	The	The effect of PI controller on system response is :											
	(a)	eliminate steady st	ate error.										
	(b)	decreases rise time	and increas	es over:	shoot ar	nd setting t	ime						
	(c)	increases rise time	and decreas	es over	shoot ar	nd setting t	ime						
	(d)	increases overshool	t and decrea	ses rise	time ar	nd setting t	ime						
	Whi	ch of the above state	ements is/ar	e correc	t?								
	(1)	(a) only		(2)	(a) an	d (b)		-					
	(3)	(a) and (c)		(4)	(a) an	d (d)							
<u> </u>	AC	servomotors used in	low power	control	applica	tions are b	asically :						
	(1)	Synchronous moto	rs	(2)	Three	phase ind	uction mo	tors					
	(3)	Two phase induction	on motors	(4)	IIniro	rsal motor							

A control system composed of components whose forward path transfer function 93.

StudentBounty.com $G(s) = G_1(s)$, $G_2(s)$ where $G_1(s) = \frac{1}{s+2}$ and $G_2(s) = \frac{10}{s}$. The overall transfer function of this unity feedback control system is :

(1)
$$\frac{10}{s^2 + 2s + 10}$$
 (2) $\frac{10}{s^2 + s + 1}$
(3) $\frac{1}{s^2 + s + 1}$ (4) $\frac{1}{s^2 + 2s + 10}$

- 94. Use of Star - Delta starter in Induction motor, reduces starting torque to :
 - (1)half of normal torque.
 - (2)one-fourth of torque with direct start.
 - one-third of normal starting torque. (3)
 - (4)Seventy percent of normal starting torque.

95. Armature voltage control of dc motor is useful in which of the following cases ?

- Above base speed with constant torque (1)
- (2)Below base speed with constant power
- (3)Above base speed with constant power
- (4)Below base speed with constant torque
- 96. Which one of the following Drives can be defined as digital electro-mechanical device where moment of shaft is in discrete angle?
 - Shaded Pole Motor (1)
 - (2)Stepper Motor
 - D. C servomotor (3)
 - (4) Capacitor split single phase motor

SPACE FOR ROUGH WORK

www.StudentBounty.com

StudentBounty.com In which type of Electric braking generated energy is supplied to the source durin 97. braking?

21

- (1)Plugging (2)Regenerative braking
- Dynamic braking (4)Reverse voltage braking (3)

In V/F speed control method of Induction motor, ratio of voltage to frequency is 98. maintained constant to achieve :

- constant Running torque constant flux (2)(1)
- constant current (3)(4) constant speed
- In closed loop speed control of Electric Drive, which two controllers are used for safe 99. operation ?
 - Speed controller and voltage controller (1)
 - Speed controller and current controller (2)
 - (3)Voltage and current controller
 - Proportional and integral controller (4)

100. Static Scherbius Drive is used for speed control of :

- Wound rotor Induction Motor below synchronous speed (1)
- (2)Squirrel cage Induction Motor above synchronous speed
- (3) Squirrel cage Induction Motor below synchronous speed
- (4) D. C shunt motor below base speed.

101. Dual converter fed D.C Drive can operate in :

- (1)First and second quadrant of operation
- (2)First and third quadrant of operation
- All four quadrants of operation (3)
- None of the above (4)

SPACE FOR ROUGH WORK

www.StudentBounty.com

A

CO4

22

StudentBounty.com 102. Electrical system consisting one of the following combination is called as Electric Drive.

- (1) Power converter, Sensors, Electric load
- (2)Power modulator, Feedback control and motor
- Power modulator, Electric Motor and load (3)
- Power converter, Motor and rotational load (4)

103. The total torque developed in Electric Drive is divided as :

- (1)Friction torque, Windage torque and useful torque
- (2)Friction torque, loss torque, output torque
- Friction torque, load torque, useful torque (3)
- (4) Useful torque, fluctuating torque, load torque

104. Match the pair for typical power factor for some of the common appliances :

	Тур	e of le	oad		Pow	er factor
(a)	Inca	ndesc	ent la	mps	(i)	0.85
(b)	Arc	welde	ers		(ii)	0.3 - 0.7
(c)	Arc	lamps	s used	in cinemas	(iii)	0.98 - 1.0
(d)	Indu	iction	heate	rs	(iv)	0.3 - 0.4
Ans	wer o	ption	s :			
	(a)	(b)	(c)	(d)		
(1)	(iii)	(ii)	(i)	(i v)		
(2)	(iii)	(ii)	(iv)	(i)		
(3)	(iv)	(iii)	(ii)	(i)		
(4)	(i)	(ii)	(iii)	(iv)		

105. The economic load dispatch is carried out on the basis of _____

- (1)equal incremental cost criteria equal area criteria (2)
- (3)loss minimization criteria (4) maximize generation criteria

SPACE FOR ROUGH WORK

StudentBounty.com 106. The penalty factor in economic dispatch of generator is approximately calculated by

23

 $PF_{i} \cong \frac{1}{1 - \frac{\Delta P_{L}}{\Delta P_{i}}}$ (2) $PF_i \approx 1 + \frac{\Delta P_L}{\Delta P_i}$ (1)

Α

(3)
$$PF_{i} \approx \frac{1}{1 + \frac{\Delta P_{i}}{\Delta P_{L}}}$$
(4)
$$PF_{i} \approx \frac{\Delta P_{L}}{1 - \frac{\Delta P_{i}}{\Delta P_{L}}}$$

107. The mathematical definition of demand factor is given by _____ and co-incidence factor as _____

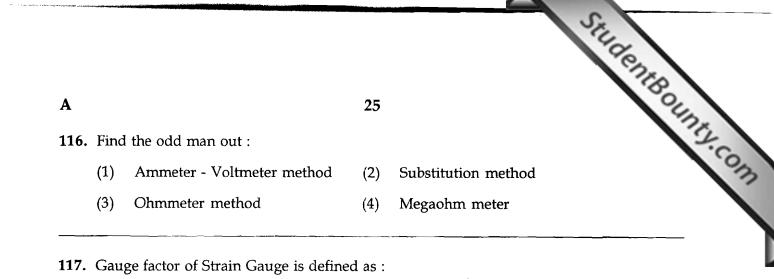
Maximum demand Sum of individual maximum demands
connected load ' maximum demand of power station
connected load maximum demand of power station
Average demand 'Sum of individual maximum demands
maximum demand maximum demand of power station
connected load 'Sum of individual maximum demands
Average demand maximum demand of power station
maximum demand 'Sum of individual maximum demands

108. For the same maximum demand, if load factor is decreased the cost of energy is _____.

(1) increased	(2)	decreased
---------------	-----	-----------

(3) not affected (4)remains constant

109. Load frequency control is achieved by properly matching the individual machine's :


- generated voltages (1) reactive power (2)
- turbine inputs (4) All of the above (3)

SPACE FOR ROUGH WORK

				C1x								
204	:		24	.ooun								
10.		ntaining net injected real power co ack bus is also known as		et, the minimization of the real injected power oblem. Optimal load scheduling								
	(1)	Optimal real power flow	(2)	Optimal load scheduling								
	(3)	Optimal generation scheduling	(4)	Optimal reactive power flow								
111.	Unscheduled Interchange charges (UI charges) are payable/receivable if											
	(i)	A beneficiary overdraws power,	thus 1	by decreasing the frequency								
	(ii)	A beneficiary underdraws powe	r, thus	s by increasing the frequency								
	(iii)	A generator generates more thar	n the s	schedule, thereby increasing the frequency								
	(iv)	A generator generates less than	the scl	hedule, thereby decreasing the frequency								
	(1)	only (i) and (ii)	(2)	only (i) and (iii)								
	(3)	only (iii) and (iv)	(4)	All of the above								
	(1)	monthly (2) weekly		(3) hourly (4) yearly								
1 3.	elen	•		te estimates are not reliable. Then diagonal ${}_{x}G_{x}^{-1}H_{x}^{T}$ are used to calculate to								
	(1)	gain matrix	(2)	largest standardised residuals								
	(3)	estimated measurement error	(4)	standard Gramian density function								
14.	flow			eries with the 0.004 ohm resistance the current e bottom control spring snaps suddenly, what								
	(1)	4 mA (2) 1 mA		(3) 0 mA, (zero) (4) 8 mA								
15.	Tem	perature range (in °C) for platinur	n type	e Resistance Thermometer is :								
	(1)	0 to 180	(2)	-260 to 1100								
		-220 to 300		-200 to 1000								

•

www.StudentBounty.com

(1)
$$G_{f} = \frac{\Delta R_{R}}{\Delta L_{L}}$$
 (2) $G_{f} = \frac{\Delta R_{R}}{\epsilon}$
(3) $G_{f} = 1 + 2V + \frac{\Delta \frac{\rho}{\rho}}{\epsilon}$ (4) All of the above

118. A 20 kW resistive load is connected to a 440 V supply through digital energy meter. If the load is continuously on from 6.00 am to 11.00 am. What will be the reading of energy meter after 3 hours ? Consider initial energy meter reading as 5 unit before starting the load.

(1)	100 kW Hour	(2)	20 kW Hour
(3)	65 kW Hour	(4)	60 kW Hour

119. The output of an LVDT is connected to a 5 V voltmeter through an amplifier whose amplification factor is 250. An output of 2 mV appears across the terminals of LVDT when the core moves through a distance of 0.5 mm. If the milli-voltmeter scale had 100 divisions and the scale could be read to $\frac{1}{5}$ th of a division, the resolution of the instrument (in mm) is :

(1) 2×10^{-3} (2) 1×10^{-3} (3) 0.5×10^{-3} (4) 0.25×10^{-3}

- **120.** A CRO screen has ten devisions on the horizontal scale. If voltage signal $V=5 \times sin$ (314t+45°) is examined with the base setting 5 msec/div, the number of cycles of signal displayed on the screen will be :
 - (1) 0.5 cycles (2) 2.5 cycles (3) 5 cycles (4) 10 cycles

SPACE FOR ROUGH WORK

- 121. Damper winding is designed in synchronous motor to :
- StudentBounty.com suppress negative sequence field and to damp oscillations during hunting. (1)
 - provide starting torque and damping power during hunting. (2)
 - (3)provide maximum torque and avoid hunting.
 - (4) avoid crawling and cogging.

122. In three phase induction motor higher value of average flux density in air gap results in :

- higher overload capacity and improved power factor (1)
- (2)lower overload capacity and improved power factor
- (3)higher overload capacity and poor power factor
- (4) lower overload capacity and poor power factor

123. A short time intermittent rating of electric motor is considered while selecting motor for :

- (1)blowers (2) punching machine
- (3)reciprocating compressor (4) sirens

124. Which is the most critical part in the design of electrical machines ?

(1)Conductor (2)Core (3)Insulation (4)Air gap

125. By providing deep narrow slots in the rotor punching in induction motor :

- (1)starting torque can be increased
- (2)running torque can be reduced
- (3) efficiency can be improved
- (4) None of the above

126. The humming sound in a transformer is due to :

- (1)vibration in cooling oil (2)vibration in lamination
- (3)sinusoidal voltage waveform (4)inductance of the transformer winding

SPACE FOR ROUGH WORK

www.StudentBounty.com

127.	Leakage reactance/phase of the stator of a 3 phase induction motor is 1.0 Ω . The turns,
	phase of the stator are increased by 10%. The leakage reactance is then equal to :

4							27			12		
1							27					
27.	Leal pha	kage r se of t	eactar he sta	nce/pl tor ar	hase o re incr	f the stator eased by 10	27 of a 3 phase induction motor is 1.0 Ω . The leakage reactance is then equal to Ω .					
	(1)	(1.1))2		(2)	$\frac{1}{(1.1)^2}$	(3)	(0.9) ²	(4)	$\frac{1}{(0.9)^2}$		
28.	Mat	ch the	follo	wing	:							
	(a)	Cyli	ndrica	ıl win	ding	(i)	Low V, hi	gh current				
	(b)	Disc	wind	ling		(ii)	High V, h	igh current				
	(c)	Cros	sover	wind	ling	(iii)	Low V, lo	w current				
	(d)	Heli	cal wi	inding	5	(iv)	Medium V	/, low curren	it			
		(a)	(b)	(c)	(d)							
	(1)	(iii)	(iv)	(ii)	(i)							
	(2)	(i)	(ii)	(iv)	(iii)							
	(3)	(iii)	(ii)	(iv)	(i)							
	(4)	(iii)	(ii)	(i)	(iv)							

- 129. In D.C armature design, the following details are given : 6 poles, 43 slots, 4 circuits with 43 segments, then the type of winding is :
 - (1)Singly re - entrant duplex wave winding
 - (2) Doubly re - entrant duplex wave winding
 - (3) Singly re - entrant duplex lap winding
 - (4) Doubly re - entrant duplex lap winding

130. Electrical machine designed for higher speed for given output power results in :

- Smaller size and higher cost Smaller size and lower cost (1)(2)
- (3) Larger size and lower cost (4) Larger size and higher cost
- 131. The amount of heat given out due to combustion of 1kg of solid or liquid fuel or 1 cum of gaseous fuel is called as :
 - sensible heat (2)calorific value (3) latent heat (4) heat factor (1)

SPACE FOR ROUGH WORK

P.T.O.

www.StudentBounty.com

132. The role of moderator in a nuclear reactor is to :

- (1) control the speed of neutrons in chain reaction
- (2) separate the neutrons
- (3) release the energy from nucleous
- (4) act as catalyst for chain reaction

133. Compounding of steam turbine is done for :

- (1) reducing the work done (2) increasing the rotor speed
- (3) reducing the rotor speed (4) balancing the turbine

134. Load factor of a power plant is defined as :

- (1) Maximum demand / average load
- (2) Maximum demand \times average load
- (3) Average load / maximum demand
- (4) (1 / maximum demand \times average load) \times 100

135. Pertaining to blower performance Match List I with List II.

List I

(a)

- List II
- Slip (i) Reduction of whirl velocity
- (b) Stall (ii) Fixed mass flow rate regardless of pressure ratio
- (c) Chocking (iii) Flow separation
 - (iv) Flow area reduction
- (a) (b) (c) (1) (iv) (iii) (ii)
- (2) (i) (iii) (ii)
 (3) (iv) (i) (iii)
 (4) (ii) (iii) (iv)

SPACE FOR ROUGH WORK

StudentBounty.com

- StudentBounty.com 136. Quantity of heat 'Q' supplied to a substance to increase its temperature depends upon the following :
 - (1)sensible heat (2)latent heat
 - saturation temperature (3) (4) atmospheric temperature

137. The specific speed (N_s) of the turbine is given by :

(1)
$$N_s = \frac{N\sqrt{P}}{H^{5/4}}$$
 (2) $N_s = \frac{N\sqrt{P}}{H^{3/4}}$ (3) $N_s = \frac{N\sqrt{P}}{H^{3/2}}$ (4) $N_s = \frac{N\sqrt{P}}{H^{2/3}}$

- 138. The steam turbine in which the pressure of steam falls in the nozzles and remains almost constant in the blade ring is called as :
 - (1)Reaction turbine Impulse turbine (2)
 - Francis turbine (3)(4)Back pressure turbine

139. Hydrograph is the graph showing the relation between :

- (1)discharge of flowing water with respect to head
- (2)discharge of flowing water with respect to time
- (3)discharge of flowing water with respect to rainfall
- discharge of flowing water with respect to catchment area (4)
- 140. In forced circulation boilers, about 90% of water is recirculated without evaporation. The circulation ratio is :
 - 9 (4) 10 0.9 (3) (2) 0.1 (1)
- 141. Solar radiations reach at earth surface in two forms, one as direct beam and second as radiation.
 - ultraviolet (4) dispersed infrared (2) diffused (3) (1)

SPACE FOR ROUGH WORK

P.T.O.

网络马萨山马根部 经经济

A

CO4

- StudentBounty.com 142. Which of the wind patterns need to be looked at when evaluating wind sites for installation ?
 - short term ; long term diurnal; nocturnal (2)(1)
 - (4) All of the above summer; winter (3)

143. In solar pond, bottom layer is made highly salty to :

- supress convection to maintain hot water at bottom. (1)
- increase reflection of radiations. (2)
- increase convection to reduce temperature. (3)
- increase convection to raise up hot water. (4)

144. The axis of a horizontal axis wind turbine is :

- (1) parallel to the ground and located at top of the tower
- perpendicular to the ground and located at top of the tower (2)
- parallel to the ground and located at ground level (3)
- perpendicular to the ground and located at ground level (4)

145. In fuel cell, electro-chemical reaction which produces electric power requires :

- (1)hydrogen and oxygen as input and generate water and heat as resultant.
- hydrogen and water as input and generate oxygen and heat as resultant. (2)
- (3) hydrogen and heat as input and generate oxygen and water as resultant.
- (4) hydrogen as input and oxygen, heat and water as resultant.

146. Wind turbine blades are subjected to which of the following types of loads ?

- (1)Transient (2)Translational and Transient
- Stochastic and Transient (3)
- - (4) Translational and Stochastic

SPACE FOR ROUGH WORK

Α				31					Studente	5	
147.	Effic	ciency of fuel	cell is hig	shest because :						1	
	(1)	heat energy	of fuel is	directly converte	ed into	electrical e	energy				
	(2)	kinetic ener	gy in fue	l is converted into	p heat e	nergy					
	(3)	chemical en	nergy of f	uel is directly con	verted	into electr	ical en	ergy			
	(4)	potential er	nergy of f	uel is converted in	nto elec	trical ener	gy				
148.	• The solar energy is a huge source and the power from the sun intercepted by earth is about :										
	(1)	1.8 GW	(2)	1.8×10^{11} MW				(4)	100 GW		
- <u> </u>	The	device which	intercept	s incident solar ra	diation	and conve	erts it i	into h	eat is called as	 s :	
	(1)	Solar reflect	tor	(2)	Solar	absorber					
	(3)	Solar collec	tor	(4)	Solar	radiator					
150.	In w	vind power ge	eneration,	'A' is turbine inte	erceptir	ng a cross-	sectior	n of w	ind front and	u ₀	
150.	is w	ind speed, the	en power	'A' is turbine into of turbine P_T is : $P_T \propto u_{0/A}$	-					u ₀	
150.	is w	ind speed, the	en power (2)	of turbine \mathbf{P}_{T} is :	(3)	P _T ∝Au	03			u ₀	
	is w (1)	ind speed, the	en power (2)	of turbine P_T is : $P_T \propto u_{0/A}$	(3)	P _T ∝Au	03			u ₀	
	is w (1)	ind speed, the $P_T \propto A u_0^2$	en power (2) WORK	of turbine P_T is : $P_T \propto u_{0/A}$	(3)	P _T ∝Au	03			u ₀	
	is w (1)	ind speed, the $P_T \propto A u_0^2$	en power (2) WORK	of turbine P_T is : $P_T \propto u_{0/A}$	(3)	P _T ∝ Au	10 ³	(4)	$P_T \propto A u_0$	u ₀	
	is w (1)	ind speed, the $P_T \propto A u_0^2$	en power (2) WORK	of turbine P_T is : $P_T \propto u_{0/A}$ $P_T \sim -0.0 o$	(3) (3)	$P_T \propto A u$	10 ³	(4)	$P_T \propto A u_0$	u ₀	
	is w (1)	ind speed, the $P_T \propto A u_0^2$	en power (2) WORK	of turbine P_T is : $P_T \propto u_{0/A}$ $P_T \propto u_{0/A}$ $P_T \sim u_{0/A}$ $P_T \sim u_{0/A}$	(3)	$P_T \propto A u$	10 ³	(4)	$P_T \propto A u_0$	u ₀	
	is w (1)	ind speed, the P _T ∝ A u ₀ ² OR ROUGH	en power (2) WORK	of turbine P_T is : $P_T \propto u_0/A$ $P_T \sim u_0/A$	(3)	$P_T \propto A u$	·0 ³	(4)	$P_T \propto A u_0$	u ₀	
	is w (1)	ind speed, the P _T ∝ A u ₀ ² OR ROUGH	en power (2) WORK	of turbine P_T is : $P_T \propto u_0/A$ $P_T \propto u_0/A$ $P_T \sim u_0/A$		$P_T \propto A u$	10 ³	(4)	$P_T \propto A u_0$	u ₀	
	is w (1)	ind speed, the P _T ∝ A u ₀ ² OR ROUGH	en power (2) WORK	of turbine P_T is : $P_T \propto u_{0/A}$ $P_T \propto u_{0/A}$		$P_T \propto A u$		(4)	$P_T \propto A u_0$	u ₀	

) 1

. د ان **م**ور

CO4

सूचना --- (पुष्ठ 1 वरून पुढे....)

- StudentBounty.com (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम--82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतःबरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

प्रश्न क. 201. The Catch varies inversely with the size of the :

- (2) · droplet (1) nozzle
- (3) obstruction (4) sprayer

ह्या प्रश्नाचे योग्य उत्तर ''(3) obstruction'' हे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल, आता खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''(3)'' चा वर्तुळ खालीलप्रमाणे पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

(1) (2)(4) प्र. क्र. 201.

> अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे. पेन्सिल वा शाईचे पेन वापरू नये.

> > कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK