			2014	प्रश्नपुस्तिका क्रम	CODE		une
		Ţ	।श्रनपुास्तका <u> </u>	BOOKLETN	О.	·	
		च	ळणा पराक्षा		τ	रकूण प्रश्न : 80	
ळ	: 3 (तीन) तास 	स्वयंच	ल अभियात्रि	को	<u> </u>	कूण गुण : 200)
			सूचना			_	
(1)	<u>सदर प्रश्नपुस्तिकेत 80 अनिवा</u> आहेन सिंजा नाहीन जानी रा	<u>र्य प्रश्न आहेत.</u> उमेदव ते जनन राण्ड ी अप	शरांनी प्रश्नांची उत्तरे प्रचलेन अन्य उत्तरे	लिहिण्यास सुरुवात कर	ण्यापूर्वी या प्रश सन्दर्भनान न	नपुस्तिकेत सर्व प्रश्न स्रोक्स्निकत सर्व प्रश्न	न
	आहत किंवा नाहात याचा खार बदलन घ्यावी	भाकरून व्यावा. अस् [<u>।। तसच अन्य काहा</u> 	<u>दाष आ</u> ढळल्यास हा प्र	<u>श्नपु</u> ास्तका स 	मवक्षकाकडून लगच 	4
			पराक्षा-क्रमाक				
(2)	आपला परीक्षा-क्रमांक ह्या चौव	कोनांत	یا د			个 शेवटचा अंक	ক
	न । वसरता बालपनन । लहावा.	·	कंद्र	<u>। च। सकताक्षर</u>			게
(3)	वर छापलला प्रश्नपुस्तिका क्रम	ाक तुमच्या उत्तरपत्रिके	वर ावाशष्ट जागी उ	तरपात्रकवराल सूचनेप्रम	ाण न विसरत	ा नमूद करावा.	1 200
(5)	उत्तरक्रमांक नमूद करताना तो र काळ्या शाईचे बॉलपेन वाप सर्व प्रश्नांना समान गुण आहेत. वेगाने प्रश्न सोडवावेत. क्रमाने	संबंधित प्रश्नक्रमांकास रावे, पेन्सिल वा शाई <u>यास्तव सर्व प्रश्नांची</u> प्रश्न सोडविणे श्रेयस्व	मोर छायांकित करून चि पेन वापरू नये. <u>उत्तरे द्यावीत</u> . घाईम् कर आहे पण एखादा	र दर्शविला जाईल याची व्रे चुका होणार नाहीत प्रश्न कठीण वाटल्या	काळजी घ्याव याची दक्षता घे स त्यावर वेळ	त्री. ह्याकरिता फक्त ऊनच शक्य तितक्य न घालविता पुढील	ला हे सीत ना हे सीत
	प्रश्नाकडे वळावे. अशा प्रक परतणे सोईस्कर ठरेल.	रि शेवटच्या प्रश्नापर्यंत	। पोहीचल्यानंतर वेळ	शिल्लक रहिल्यास व	ठीण म्हणून व	गळलेल्या प्रश्नांकड	ग्ने वि
(6)	उत्तरपत्रिकेत एकदा नमूद केलेले	ठे उत्तर खोडता येणार न	ाही. नमूद केलेले उत्त	खोडून नव्याने उत्तर दिल्	त्यास ते तपासत	ले जाणार नाही.	
(7)	प्रस्तुत परीक्षेच्या उत्तरपत्रिव तसेच''उमेदवाराने वस्तुनिष नमूद करावीत. अन्यथा त करण्यात येतील''.	ठांचे मूल्यांकन करत ठ बहुपर्यायी स्वरूप वांच्या उत्तरपत्रिकेत 	ताना उमेदवाराच्या ाच्या प्रश्नांची दिले सोडविलेल्या प्रत्येव	उत्तरपत्रिकेतील योग ल्या चार पर्यायापैकी स क चार चुकीच्या उत्त	य उत्तरांनाच ार्वात योग्य उ रांसाठी एका	गुण दिले जातील त्तरेच उत्तरपत्रिकेत प्रश्नाचे गुण वज	स्काच्या -
	-		ताकीद	· ·	•		
	। प्रश्नपत्रिकसाठा आयोगा	न ावाहत कलला ³ ग्रिक्षेसाठी वापरण्या	वळ सपपयंत हो स देण्यात येत उ	प्रश्नपुास्तका आयो भाहे. ही वेळ संपेप पत्याही स्वरूपात	गाचा मालम ार्यंत सदर प्र प्रत्यक्ष वा	।त्ता असून ता ग्रुनपुस्तिकेची अप्रत्यक्षपणे	पर्दः
ह्या पर्र प्रत को	ोक्साकक्षात उमेदवाराला पर् त/प्रती, किंवा सदर प्रश् ोणत्याही व्यक्तीस पुरविणे,	नपुस्तिकेतील का तसेच प्रसिद्ध क	ही आशय कोप रणे हा गुन्हा अस्	्न अशी कृती कर	गाऱ्या व्यक्त	गीवर शासनाने	LJ
ह्या पर्र प्रत को जा	ोक्षाकक्षात उमेदवाराला पर् त/प्रती, किंवा सदर प्रश् ोणत्याही व्यक्तीस पुरविणे, ारी केलेल्या ''परीक्षांमध्य	नपुस्तिकेतील का तसेच प्रसिद्ध क ो होणाऱ्या गैरप्रव	ही आशय कोप रणे हा गुन्हा अस् कारांना प्रतिबंध	्न अशी कृती कर करण्याबाबतचा	गाऱ्या व्यक्त अधिनियम-	गीवर शासनाने 82'' यातील	LJ
ह्या पर्र प्रत को जा तर	ोक्षाकक्षात उमेदवाराला पर् त/प्रती, किंवा सदर प्रश् ोणत्याही व्यक्तीस पुरविणे, ारी केलेल्या ''परीक्षांमध्य तुदीनुसार तसेच प्रचलित	नपुस्तिकेतील को तसेच प्रसिद्ध क होणाऱ्या गैरप्रव कायद्याच्या तरतुद	ही आशय कोप रणे हा गुन्हा अस् फारांना प्रतिबंध ीनुसार कारवाई	्न अशी कृती कर करण्याबाबतचा करण्यात येईल व	गाऱ्या व्यक्त अधिनियम- दोषी व्यक्त	गीवर शासनाने 82'' यातील ो कमाल एक	LJ

a a diama panakana maganaga ta di kata a

2. When heat is supplied at constant volume of a gas, it :

- increases the internal energy (2) increases the temperature
- (3) does some external work (4) All of the above
- 3. For ductile materials, the most appropriate failure theory is :
 - (1) Maximum shear stress theory

(1)

- (2) Maximum principal stress theory
- (3) Maximum principal strain theory
- (4) Shear strain energy theory
- 4. In case of closed coil spring carrying an axial loading, the spring is subjected to :
 - (1) Torsion, axial stress and bending moment
 - (2) Torsion and axial stress
 - (3) Torsion and bending moment
 - (4) Axial stress and bending moment
- 5. Connecting rod is made from :
 - (1) Low carbon steel (2) High carbon steel
 - (3) Medium carbon steel (4) High speed steel

UO	3		4	
ó.	The	materials used for cylinder block a	re :	
	(1)	Cast iron and steel	(2)	Cast iron and aluminium alloy
	(3)	Steel and aluminium alloy	(4)	Brass and steel
•	The	stroke of an engine is the :		
	(1)	Volume of the cylinder	(2)	Length of connecting rod
	(3)	Internal diameter of the cylinder	(4)	Distance between T.D.C and B.D.C
•	The	thermodynamic cycle on which pe	trol e	engine works, is :
	(1)	Otto cycle (2) Joule cycle	2	(3) Dual cycle (4) Rankine cycle
	Auto	omobile radiator is a heat exchange	er of :	:
	(1)	Counter flow type	(2)	Parallel flow type
	(3)	Cross flow type	(4)	Regenerator type
).	Whi	ch of the following is the inversion	of de	ouble slider crank chain ?
	(1)	Whitworth Quick Return	(2)	Pendulum Pump
	(3)	Oldham's Coupling	(4)	Rotary engine
1.	In a	4-stroke I.C. Engine, the turning m	omer	nt during the compression stroke is :
	(1)	Positive throughout	(2)	Positive during major portion of stroke
	(3)	Negative throughout	(4)	Negative during major portion of stroke
2.	Ном	v many cells are used in a 12 V car	batte	ery ?
	(1)	2 (2) 4		(3) 6 (4) 8

 De - dion McPherson Strut he engine oil level should be checked engine is idling engine is running at high speed he purpose of a thermostat valve in prevent the coolant from boiling allow the engine to warm up q indicate the coolant temperatu pressurize the system to raise b 	(2) (4) ed while (2) d (4) an eng g uickly re poiling p	Swinging half axle Radius rod e: engine is just stopped few minutes after engine has stopped gine cooling system is to :
 De - dion McPherson Strut he engine oil level should be checked engine is idling engine is running at high speed he purpose of a thermostat valve in prevent the coolant from boiling allow the engine to warm up q indicate the coolant temperatu pressurize the system to raise b 	(2) (4) ed while (2) d (4) an eng g uickly re poiling p	Swinging half axle Radius rod e: engine is just stopped few minutes after engine has stopped gine cooling system is to :
 De - dion McPherson Strut he engine oil level should be checked engine is idling engine is running at high speed he purpose of a thermostat valve in prevent the coolant from boiling allow the engine to warm up q indicate the coolant temperatu 	(2) (4) ed while (2) d (4) an eng g uickly re	Swinging half axle Radius rod e : engine is just stopped few minutes after engine has stopped gine cooling system is to :
 De - dion McPherson Strut he engine oil level should be checked engine is idling engine is running at high speed he purpose of a thermostat valve in prevent the coolant from boiling allow the engine to warm up q 	(2) (4) ed while (2) d (4) an eng g uickly	Swinging half axle Radius rod e : engine is just stopped few minutes after engine has stopped gine cooling system is to :
 De - dion McPherson Strut he engine oil level should be checked engine is idling engine is running at high speed he purpose of a thermostat valve in prevent the coolant from boiling 	(2) (4) ed while (2) d (4) an eng	Swinging half axle Radius rod e: engine is just stopped few minutes after engine has stopped gine cooling system is to :
 De - dion McPherson Strut he engine oil level should be checked engine is idling engine is running at high speed he purpose of a thermostat valve in 	(2) (4) ed while (2) d (4) an eng	Swinging half axle Radius rod e : engine is just stopped few minutes after engine has stopped gine cooling system is to :
 De - dion McPherson Strut he engine oil level should be checked engine is idling engine is running at high speed 	(2) (4) ed while (2) d (4)	Swinging half axle Radius rod e : engine is just stopped few minutes after engine has stopped
 De - dion McPherson Strut he engine oil level should be checked engine is idling 	(2) (4) ed while (2)	Swinging half axle Radius rod e : engine is just stopped
 De - dion McPherson Strut he engine oil level should be checked 	(2) (4) ed while	Swinging half axle Radius rod
l) De - dion 3) McPherson Strut	(2) (4)	Swinging half axle Radius rod
l) De - dion	(2)	Swinging half axle
Which of the following is a type of f	ront ind	lependent suspension, for front wheel drive
3) Sliding mesh gear box	(4)	Epicyclic gear box
1) Synchromesh gear box	(2)	Constant mesh gear box
ouble declutching process is emplo	yed in :	:
3) Calorific value	(4)	None of these
1) Cetane number	(2)	Octane number
he ignition quality of diesel oil is ex	pressed	l by :
	5	4
1 1 3 1 3 3 3	ne ignition quality of diesel oil is ex) Cetane number) Calorific value puble declutching process is emplo) Synchromesh gear box) Sliding mesh gear box	5 ne ignition quality of diesel oil is expressed) Cetane number (2)) Calorific value (4) puble declutching process is employed in) Synchromesh gear box (2)) Sliding mesh gear box (4)

t de ser

1.14

P.T.O.

UO	3				6					
9.	In s	teering geometr	y, Inclu	ded Angle is	s the	sum o	f :			
	(1)	Camber and	Castor		(2)	Cast	or and S.A.	.I.		
	(3)	Camber and	5.A.I.		(4)	Carr	ber and To	e - in		
20.	Dur	ing braking, the	brake	shoe is move	ed ou	Itward	to force the	e linin	ng aga	inst the :
	(1)	Wheel piston	or cylir	ıder	(2)	Anc	hor pin			
	(3)	Brake drum			(4)	Whe	el rim or ax	de		
21.	Мо	se test is perfor	med on	an I.C. Engi	ine to	find				
	(1)	Indicated Pov	ver		(2)	Brak	æ Power			
	(3)	Frictional Pov	ver		(4)	Brak	e Mean Eff	ective	Press	ure
22.	The	plane of maxim	um she	ear stress has	s nor	mal st	ress that is :			
	(1)	Maximum	(2)	Minimum		(3)	Zero		(4)	None of these
23.	The to a	strain energy st central concent	ored in rated lo	a simply sup ad 'W' is :	port	ed bea	m of span 'I	L' and	l flexu	ral rigidity 'EI' due
	(1)	W ³ L ³ /48 EI	(2)	W ² L ² /48 H	EI	(3)	W ³ L ³ /96	EI	(4)	W ² L ³ /96 EI
24.	Crit	ical or Whirling	speed	is the speed	at wl	uich th	e shaft tend	ls to v	vibrate	violently in :
	(1)	Transverse di	rection	-	(2)	Long	gitudinal di	rectio	n	
	(3)	Linear direction	on		(4)	Non	e of the abo	ve		
25.	Whi	ch of the follow	ing is a	self aligning	g bea	ring ?				
			(2)	n. 1		(0)	C 1 · 1	(4)	ът.	

				Stel
				CENTR
Μ.			7	OHI
26.	The	transmission shaft subjected to	bending	loads must be designed on the basis of :
	(1)	Maximum normal stress theo	ory	
	(2)	Maximum shear stress theor	y	
	(3)	Both (1) and (2)		
	(4)	Maximum distortion energy	theory	
27.	A cl beca	utch plate of an automobile is ouse :	designed	on the assumption of uniform wear conditions
	(1)	It is closer to real life situation	n (2)	It leads to a safer design
	(3)	It leads to cost - effective des	ign (4)	No other assumption is possible
28.	Ode	ometer is an instrument used fo	or measure	ement of :
	(1)	Power (2) Fuel consum	nption	(3) Engine rpm (4) Distance
29.	The to :	gear shift lever requires two se	eparate m	otions to shift gears in which the first motion is
	(1)	move synchronizer	(2)	select synchronizer
	(3)	mesh the gear	(4)	operate the clutch
30.	Whe	en a gear box has four forward	and one	reverse speed, it is said to be :
	(1)	3 speed gear box	(2)	4 speed gear box
	(3)	5 speed gear box	(4)	6 speed gear box
31.	In a	single dry plate clutch, the tor	sional vib	rations are absorbed by :
• • •				
	(1)	Coil springs	(2)	Cushion springs

SPACE FOR ROUGH WORK

.

	•		0	24
UO	3		8	
32.	Elec	trolyte used in a Lead Acid Battery is	:	
	(1)	Diluted Sulphuric Acid (2	2)	Diluted Nitric Acid
	(3)	Diluted Hydrochloric Acid (4	ł) 	Pure Water
33.	The	positive plate of car battery is made o	of ;	
	(1)	Lead Sulphate (2) Pure Lead		(3) Lead Chloride (4) Lead Peroxide
34.	The	two kinds of piston rings are :		
	(1)	Compression and oil control (2	2)	Compression and sliding seal
	(3)	Oil scrapper and oil control (4	•)	Pressure and sealing
35.	ln a	petrol engine, the high voltage for spa	ark	plug is in the order of :
	(1)	1000 volts (2) 2000 volts		(3) 11 kV (4) 22 kV
36.	Whe	en IP and FP of an engine are known,	we	can calculate :
6.	Whe (1)	en IP and FP of an engine are known, Brake power (2	we !)	can calculate : Compression ratio
36.	Whe (1) (3)	en IP and FP of an engine are known, Brake power (2 Specific air consumption (4	we !)	can calculate : Compression ratio Mean effective pressure
36.	Whe (1) (3) The	en IP and FP of an engine are known, Brake power (2 Specific air consumption (4 starting system of a vehicle includes :	we !)	can calculate : Compression ratio Mean effective pressure
36.	Whe (1) (3) The (1)	en IP and FP of an engine are known, Brake power (2 Specific air consumption (4 starting system of a vehicle includes : Battery, starter and ignition switch	we ?)	can calculate : Compression ratio Mean effective pressure
36.	Whe (1) (3) The (1) (2)	en IP and FP of an engine are known, Brake power (2 Specific air consumption (4 starting system of a vehicle includes : Battery, starter and ignition switch Battery, distributor and ignition swi	we 2) 2)	can calculate : Compression ratio Mean effective pressure
	Whe (1) (3) The (1) (2) (3)	en IP and FP of an engine are known, Brake power (2 Specific air consumption (4 starting system of a vehicle includes : Battery, starter and ignition switch Battery, distributor and ignition swi Battery, starter and distributor	we () () (tch	can calculate : Compression ratio Mean effective pressure
36.	Whe (1) (3) The (1) (2) (3) (4)	en IP and FP of an engine are known, Brake power (2 Specific air consumption (4 starting system of a vehicle includes : Battery, starter and ignition switch Battery, distributor and ignition swi Battery, starter and distributor Distributor, starter and ignition swit	we ?) ?) tch	can calculate : Compression ratio Mean effective pressure
36. 37. 38.	Whe (1) (3) The (1) (2) (3) (4) The	en IP and FP of an engine are known, Brake power (2 Specific air consumption (4 starting system of a vehicle includes : Battery, starter and ignition switch Battery, distributor and ignition swi Battery, starter and distributor Distributor, starter and ignition swit ignition coil is used to :	we () (tch	can calculate : Compression ratio Mean effective pressure
36.	Whe (1) (3) The (1) (2) (3) (4) The (1)	en IP and FP of an engine are known, Brake power (2 Specific air consumption (4 starting system of a vehicle includes : Battery, starter and ignition switch Battery, distributor and ignition swit Battery, starter and distributor Distributor, starter and ignition swit ignition coil is used to : Step up current (2)	(we)) (tch tch	can calculate : Compression ratio Mean effective pressure Step down current

2

~

								<i>o</i> .			
М				9)			4ng			
9 .	The ther	rmal equilibriun e is no change ii	n betw 1 :	een two or more	bodie	es exists, when t	ney are	e brought toge			
	(1)	Density	(2)	Pressure	(3)	Temperature	(4)	All of the above			
ŧ0.	A cycle consisting of one constant pressure, one constant volume and two isentropic processes is known as :										
	(1)	Carnot cycle	(2)	Stirling cycle	(3)	Otto cycle	(4)	Diesel cycle			
1.	Bena bena	ding moment 'M Jing stress equal	1' and s to ma	torque 'T' is ap aximum shear str	plied o ess de	on a solid circul veloped, then M	ar shaf is equ	t. If the maximum al to :			
	(1) T/2 (2) T (3) 2T (4) 4T										
12.	(1) The to th	T/2 coefficient of roll ne truck is :	(2) ing res	T istance for a truck	(3) 	2T ning 63,500 N is 0	(4) .018. Th	4T			
2.	(1) The to th (1)	T/2 coefficient of roll a truck is : 1.143 N	(2) ing res (2)	T istance for a truck 11.43 N	(3) 	2T ning 63,500 N is 0 114.3 N	(4) .018. Th (4)	4T ne rolling resistance 1143 N			
2.	(1) The to th (1) A gr	T/2 coefficient of roll he truck is : 1.143 N radient resistance	(2) ing res (2) e to a v	T istance for a truck 11.43 N rehicle having a p	(3) < weigh (3) mass o	2T ning 63,500 N is 0 114.3 N of 980 kg moving	(4) .018. Th (4) on an	4T ne rolling resistance 1143 N incline of 10° is :			
2.	(1) The to th (1) A gr (1)	T/2 coefficient of roll ne truck is : 1.143 N radient resistance 1.6694 N	(2) ing res (2) e to a v (2)	T istance for a truck 11.43 N rehicle having a r 16.694 N	(3) < weigh (3) mass o (3)	2T ning 63,500 N is 0 114.3 N of 980 kg moving 166.94 N	(4) .018. Th (4) on an (4)	4T ne rolling resistance 1143 N incline of 10° is : 1669.4 N			
12. 13.	 (1) The to the to t	T/2 coefficient of roll te truck is : 1.143 N radient resistance 1.6694 N etrol engine of a having gear rati	(2) ing res (2) e to a v (2) car de o of 1.7 ue at t	T istance for a truck 11.43 N rehicle having a r 16.694 N velops 125 N-m 5. The final drive he driving wheel	(3) (3) (3) (3) (3) (3) torque eratio i ls is :	2T ning 63,500 N is 0 114.3 N of 980 kg moving 166.94 N e at 2700 rpm. Th s 4.11. If the over	(4) .018. Th (4) on an (4) ne car i all tran	4T ne rolling resistance 1143 N incline of 10° is : 1669.4 N s driven in second smission efficiency			
4 .	 (1) The to the to t	T/2 coefficient of roll he truck is : 1.143 N radient resistance 1.6694 N etrol engine of a having gear rati 0%, then the torg 8.091 N-m	 (2) ing res (2) e to a v (2) car de o of 1.7 ue at t (2) 	T istance for a truck 11.43 N rehicle having a r 16.694 N velops 125 N-m 5. The final drive he driving wheel 80.91 N-m	(3) (3) (3) (3) torque ratio i ls is : (3)	2T ning 63,500 N is 0 114.3 N of 980 kg moving 166.94 N e at 2700 rpm. Th s 4.11. If the over 809.1 N-m	(4) .018. Th (4) on an (4) ne car i all tran (4)	4T ne rolling resistance 1143 N incline of 10° is : 1669.4 N s driven in second smission efficiency 8091 N-m			
12. 13. 14.	 (1) The to the to the (1) A graph of (1) A performance of (1) A performance of (1) A new ration 	T/2 coefficient of roll he truck is : 1.143 N radient resistance 1.6694 N etrol engine of a having gear rati 0%, then the torq 8.091 N-m engine has a clea	 (2) ing res (2) e to a v (2) car de o of 1.7 ue at t (2) rance v 	T istance for a truck 11.43 N rehicle having a r 16.694 N velops 125 N-m 5. The final drive he driving wheel 80.91 N-m	(3) (3) (3) (3) torque (3) torque (3) (3) (3) (3) (3)	2T ning 63,500 N is 0 114.3 N of 980 kg moving 166.94 N e at 2700 rpm. Th s 4.11. If the over 809.1 N-m	(4) .018. Th (4) on an (4) me car i all tran (4) 	4T ne rolling resistance 1143 N incline of 10° is : 1669.4 N s driven in second smission efficiency 8091 N-m Then compression			

P.T.O.

UO3

StudentBounty.com A gas engine has a swept volume of 300 c.c. and clearance volume of 25 c.c. Its volumetric 46. efficiency is 0.88 and mechanical efficiency is 0.90. The volume of the mixture taken in per stroke is :

(1)	248 c.c.	(2)	252 c.c.	(3) 264 c.c.	(4) 286 c.c	2.
-----	----------	-----	----------	--------------	-------------	----

The power output of an engine is measured by a rope brake dynamometer. The diameter of 47. the brake pulley is 700 mm and the rope diameter is 25 mm. The load on the tight side of the rope is 50 kg and spring balance reads 50 N. Speed of the engine is 900 rpm. Brake power of the engine is :

(1)	14.03 kW	(2)	15.03 kW	(3)	16.03 kW	(4)	12.03 kW
-----	----------	-----	----------	-----	----------	-----	----------

A test rig for a single cylinder engine has an air box with an orifice of diameter of 2 cm and 48. coefficient of discharge of 0.7. The manometer reading is equivalent to 106.08 m of air column. The quantity of air consumed by the engine in m^3/s will be :

0.00103 (1)0.01003 0.00013 0.10003 (2)(3)(4)

The outside diameter of a hollow shaft is twice its inside diameter. The ratio of its torque 49. carrying capacity of that of a solid shaft of the same material and the same outside diameter is :

(1) 15/16 (2) 3/4(3) 1/2(4) 1/16

For a material, Young's modulus is 110 GN/m^2 and shear modulus is 42 GN/m^2 . A round 50. bar of 37.5 mm diameter and 2.4 m long was stretched to 2.5 mm. The Bulk modulus will be :

(1) $96 \, \mathrm{GN}/\mathrm{m}^2$ 96.25 GN/m² 96.5 GN/m^2 $97 \, \text{GN}/\text{m}^2$ (2) (3) (4)

A solid shaft is subjected to a torque of 45 kNm. The angle of twist is 0.5° per meter length of 51. the shaft. If $G = 80 \text{ GN}/\text{m}^2$, the diameter of shaft will be :

140 mm 160 mm (1)(2) 150 mm 170 mm (3) (4)

A square steel bar 2.4 m long and 3 cm thick is elongated by a load of 50 kN. The stress 52. developed due to the load will be :

4555.5 N/cm² 5555.5 N/cm² (3) 4444.4 N/cm^2 (1)(2) (4) 5445.5 N/cm²

SPACE FOR ROUGH WORK

								S.
M				:	11			2
53.	A ci stre	rcular beam of ss is :	10.5 cm	diameter is sub	jected to) a shear force of	f 500 N	. The average sh
	(1)	5.2 N/cm^2	(2)	5.3 N/cm ²	(3)	5.77 N/cm^2	(4)	54 N/cm^2
	(-)		(-/	,	(-)	••••	(4)	
54.	For	a radial ball be 1 of 4 kN. The 1	aring, th	e desired rated namic load ratir	life is 10),000 hrs for a sp be bearing will b	veed of	600 rpm and rad
54.	For load (1)	a radial ball be l of 4 kN. The l 28 kN	aring, th basic dyn (2)	e desired rated namic load ratir 28.5 kN	life is 10 ng for th (3)),000 hrs for a sp te bearing will b 29 kN	(1) peed of e : (4)	600 rpm and rad 29.5 kN
54. 55.	For load (1) Air volu	a radial ball be l of 4 kN. The l 28 kN is at a pressur ime of 0.2 m ³ w	aring, th basic dyn (2) e of 50 l vill be :	e desired rated namic load ratir 28.5 kN kPa and temper	life is 10 ng for th (3) rature o),000 hrs for a sp le bearing will b 29 kN f 90° C. The ma	(1) beed of e : (4) ass of t	600 rpm and rad 29.5 kN he air occupying

- 56. In a slider crank mechanism, lengths of the crank and connecting rod are 0.15 m and 0.6 m respectively. The crank position is 60° from inner dead center. The crank shaft speed is 450 rpm. The angular velocity of the connecting rod is :
 - (1) 2.9 rad/sec (2) 5.9 rad/sec (3) 6.9 rad/sec (4) 10.9 rad/sec
- 57. A cam is to be designed for a knife edge follower with the following data :

Cam lift is 40 mm during 90° of cam rotation with SHM, Dwell for the next 30°, follower returns to the original position in the next 60°. The maximum velocities of the follower during its ascent and descent, if cam rotates at 240 rpm :

- (1) 1 m/s, 1.5 m/s (2) 2 m/s, 1.5 m/s (3) 1 m/s, 3 m/s (4) 2.5 m/s, 3.5 m/s
- **58.** For the data in the previous problem, the acceleration of the follower during its ascent and descent :
 - (1) 20.6 m/s², 11.8 m/s² (2) 20.6 m/s², 118 m/s² (3) 50.6 m/s², 11.8 m/s² (4) 50.6 m/s², 113 m/s²

UO3

- 12
- StudentBounty.com Two involute gears of 20° pressure angle are in mesh. The number of teeth on pinion is 59. and the gear ratio is 2. The module is 5 mm and pitch line speed is 1.2 m/s. Assuming addendum is standard and equal to one module, the angle turned through pinion when on gear in mesh is :
 - (3) 38.4° 29.4° 35° 45.4° (1)(2)(4)
- A cantilever beam of negligible weight is carrying a mass M at its free end, and is also resting 60. on an elastic support of stiffness k_1 . If k_2 represents the bending stiffness of the beam, the natural frequency (rad/s) of the system is :

(1)
$$\sqrt{\frac{k_1k_2}{M(k_1+k_2)}}$$
 (2) $\sqrt{\frac{2(k_1+k_2)}{M}}$ (3) $\sqrt{\frac{(k_1+k_2)}{M}}$ (4) $\sqrt{\frac{(k_1-k_2)}{M}}$

- 61. A shaft having its diameter 20 mm and 0.6 m long carries a mass of 1 kg at its mid - point. Density of shaft material is 40 Mg/m³ and Young's modulus is 200 GN/m². Assume the shaft to be freely supported. The frequency of transverse vibration will be :
 - 25.3 Hz 35.3 Hz 43.3 Hz (4)53.3 Hz (1)(2)(3)
- 62. The whirling speed of the shaft in the previous problem will be :
 - 2598 rpm 3998 rpm (1)1598 rpm (2)(3) 3598 rpm (4)
- A body of mass 20 kg is suspended from a spring which deflects 15 mm. Under this load the 63. frequency of free vibration is :
 - 3.07 Hz 4.07 Hz None of the above 2.07 Hz (2)(3)(4)(1)
- 64. The deflection of a spring with 20 active turns under a load of 1000 N is 10 mm. The spring is made into two pieces each of 10 active coils and placed in parallel under the same load. The deflection of this system is :
 - $\{1\}$ 20 mm (2)10 mm 5 mm 2.5 mm (3)(4)
- 65. If the ratio of the diameter of rivet hole to pitch of rivets is 0.25, then the tearing efficiency of the joint is :
 - 0.50 0.75 0.25 (1)(2) (3) (4) 0.87

StudentBounts.com A multiplate disc clutch is to transmit 4 kW at 750 rpm. Available steel and bronze discs 66. 40 mm inner radius and 70 mm outer radius are to be assembled alternately in appropriate numbers. The clutch is to operate in oil with an expected coefficient of friction of 0.1 and the maximum allowable pressure is not to exceed 350 kPa. Assume uniform wear condition to prevail. Find the number of steel (driving) and bronze (driven) discs required respectively :

13

3 and 2 2 and 3 2 and 2 (1)(2)(3)(4)3 and 3

For the multiplate disc clutch with the same data as given above the axial force applied to 67. develop the full torque will be :

2160 N 2260 N (3)2360 N 2560 N (1)(2)(4)

- An electric heater of exposed surface area 0.09 m² and output 600 W is designed to operate **68**. fully submersed in water. When the water is at 37°C and the surface co-efficient of heat transfer is 285.3 W/m²-deg, the surface temperature of the heater in $^{\circ}$ C is :
 - 30.5 60.5 90.5 120.5 (1)(2)(3)(4)
- For the above problem of electric heater, if the heater is mistakenly operated at 37°C in air **69**. with a surface coefficient of 8.5 W/m²-deg, the surface temperature in °C will be :
 - (1)321 (2)621 (3) 821 (4) None of these

70. The brake warning lights in the dash board warn the driver of :

water in master cylinder (1)

Μ

- air in the hydraulic cylinder (2)
- failure of the primary or secondary circuit (3)
- power brake failure (4)

Which of the bulbs in a car will have least wattage? 71.

Parking light (4) Ignition light Head light Stop light (3) (1)(2)

SPACE FOR ROUGH WORK

P.T.O.

UO3	3			14	1				CLID
72.	The	problems caused	by w	heel imbalance a	re :				
	(1)	Hard steering a	nd ha	rd ride					
	(2)	Poor acceleration	on and	l hard steering					
	(3)	Steering wheel	vibrat	ions and unever	ı tyre v	vear			
	(4)	Poor acceleration	on and	l reduced fuel ef	ficienc	у			
73.	Bead	d wires in a tyre a	are ma	de up of :					
	(1)	Steel	(2)	Copper	(3)	Zinc	(4)	Alu	minium
74.	Orsa	at apparatus is us	ed to	find :					
	(1)	Air fuel ratio			(2)	Contents of ex	haust ;	gases	
	(3)	Quantity of air	durin	g intake	(4)	None of the at	oove		
75.	One	effect of detonat	ion is	:	•				
	(1)	Delay in ignitic	n		(2)	Loss of power			
	(3)	Overheating of	engin	e	(4)	Overcooling of	f engin	e	
76.	The	firing order of a	typica	l 4 cylinder 4 str	oke en	gine is :			
	(1)	1-2-3-4	(2)	1-3-4-2	(3)	1-4-3-2	(4)	1-2-	4-3
77.	If cl	earance volume o	of an I	.C. engine is incr	reased	then compressio	on ratio	will :	
	(1)	increase	(2)	decrease	(3)	remain consta	nt	(4)	be doubled
78.	The	load at which th	e colu	mn just buckles	is calle	d :			
	(1)	Buckling load	(2)	Critical load	(3)	Crippling load	l (4)	Any	of the above

- 0 0 0 -

UO3

16

सूचना — (पृष्ठ 1 वरून पुढे....)

- StudentBounts.com (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

Pick out the correct word to fill in the blank :

Q. No. 201. I congratulate you _____ your grand success. (1)for (2)aŧ (3) on (4) about ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''(3)'' हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्र. क्र. 201. (1) (2) 🛑 (4)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK