	A	प्रश्नपुस्ति प्रश्नपम्तिका BOOK	का क्रमांक LET NO.
		चाळणी परीक्षा	ग्रात्मण प्रथन • 80
रेळ :	: 3 (तीन) तास	विद्युत अभियांत्रिकी	एकूण गुण : 200
		्सूचना	
(1)	<u>सदर प्रश्नपुस्तिकत 80 आनवाय प्र</u> आहेत किंवा नाहीत याची खात्री क	<u>ाश्न आहेत.</u> उमेदवारानी प्रश्नाची उत्तर लिहिण्यास सुर फूलन घ्यावी - असा तसेच अन्य काही दोष आढळल्य	रुवात करण्यापूर्वी या प्रश्नेपुस्तिकेत सर्व प्रश्न यास ही पश्नपस्तिका समवेक्षकांकडन लगेच
	बदलून घ्यावी.	परीक्षा-क्रमांक	
(2)	आपला परीक्षा~क्रमांक ह्या चौकोनां	ia la	
(-)	न विसरता बॉलपेनने लिहावा.	ीं केंद्राची संकेताक्षरे	शेवटचा अंक
(3)	वर छापलेला प्रश्नपुस्तिका क्रमांक	तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील	सूचनेप्रमाणे न विसरता नमूद करावा.
(5)	काळ्या शाईचे बॉलपेन वापरावे, सर्व प्रश्नांना समान गुण आहेत. या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्	, पेन्सिल वा शाईंचे पेन वापरू नये. <u>ास्तव सर्व प्रश्नांची उत्तरे द्यावीत</u> . धाईमुळे चुका होणा न सोडविणे श्रेयस्कर आहे पण ए खादा प्रश्न कठीण	र नाहीत याची दक्षता घेऊनच शक्य तितक्या वाटल्यास त्यावर वेळन घालविता पुढील
	प्रश्नाकडे वळावे. अशा प्रकारे शे परतणे सोईस्कर ठरेल.	विटच्या प्रश्नापर्यंत पोहोचल्यानंतर वैळ शिल्लक रहि	इल्यास कठीण म्हणून वगळलेल्या प्रश्नॉकडे
(6)	उत्तरपत्रिकेत एकदा नमूद केलेले उत्त	तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने	े उत्तर दिल्यास ते तपासले जाणार नाही.
(7)	प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे तसेच ''उमेदवाराने वस्तुनिष्ठ ब नमूद करावीत. अन्यथा त्यांच करण्यात येतील''.	वे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेत बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार पर्याव या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकी	तील योग्य उत्तरांनाच गुण दिले जातील. यापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत च्या उत्तरांसाठी एका प्रश्नाचे गुण वजा
۰_	ा प्रश्नपत्रिकसाठा आयोगाने 1 रीक्षाकक्षात उमेदवाराला परीक्षे	ावाहत कलला वळ संपपयंत हो प्रश्नपुस्तिक ोसाठी वापरण्यास देण्यात येत आहे. ही वे	त आयागाचा मालमत्ता असून तो [2 lळ संपेपर्यंत सदर प्रश्नपस्तिकेची
्रह्य पर्य		स्तिकेतील काही आशय कोणत्याही स्व	किपात प्रत्यक्ष वा अप्रत्यक्षपणे
ह्य पर्न प्रत	त/प्रता, ाकवा सदर प्रश्नपु		
ह्य पर्ने प्रा क	त/प्रता, ाकवा सदर प्रश्नपु तेणत्याही व्यक्तीस पुरविणे, त	ासेच प्रसिद्ध करणे हा गुन्हा असून अशी वृ	त्ती करणाऱ्या व्यक्तविर शासनान

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

A					3			OL.		
1.	A tv port	vo port netwo 1 will be :	rk has t	ansmission p	arameter	s, the input in	npedance	e of the netwo		
	(1)	AD/BC	(2)	A/C	(3)	AB/DC	(4)	D/C		
2.	The synchronous speed of an 8 pole induction motor supplied power from a 50 Hz source will be :									
		1500 rpm	(2)	900 rpm	(3)	750 rpm	(4)	375 rpm		
	(1)	1500 1911								
3.	(1) A go facto whil	enerating static or of 50% and j e running as p	on has m plant use per the se	aximum dema e factor of 72% chedule, was f	and of 25 6. What is fully load	MW, load fac s the reserve c ed ?	tor of 60 apacity o	%, a plant capacit f plant if the plan		

(1)	$\int_{-\infty}^{0} f(t) dt < \infty$	(2)	$\int_{-\infty}^{\infty} f(t) dt < \infty$
(3)	$\int_{-\infty}^{\infty} f(t) dt = 0$	(4)	$\int_{-\infty}^{\infty} \left f(t) \right dt < \infty$

5. All the resistances in the circuit given are of R Ω each. The switch is initially open. What happens to the lamp's intensity when the switch is closed ?

SPACE FOR ROUGH WORK

P.T.O.

StudentBounty.com 4 **VO3** The slew rate of an op-amp is $0.5 \text{ V}/\mu s$. The maximum frequency of a sinusoidal input 6. $2 V_{rms}$ that can be handled without excessive distortion is : 30 kHz 200 kHz 3 kHz (3)(4) (1)(2)A shunt generator produces 450 amp at 230 V. The resistances of the shunt fields and armature 7. are 50 ohm and 0.025 ohm respectively. The armature voltage drop will be : 11.39 V 22.7 V 31.6 V 38.4 V (2)(3)(4) (1)Sensor outputs destined for a digital computer system must first be processed by : 8. (3) MPU PLD (1)D/A (2)A/D (4)In Scott connected transformer the number of primary and teaser turns respectively are : 9. (3) $(\sqrt{3}/2)$ N, N (4) N, $(\sqrt{3}/2)$ N N, $(2/\sqrt{3})$ N (2) N/2, N(1)10. A resistance of 12 ohms and inductance of 0.15 H and a capacitance of 1.0 microfarad are connected in series across a 100 V, 50 Hz supply. The power factor of the circuit will be : (3) leading (4) (1)unity (2) zero lagging A switch is connected in series with RL series circuit, a switch is closed at t = 0. The circuit 11. was initially relaxed. Which of the following sources of v(t) will produce maximum current at t = 0 + ?(1)unit step (2)unit ramp (3)unit impulse (4) exponential If the vector field $\overline{F} = (x + 2y + az)i + (-2x - 3y - z)j + (4x - y + 2z)k$ is irrotational then the 12. value of *a* is : (1)- 4 (2)3 (3) -3(4) 4 An open loop system represented by the transfer function G(s)=(s-1)/(s+2)(s+3) is : 13. stable and of the minimum phase type (1)(2)stable and of the non-minimum phase type unstable and of the minimum phase type (3) (4)unstable and of the non-minimum phase type 14. The maximum value of mutual inductance of two inductively coupled coils with self inductance $L_1 = 49$ H and $L_2 = 81$ H is : 130 mH (1)(2) 63 mH (3) 32 mH 2658 mH (4)

			_		_		
(1)	10 A	(2)	10/√2 A	(3)	10/√3 A	(4)	12.5 A

18. A single phase AC distributor supplies two single phase loads as shown in the given figure. The voltage drop from A to C is :

(3) $\nabla \phi . \overline{u} + \phi (\nabla . \overline{u})$ (4) $\nabla \phi \times \overline{u} - \phi (\nabla \times \overline{u})$

SPACE FOR ROUGH WORK

P.T.O.

	Ċ				6				00	
٧Ŭ	3				0		_			
20.	The	discrete time sy	stem de	scribed by	y(n) ==	$x(n^2)$	is :			
	(1) causal, linear and time invariant									
	(2)	causal, intear	anu um	time inve	L Ariant					
	(3) (4)	non-causal, lir	near and	l time vari	ant				,	
21.	In 2 0.02 the	20 kV system, t 54 H and 0.025 contacts of the c	the indu microfa circuit b	rad respective reaker, the	d capa tively. natura	acitano The 1 al freq	ce up to the lo resistance of 60 juency of oscill	cation o 0 ohm i ation wi	f circuit breaker is is connected across 11 be :	
	(1)	4.41 kHz	(2)	6.31 kHz		(3)	3.41 kHz	(4)	10 kHz	
22.	A D with	OC generator rur nout change in f	nning at lux, the	1600 rpm new e.m.f	gives . will l	240 V ce :	dc. If the spee	d is dro	opped to 1400 rpm	
	(1)	270 V	(2)	240 V		(3)	237 V	(4)	210 V	
3.	The	z-Transform of	sequenc	te { <i>f</i> (k)} is	define	d as :	· · · ·			
	(1)	$\sum_{k=-\infty}^{\infty} f(k)z$	(2)	$\sum_{k=-\infty}^{\infty} \frac{f(k)}{z^k}$		(3)	$\sum_{k=-\infty}^{\infty} f(k) z^k$	(4)	None of these	
24.	The	trigonometric F	ourier s	eries of a p	periodi	c time	function have	:		
	(1)	sine term		-	(2)	cosii	ne term			
	(3)	DC terms and	(1) and	i (2)	(4)	both	(1) and (2)			
25.	Atv	wo port network	: is defi	ned by the	relatio	ons I ₁ :	$= 2V_1 + V_2$ and	$I_2 = 2V_1$	$+3V_{2}$, then Z_{12} is	
	(1)	-1 ohm	(2)	-5 ohm		(3)	-0.5 ohm	(4)	None of these	
	A 3- AC	phase fully cont source and is op due to high loa	rolled b perating of induc	ridge conv at a firing tance. The will be :	erter v angle Input	vith fr of 600 Displa	eewheeling dio 2. The load curr acement Factor	de is fed ent is as (IDF) ar	from 400 V, 50 Hz ssumed constant a nd the Input Power	
26.	10 A Fact	or (IPF) of the c	0111 0110							
26.	10 A Fact (1)	or (IPF) of the c IDF = 0.867; II	PF = 0.82	28	(2)	IDF	=0.867; IPF=0	1.552		
26.	10 A Fact (1) (3)	or (IPF) of the c IDF = 0.867; II IDF = 0.5; IPF	PF = 0.82 = 0.478	28	(2) (4)	IDF	= 0.867; IPF = 0.3 = 0.5; IPF = 0.3	18		
26.	10 A Fact (1) (3)	or (IPF) of the control IDF = 0.867; II IDF = 0.5; IPF IDF = $r^3 \cos 3\theta + ir^2$	PF = 0.82 = 0.478 	28 is analytic.	(2) (4) then <i>i</i>	IDF IDF	= 0.867; IPF = 0.3 = 0.5; $\text{IPF} = 0.3$ ual to :	18		

									.00
A					7				ⁱ
28.	Two a loadii	amplifiers, one h ng. The approxi	aving mate ;	; voltage gai gain of two-	n of 4 stage	0 and ampli	the other of 20 fier will be :	are coup	oled with negligible
	(1)	20	(2)	40	U	(3)	60 .	(4)	800
29.	Махи	vell's divergence	equa	tion for the	magn	etic fi	eld is given by	:	
	(1)	$\nabla . \mathbf{B} = 0$	(2)	$\nabla . B = \rho$		(3)	$\nabla \times B = 0$	(4)	$\nabla \times B = \rho$
30.	In the	e network show	n, wh	at is the cur	rent I	in the	e direction show	wn ?	
			λ.						
			V T						
		$v \leq I$	Ś						
									
	(1)	0 A	(2)	1/3 A		(3)	5/6 A	(4)	4 A
							and its from		
31.	A D.C	C. Chopper has a	a TON	I (time to go	onj e	of 1 m	sec and its neg	uency is	5 500 Fiz. what will
31.	A D.C be its (1)	C. Chopper has a duty cycle ? 100%	a TON	I (time to go	(2)	of 1 m 50%	sec and its freq	uency is	, sou riz. what will
31.	A D.C be its (1) (3)	C. Chopper has a duty cycle ? 100% 25%	a TON	l (time to go	(2) (4)	of 1 m 50% info	rmation is insu	fficient	5 500 Fiz. What will
31.	A D.C be its (1) (3) An as	2. Chopper has a duty cycle ? 100% 25% stable multivibr	a TON	I (time to go equires	(2) (4)	50 % 50 % info:	rmation is insu	fficient	. 500 Fiz. What will
31. 32.	A D.0 be its (1) (3) An as (1)	2. Chopper has a duty cycle ? 100% 25% stable multivibr balanced time o	a TON ator r	I (time to go equires nts	(2) (4) (2)	50% 50% info a pa	rmation is insu	fficient	ors
31.	A D.C be its (1) (3) An as (1) (3)	 Chopper has a duty cycle ? 100% 25% stable multivibr balanced time o no input signal 	a TON	l (time to go equires nts	(2) (4) (2) (2) (4)	50 % 50 % info a pa dual	ir of matched f	fficient	9 500 Fiz. What will
31. 32. 33.	A D.C be its (1) (3) An as (1) (3) A 3-p	 Chopper has a duty cycle ? 100% 25% stable multivibr balanced time o no input signal whase breaker is 	a TON ator r consta rated	I (time to go equires nts at 2000 MV	(2) (4) (2) (4) (4) (4)	50 % 50 % info a pa dual kV its	ir of matched to J-K flip-flops	fficient transisto	ors
31. 32. 33.	A D.C be its (1) (3) An as (1) (3) A 3-p (1)	2. Chopper has a duty cycle ? 100% 25% stable multivibr balanced time o no input signal whase breaker is 35000 A	a TON ator r consta rated (2)	I (time to go equires nts at 2000 MV 49000 A	(2) (4) (2) (4) (4) (4)	50 % 50 % info a pa dual kV its (3)	ir of matched to J-K flip-flops making current 70000 A	fficient transisto nt will k	ors 900 A
31. 32. 33. 33.	A D.C be its (1) (3) An as (1) (3) A 3-p (1) In any	2. Chopper has a duty cycle ? 100% 25% stable multivibr balanced time o no input signal whase breaker is 35000 A y transmission l	a TON ator r consta rated (2) ine, A	I (time to go equires at 2000 MV 49000 A AD-BC =	(2) (4) (2) (4) (4) (4)	50 % info a pa dual kV its (3)	ir of matched to J-K flip-flops s making current 70000 A	fficient transisto nt will k (4)	ors 99000 A

P.T.O.

StudentBounty.com A sample power system network is shown in the given figure. The reactance are marked 35. p.u. The per unit value of Y_{22} of the bus admittance matrix (Y_{bus}) is :

A half-controlled single-phase bridge rectifier is supplying an R-L load. It is operated at a 36. firing angle α and the load current is continuous. The fraction of cycle that the free wheeling diode conducts is :

(1)	1/2	(2) $1 - \alpha / \pi$	(3) $\alpha/2\pi$	(4) α/π
(~)	-/ -	(-),	(-), =	(-) ,

The feedback system shown below oscillates at 2 rad/s when : 37.

- 38. The open loop transfer function G(s) of a unity feedback control system is given as, $G(s) = [K^*(s+2/3)/s^2(s+2)]$. From the root locus, it can be inferred that when K tends to positive infinity :
 - three roots with nearly equal real parts exist on the left half of the s-plane (1)
 - one real root is found on the right half of the s plane (2)
 - the root loci cross the j ω axis for a finite value of K; K $\neq 0$ (3)
 - (4) three real roots are found on the right half of the s - plane

39. For an SCR, dv/dt protection is achieved through the use of :

- (1)R in series with SCR RL in series with SCR (2)
- L in series with SCR RLC in series with SCR (3) (4)

SPACE FOR ROUGH WORK

VO₃

8

								STEL A				
					•			CENTRO				
A					9			TH.				
40.	Whe	When the reverse voltage across a p-n junction is gradually decreased, the depletion region (1)										
	(1)	 (1) does not change in width (2) initially improved up to a contain width and then doesn't in the second state of the se										
	(2)	 (2) initially increases up to a certain width and then decreases (3) continuously increases in width 										
	(3)	continuousl	y increase	s in width								
	(4)	continuousl	y decreas	es in width		_						
41.	The	latching curr	ent of SCI	R is 18 mA. It	ts holding	current will	be :					
	(1)	16 mA	(2)	18 mA	(3)	54 mA	(4)	None of these				
42.	The Laplace transform of a function $f(t)$ is $F(s) = \frac{5s^2 + 23s + 6}{s(s^2 + 2s + 2)}$ as $t \to \infty$, $f(t)$ approaches :											
					5	(5 + 25 + 2	2)					
	(1)	3	(2)	5	(3)	<u>17</u>	(4)	8				
				•								
43.	A m	ultiplexer is a	a logic circ	cuit that :								
	(1)	accepts one	input and	l gives severa	al outputs							
	(2)	accepts mar	y inputs a	and gives ma	any outpu	ts						
	(3)	accepts mar	y inputs a	and gives one	e output							
	(4)	accepts one	input and	l gives one oi	utput							
44.	A g	enerating stat	ion has th	ne maximum	demand	of 75 MW, a	a load facto	or of 60%, find the				
	(1)	45 MM	(2)	11 NAW	(2)	0.41 1.4147	(4)	125 14147				
	(1)	45 101 00		41 IVI VV	(3)	0.41 1/1//	(*) 	125 WIW				
45.	For cond	the successfu dition is that 1	l parallel heir :	operation of	two sing	le phase tra	nsformers,	the most essentia				
	(1)	percentage	impedanc	es are equal								
	(2)	turns ratio a	are exactly	v equal								
	(3)	KVA rating	s are equa	ıl								
	(4)	polarities ar	e properly	y connected								

				Certa Control 100
03	•		10	Out.
6.	In 3-ph DC volt	ase controlled brid	lge rectifier, wi	ith an increase of overlap angle, the output
	(1) de	ecreases	(2)	does not change
	(2) ·		(4)	depende upon load inductance

(1)	10 MVA	(2)	30 MVA	(3)	3000 MVA	(4)	1000 MVA
\+J	10 101 111	(~)	00 111 111	(0)		(-)	2000

48. In the bridge given in the figure, the voltage across A-B terminals is :

49. The second order homogeneous equation $y'' + \frac{1}{x}Ay' + \frac{1}{x^2}By = 0$ with A and B constant is called :

- (1) Legendre Equation (2) Cauchy Equation
- (3) Euler's Equation (4) Transcendental Equation
- **50.** A 3 ph delta/star transformer is supplied at 6000 V on the delta connected side. The terminal voltage on secondary side when supplying full load at 0.8 lagging p.f. is 415. The equivalent resistance and reactance drop for the transformer are 1% and 5% respectively. The turn's ratio of the transformer is :
 - (1) 14 (2) 12 (3) 42 (4) None of these
- 51. For a three phase induction motor input power on no load is $W_0 = 600$ watts and windage and friction losses $W_f = 183$ watts. The stator copper losses will be equal to :

(1)	783	(2)	600	(3)	183	(4)	517
-----	-----	-----	-----	-----	-----	-----	-----

StudentBounty.com 52. If f(z) is analytical on and within a closed contour 'c' expect a finite number of isolate singular points within 'c' then $\oint f(z) dz$ is :

(1)
$$2\pi \sum_{m=1}^{n} r_m$$
 (2) $\pi i \sum_{m=1}^{n} r_m$ (3) $\frac{2\pi i}{3} \sum_{m=1}^{n} r_m$ (4) None of these

53. Two 11 kV, 20 MVA, three phase star connected generator operated in parallel the positive, negative and zero sequence reactance of each j36, j30, j20 p.u. The star point of generator is isolated and that of the other is earthed to 2 ohm resistor. The single line to ground fault occurs at the terminals of one generator. The fault current will be :

Which mode of operation is being used when a 555 timer chip has two external resistors and 54. an external capacitor ?

(1)	monostable	(2)	pulse stretching
(3)	Schmitt triggering	(4)	astable

- An n-channel JFET has pinch-off voltage $V_p = -4$ volts. Given $V_{GS} = -1$ V, the minimum 55. V_{DS} for the device to operate in the pinch-off region will be :
 - +1 V (2)+3 V (3) +4 V (4) +5 V (1)
- The distribution system shown in figure below is to be protected by over current system of 56. protection. For proper fault discrimination directional over current relays will be required at locations :

In a thyristor D.C. chopper, which type of commutation results in best performance ? 57.

- Voltage commutation (2)Current commutation (1)
- Load commutation (4) Supply commutation (3)

SPACE FOR ROUGH WORK

Α

StudentBounty.com 12 VO3 Steady state stability of a power system is the ability of power system to : 58. maintain voltage at rated voltage level (1)(2)maintain frequency exactly at 50 Hz maintain a spinning reserve margin at all times (3)(4) maintain synchronism 59. The per unit impedance of a synchronous machine is 0.242. If base voltage is increased by 1.1 times, the per unit value will be : 0.250 0.200 0.269 0.242 (3)(4) (1)(2)System described by y(n) = x(n) + x(n-2) is : 60. (1) Causal Non-causal Both (1) and (3)(2)(3) Arbitrary · (4) Coefficient of correlation between the variables x and y is 0.8 and their covariance is 20, the 61. variance of x is 16. Standard Deviation of y is : 6.75 8.25 (3)7.5 (4) 6.25 (1)(2)The leakage resistance of a 50 km long cable is 1 M Ω , for 100 km long cable it will be : 62. $1 M\Omega$ $2 M\Omega$ $0.88 M\Omega$ None of these (1)(2)(3)(4) 63. Digital voltmeter measures : (1)peak value (2)rms value (3)peak to peak value (4)average value A DC motor develops a torque of 140 N-m at 1400 rpm. If the motor now runs at 1000 rpm, **64**. the torque developed will be : (1)1400 N-m (2)1000 N-m (3)140 N-m (4) 410 N-m A three phase induction motor has a copper loss of 800 watts and slip of 4%. The rotor input 65. must be : 8 kW 0.2 kW (1)(2)4 kW (3) 2 kW (4) SPACE FOR ROUGH WORK

13

StudentBounty.com A MOSFET rated for 15 A, carries a periodic current as shown in figure. The ON state resista 66. of the MOSFET is 0.15 Ω . The average ON state loss in the MOSFET is :

- If $x[n] = \frac{1^n}{3} \frac{1^n}{2}u[n]$, then the Region Of Convergence (ROC) of its z transform in the 67. z-plane will be :
 - (1) 1/3 < |z| < 3(2) 1/3 < |z| < 1/2
 - (3) 1/2 < |z| < 3(4) 1/3 < |z|
- A 2 kVA transformer has iron loss of 150 watts and full load copper loss of 250 watts. The 68. maximum efficiency of the transformer would occur when the total loss is :

(1)	500 watts	(2)	300 watts	(3)	400 watts	(4)	275 watts
-----	-----------	-----	-----------	-----	-----------	-----	-----------

The given system of linear equation x - 4y + 5z = -1, 2x - y + 3z = 1, 3x + 2y + z = 3 has : 69.

- No solution (1)Unique solution (2)
- Infinitely many solutions n-r solution (3) (4)
- 70. A single phase energy meter is operating on 230 V, 50 Hz, supply with a load of 20 amp. For two hours at UPF. The meter makes 1380 revolutions in that period. The meter onstant is :
 - 105 rev/kWh (3) 1/150 rev/kWh (1)0.15 rev/kWh (2)150 rev/kWh(4)
- Four identical alternators each rated for 20 MVA, 11 kV, having a subtransient reactance of 71. 16% are working in parallel. The short circuit level at the bus bar is :

125 MVA 80 MVA 500 MVA 400 MVA (4) (1)(2)(3)

SPACE FOR ROUGH WORK

Α

									IL.	
VO	/O3								CITEO	
72.	The	The solution of $e^{dy/dx} = x$ is :							513	
	(1)	y = x + c			(2)	y = e	^x + c			
	(3)	y = x log x + c			(4)	y = x	$log\left(\frac{x}{e}\right) + c$			
73.	The syst	The corona loss on a particular system at 50 Hz is 1 kW/ph/km. The corona loss on the same system with the supply frequency 25 Hz will be :								
	(1)	1 kW/ph/km			(2)	0.5 k	W/ph/km			
	(3)	0.667 kW/ph/k	m		(4)	1.662	7 kW/ph/k	m		
74.	The	The Fourier transform of a signal h(t) is H(j ω) = (2 cos ω) (sin 2 ω)/ ω . The value of h(0) is :								
	(1)	1/4	(2)	1/2		(3)	1	(4)	2	
75.	The (1)	The input $x(t)$ of a system are related as $y(t) = \int_{-\infty}^{t} x(\tau) \cos(3\tau) d\tau$. The system is : (1) time-invariant and stable (2) stable and not time-invariant								
	(3)	time-invariant a	nd n	ot stable	(4)	not f	ime-invaria:	nt and not st	able	
76.	In si	In signal flow graph of figure y/x equals :								
	x	5 2	1	y						

- (1) 3 (2) 5/2 (3) 2 (4) 3/2
- 77. If z = np where *n* is the number of trial is very large *p* probability of success at each trial, then Poisson's probability distribution p(r) probability of *r* successes is given by :
 - (1) $\frac{e^{z}z}{r!}$ (2) $\frac{e^{-z}z^{r}}{r}$ (3) $\frac{e^{-z}z^{r}}{r!}$ (4) $\frac{e^{z}z^{r}}{r!}$

			Studenteo						
4		15	E						
78.	The value of resistance 'R' in the circuit shown is varied in such a manner that the power dissipated in the 3 ohm resistor is maximum. Under this condition the value of 'R' will be :								
	20 V - R - 3 ohn	1							
	(1) 9 ohm (2) 3 ohm	(3) 12 ohm	(4) 6 ohm						

- (1) $20/\sqrt{3}$ (2) $10/\sqrt{3}$ (3) $20\sqrt{3}$ (4) 10√3
- 80. Solution of equation $y' = x^2 + y^2$ for x = 0.25 and x = 0.5 given y(0) = 1: (1) 1.37 and 1.97 (2) 1.33 and 1.81 (3) 1 and 2 (4) 1.21 and 1.37

-000-

SPACE FOR ROUGH WORK

.

P.T.O.

www.StudentBounty.com

VO₃

सूचना --- (पुछ 1 वरून पुढे....)

- StudentBounts.com प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर (8) कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतःबरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न Pick out the correct word to fill in the blank : Q. No. 201. I congratulate you ______ your grand success. (1)for (2)(4) about at (3) on ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''(3)'' हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे. प्र. क्र. 201. (1)(2)(4) अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाल स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये. कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK