- 21811 121011 - 29 1717M, 2097

2014

CODE:

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका चाळणी परीक्षा

वेळ : 3 (तीन) तास

सचना

संगणक अभियांत्रिकी

- (1) सदर प्रश्नपुस्तिकेत 80 अनिवार्य प्रश्न आहेत. उमेदवारोंनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी. परीक्षा-क्रमांक
- (2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसस्ता बॉलपेनने लिहावा.
 - ↑ शेवटचा अंक केंद्राची संकेताक्षरे
- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे **न विसरता नमुद करावा**.
- ्या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमुद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण **एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे**. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तृत परीक्षेच्या उत्तरपत्रिकांचे मुल्यांकम करताना उमेदलाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्याची स्वरूपाच्या प्रश्नांची दिलेल्या चार पर्यायापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नप्स्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तितः अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकच्या अंतिम पृष्ठावर पहा

उघद

कच्चा कामासाठी जागा / SPACE FOR ROUGH WORK

Student Bounts, com

	SE											
A					3				StudentBour			
1.	Cou	pling and Coh	esion car	n be imple	mented	mented using a :						
	(1) cause - effect graph					dep	endence matri	×				
	(3)	(3) structural chart				SRS						
2.	In E	In Entity-Relationship diagram dotted ellipse is used to represent :										
	(1) Multi-valued attribute					Single valued attribute						
	(3)	Derived attri	bute		(4)	Wea	ık attribute					
3.	The	probability tha	at prime	number se	elected	at rar	dom from the	number	(1, 2, 3,, 35) is :			
	(1)	12/35	(2)	11/35		(3)		(4)	None of these			
4.	the								. The cardinality of edges in the Hasse			
	(1)	4	(2)	6		(3)	5	(4)	7			
5.	A fl	ip-flop has :				•		_				
	(1)	one stable sta	ate		(2)	no s	table states					
	(3)	two stable st	ates		(4)	non	e of the above					
6.	Wha	at does the foll	owing d	eclaration	mean i	-		_				
	int	(*ptr)[10];										
	(1)	ptr is array o	f pointer	s to 10 int	tegers							
	(2)	ptr is a point	er to an	array of 1	0 intege	ers						
	(3)	ptr is an arra	y of 10 i	ntegers								

Which one is the contra positive of $q\rightarrow p$? 7.

ptr is a pointer to array

(1) $p \rightarrow q$

(4)

 $(2) \quad \neg p \rightarrow \neg q$

 $(3) \quad \neg q \rightarrow \neg p$

(4) None of these

SPACE FOR ROUGH WORK

P.T.O.

								\neg	S			
									ade			
гоз	3				4				TABO			
8.	A E	ıler graph is on	e in wh	ich :					18			
	(1)											
	(2)											
	(3)	All the vertices are of odd degree										
	(4)	,										
).	Pigeonhole principle states that, if $A\rightarrow B$ and $ A > B $ then :											
	(1)	f is not onto			(2)	f is r	not one - one					
	(3)	f is neither one	e - one	nor onto	(4)	f ma	y be one - one					
10.	Trigger cannot be activated on:											
	(1)											
	(2)											
	(3)	Deletion of col	lumn/f	ield from t	able							
	(4)	Updation of re	ecord									
1.	A co	omplete Binary t	ree of l	evel 5 has	how n	nany n	nodes ?					
	(1)	15	(2)	25		(3)	63	(4)	30			
12.	The data structure required for Breadth First Traversal on a graph is :											
	(1)	queue	(2)	stack		(3)	array	(4)	tree			
13.	A binary tree of depth "d" is an almost complete binary tree if :											
	(1)	Each leaf in th	ie tree i	s either at	level "	d" or	at level "d-1"					
	(2)	For any node "n" in the tree with a right descendent at level "d" all the left descendents of "n" that are leaves, are also at level "d"										
	(3)	Both (1) and (2)									
	(4)	None of the al	oove									
 [4.	A se	elf complemente	d, distr	ibutive lati	tice is c	alled	:					
14.							_					
	(1)	Boolean Algel	ora		(2)	Mod	dular lattice					

7
~

							_	_	S	
								Ì	ide	
									Too	
A					5				18	
15.		P be a matrix o			nd Q b	e a m	atrix of order	n×p, n	$x \neq p$. If $\rho(P) = n$ and $n \neq p$	
	(1)	p	(2)	n		(3)	np	(4)	n+p	
16.		next iterative values al guess is 3, is :		the root of	X^2-4	=0 us	sing the Newton	n - Rapl	hson method, if the	
	(1)	1.5	(2)	2.067		(3)	2.167	(4)	3.000	
17.	If a	square matrix A	ie real	and symn	netric 1	then the	ne eigen values			
17.	(1)	are always rea		and symm	(2)		always real and		re	
	(3)	are always rea		negative			ır in complex co	_		
							-			
18.	Let	L be a lattice. T	hen for	every a ar				ollowin	g is correct?	
	(1)	$a \lor b = a \land b$,	$(a \lor b) \lor c$			
	(3)	$a\lor(b\land c)=a$			(4)	a∨(b	o∨c) = b		,	
9.	A co	omplete graph o	of n ver	tices shoul	d have	!	edges.	-		
	(1)	n-1	(2)	n		(3)	n(n-1)/2	(4)	n(n+1)/2	
20.	The check clause in SQL is used to:									
	(1)	Activate a trig	_		(2)	Rest	rict a domain			
	(3)	Select records		ible		Che	ck the result			
	Acceptance requirements that a system should meet is :									
21.	(1)	Usability	nems u	iai a sysie	(2)		lerstandability			
	(3)	Functionality			(4)		ancements			
									-^	
22.	In _	the h	eights (of the two	child s	ubtree	es of any node o	differ b	y at most one.	
	(1)	Binary tree	(2)	Red Blac	k tree	(3)	Splay tree	(4)	AVL tree	
23.	Con sort		nents a	re to be so	rted. W	/hat is	the worst case	time co	mplexity of Bubbl	
	(1)	O(1)	(2)	O(log2n))	(3)	O(n)	(4)	O(n2)	
	` /	` /	• /	`	•	` '	, ,	` '	• •	

6

24. Bitwise operators can operate upon:

- (1) Double and Char
- (2) Double and Float
- (3) Double and Integer
- (4) Integer and Char

25. A scheduler which selects processes from secondary storage device is called:

- (1) Short term scheduler.
- (2) Long term scheduler.
- (3) Medium term scheduler.
- (4) Process scheduler.

26. If normal memory access time is 100 nanoseconds and the cache search time is 20 nanoseconds and all 80% of the page table entries are found in the cache memory the paged memory access time is equal to:

- (1) 100 ns
- (2) 120 ns
- (3) 140 ns
- (4) 200 ns

SHIDENTHOUNTY.COM

27. int unknown(int n) {

int i, j,
$$k = 0$$
;

for
$$(i = n/2; i < = n; i++)$$

for
$$(j=2; j \le n; j=j * 2)$$

$$k=k+n/2$$
;

return k;

}

What is the complexity of the above function?

- (1) $\theta(n^2)$
- (2) $\theta(n^2 \log n)$
- $(3) \quad \theta(n^3)$
- (4) $\theta(n^3 \log n)$

28. The result of evaluating the postfix expression 5, 4, 6, +, *, 4, 9, 3, /, +, * is:

- (1) 600
- (2) 350
- (3) 650
- (4) 588

SPACE FOR ROUGH WORK

both (1) and (2)

(3)

P.T.O.

(4)

none of the above

TO:					8				OOL		
		1.1 (11				. 1			StudentBoult		
34.		d the following			•		se the correct	answer			
	(i)		_	•			structure is use	u.	1		
	(ii)	•									
	(1)	(i) is false but (ii) is true			(2)	(i) and (ii) both are false(i) and (ii) both are true					
	(3)	(i) is true but (11) 18 fai	.se 	(4) 	(1) a	na (11) both are	rrue 			
35,	Bhargav throws a die 100 times. Getting an even number is considered a success. The variance of the number of successes is :										
	(1)	10	(2)	20		(3)	25	(4)	50		
36.	The	statement (p^q)	⇒ p is	:a:			-				
	(1)	Contingency	·		(2)	Abs	urdity				
	(3)	Tautology			(4)	Non	e of the above				
37.	If there are 64 segments, and the maximum segment size is 1024 words, the length of logical address is :										
37.		•	ents, an	d the max	cimum s	segme	nt size is 1024	words, t	he length of logica		
37.		•	ents, an (2)	d the max 16 bit	aimum s	segme (3)	nt size is 1024	words, t	he length of logica 64 bit		
37. 38.	add: (1)	ress is :	(2)	16 bit		(3)	32 bit	(4)			
37.	add: (1)	ress is : 8 bit	(2)	16 bit		(3)	32 bit	(4)			
38.	add: (1) The (1)	ress is : 8 bit most common a	(2) ddress (2)	16 bit ing techni	ques en	(3) ———	32 bit ed by a CPU is	:	64 bit		
8.	add: (1) The (1)	ress is : 8 bit most common a immediate	(2) ddress (2) dedica	16 bit ing technic direct ted compu	ques en	(3) ———	32 bit ed by a CPU is	:	64 bit		
8.	add: (1) The (1) Wha	ress is: 8 bit most common a immediate at is meant by a	(2) ddress (2) dedica	16 bit ing technical direct ted computerson or	ques en	(3) 	32 bit ed by a CPU is	:	64 bit		
8.	(1) The (1) Wha (1)	ress is: 8 bit most common a immediate at is meant by a which is used	(2) ddress (2) dedica by one	16 bit direct ted computerson or one and or	ques en uter ? nly nly one	(3) 	32 bit ed by a CPU is	:	64 bit		
38.	(1) The (1) Wha (1) (2)	most common a immediate at is meant by a which is used which is assign	(2) dedica by one ned to dedica	16 bit direct ted computerson or one and or of software.	ques en ater ? nly nly one	(3) https://doi.org/10.1003/1003/	32 bit ed by a CPU is indirect	:	64 bit		
37. 38. 39.	(1) The (1) Wha (1) (2) (3) (4) The that	most common a immediate at is meant by a which is used which is assign which does on which is mean sorting technique.	(2) dedicate the kind at for a great when the control to the control to the kind at for a great when the kind at for a great when the kind at the control to the kind at for a great when the kind at	16 bit ing technical direct ted compute person or one and or of softwar opplication re array to or equal to	ques en uter ? nly nly one re softwa:	(3) nploye (3) task re onl ted is	32 bit ed by a CPU is indirect	(4)	all of the above		
38.	(1) The (1) Wha (1) (2) (3) (4) The that	most common a immediate at is meant by a which is used which is assign which does on which is meant sorting techniqual elements less	(2) dedicate the kind at for a great when the control to the control to the kind at for a great when the kind at for a great when the kind at the control to the kind at for a great when the kind at	16 bit ing technical direct ted compute person or one and or of softwar opplication re array to or equal to	ques en uter ? nly nly one re softwa:	(3) hploye (3) task re onl ted is	32 bit ed by a CPU is indirect	(4)	64 bit		

							S					
							160	6				
A	9. To implement the durability property of transaction following technique is used :											
41.	To implement the durability property of transaction following technique is used:											
	(1)	Hashing technique	(2)		low copy tech		10 4000					
	(3)	Concurrency control scheme	(4)		based technic	•						
42.	A text is made up of the characters a, b, c, d, e each occurring with the probability of the characters a, b, c, d, e each occurring with the probability of the characters a, b, c, d, e each occurring with the probability of the characters a, b, c, d, e each occurring with the probability of the characters a, b, c, d, e each occurring with the probability of the characters a, b, c, d, e each occurring with the probability of the characters a, b, c, d, e each occurring with the probability of the characters a, b, c, d, e each occurring with the probability of the characters a, b, c, d, e each occurring with the probability of the characters a, b, c, d, e each occurring with the probability of the characters a, b, c, d, e each occurring with the probability of the characters and the characters and the characters and the characters are characters and the characters and the characters are characters are characters and the characters are character											
	(1)	2.15 (2) 3.01		(3)	2.3	(4)	1.78					
43.	Pipe	eline implement :										
	(1)	fetch instruction	(2)	deco	de instruction	1						
	(3)	fetch operand	(4)	all of	the above							
44.	Dea	Deadlock is detected by using a graph called :										
	(1)	Precedence graph	(2)	Data	base graph	•						
	(3)	Wait-for graph	(4)	Time	stamp graph	ı						
45.	Cha	Changes made to the system to reduce the future system failure are collectively called as:										
	(1)	Corrective Maintenance	(2)	Adaj	otive Mainten	ance						
	(3)	Preventive Maintenance	(4)	Perfe	ective Mainter	nance						
 46.	In a queue, the initial values of Front Pointer and Rare Pointer should be respectively.											
	(1)	0 and 1 (2) 0 and -	1	(3)	-1 and 0	(4)	1 and	i 0				
47.	If B	If B is a Boolean Algebra, then which of the following is true?										
	(1)	B is a finite but not complemen	ted latt	ice.								
	(2)	B is a finite, complemented and	l distril	outive l	lattice.							
	(3)	B is a finite, distributive but no	t comp	lement	ed lattice.							
	(4).	B is not distributive lattice.										
								<u> </u>				

SPACE FOR ROUGH WORK

P.T.O.

- 48. Which of the following statements are true?
 - (i) Shortest remaining time first scheduling may cause starvation
 - (ii) Preemptive scheduling may cause starvation
 - (iii) Round robin is better than FCFS in terms of response time
 - (1) (i) only

(2) (i) and (iii) only

(3) (ii) and (iii) only

- (4) (i), (ii) and (iii)
- 49. Memory access in RISC architecture is limited to instructions:
 - (1) CALL and RET

(2) PUSH and POP

(3) STA and LDA

- (4) MOV and JMP
- **50.** In the sequential circuit shown below, if the initial value of the output Q_1Q_0 is 00, what are the next four values of Q_1Q_0 ?

- (1) 11,10,01,00
- (2) 10,11,01,00
- (3) 10,00,01,11
- (4) 11,10,00,01

Student Bounty.com

- 51. The highest order of polynomial integrand for which Simpson's 1/3 rule of integration is exact is:
 - (1) first
- (2) second
- (3) third
- (4) fourth
- 52. A parser which is a variant of top-down parsing without backtracking is:
 - (1) Recursive Descend
- (2) Operator Precedence

(3) LL(1) Parser

(4) LALR Parser

Student Bounty.com 53. Which one of the following circuits is NOT equivalent to a 2 - input XNOR (exclusive NOR) gate?

- Let $E = \{\{1, 2, 3\}, \{2, 3\}, \{a, b\}\}, F = \{\{a, b\}, \{1, 2\}\}\}$ and $G = \{a, b, 1, 2\}$. Which of the following is true?
 - (A) $\{a, b\} \subseteq F$
- (B) 1∈F
- (C) $\{\{1, 2, 3\}\}\subseteq E$
- (D) $\{2, 3\} \in E$

(A) and (C) (1)

(C) and (D) (2)

(3)(B), (C) and (D)

- (4)(A), (C) and (D)
- Two phase locking protocol ensures: 55.
 - Serializability (1)

- (2) Freedom from deadlock
- Cascadeless schedule (3)
- Recoverable schedule (4)
- 56. Why would a delay gate be needed for a digital circuit?
 - (1)a delay gate is never needed
 - to provide for setup times (2)
 - (3)to provide for hold times
 - to provide for setup times and hold times (4)
- Matrix $M = \begin{bmatrix} A & B \\ C & 0 \end{bmatrix}$ is an orthogonal matrix. The value of |B| is: 57.
 - (1) 1/2
- (2)
- (3) 0

									100		
TO:	3 12										
58.	From the following pick the one which does not belong to the same paradigm to which others belong: (1) Minimum and maximum problem										
	(1)	Minimum an	d maxin	num probl	lem						
	(2)	Knapsack pro	oblem	-							
	(3)	Selection prol	blem								
	(4)	Merge sort									
59.	There are four algorithms A1, A2, A3 and A4. Solve the given problem with the order $log(n)$, $log(log(n))$, $nlog(n)$ and $n/log(n)$ respectively. Which is the best algorithm?										
	(1)	A1	(2)	A2		(3)	A3	(4)	A4		
60.	The minimum number of D flip-flops needed to design a mod - 258 counter is :										
	(1)	9	(2)	8		(3)	512	(4)	258		
 51	State True or False :										
 61.	State	True or False	:								
61.				hat has w	eights o	r cost	s associated w	rith it.			
61.	State (i) (ii)	Network is a	graph t		•		s associated w				
61.	(i)	Network is a An undirecte	graph t d graph	which co	ntains r	ю сус		forest.	ir of vertices.		
61.	(i) (ii)	Network is a An undirecte	graph t d graph id to be	which co	ntains r	io cyc is no	les is called a	forest.	ir of vertices.		
61.	(i) (ii) (iii)	Network is a An undirecte A graph is sa	graph t d graph id to be 'rue	which co	ntains r if there	io cyc is no True	les is called a edge between	forest.	ir of vertices.		
62.	(i) (ii) (iii) (1) (3)	Network is a An undirecte A graph is sa True, False, T True, True, T	graph to define the graph of th	which co complete	ntains r if there (2) (4) ed to ha	is no True False	les is called a edge between e, True, False e, True, True keys in to a ta	forest. every pa ble of size	ir of vertices. e m, where n<=m		
	(i) (ii) (iii) (1) (3)	Network is a An undirecte A graph is sa True, False, T True, True, T	graph to define the graph of th	which co complete	ntains r if there (2) (4) sed to have	is no True False	les is called a edge between e, True, False e, True, True keys in to a ta	forest. every pa ble of size	e m, where n<=m		
	(i) (ii) (iii) (1) (3) If h (1) (1)	Network is a An undirecte A graph is sa True, False, T True, True, T is any hashing expected numb	graph to define function (2)	which co complete and is us lisions inv less that	ntains r if there (2) (4) sed to havolving	is no True False ash n a part (3)	les is called a edge between e, True, False e, True, True keys in to a ta icular key x is less than m	forest. every pa ble of size	e m, where n<=m		
62.	(i) (ii) (iii) (1) (3) If h (1) (1)	Network is a An undirecte A graph is sa True, False, T True, True, T is any hashing expected numb less than 1 two - pass asse	graph to define function (2)	which concomplete and is us lisions involves than	ntains r if there (2) (4) sed to have olving	True False ash n a part (3)	les is called a edge between e, True, False e, True, True keys in to a ta icular key x is less than m	forest. every pa ble of size (4)	e m, where n<=m		
62.	(i) (ii) (iii) (1) (3) If h the (1)	Network is a An undirecte A graph is sa True, False, T True, True, T is any hashing expected numb less than 1 two - pass asse	graph to describe graph to des	which concomplete and is us lisions involves than the task of	ntains r if there (2) (4) sed to have olving	True False ash n a part (3)	les is called a edge between e, True, False e, True, True keys in to a taicular key x is less than m	forest. every pa ble of size (4)	e m, where n<=m		
662.	(i) (ii) (iii) (1) (3) If h the (1)	Network is a An undirecte A graph is sa True, False, T True, True, T is any hashing expected numb less than 1 two - pass assesseparate the s	graph to describe graph to des	which concomplete and is us lisions involves than the task of mnemonice.	ntains r if there (2) (4) sed to have olving	True False ash n a part (3)	les is called a edge between e, True, False e, True, True keys in to a taicular key x is less than m	forest. every pa ble of size (4)	e m, where n<=m		
662.	(i) (ii) (iii) (1) (3) If he (1) (1) In a (1) (2)	Network is a An undirecte A graph is sa True, False, T True, True, T is any hashing expected numb less than 1 two - pass assesseparate the separate the separate the separate separate the	graph to describe graph to des	which concomplete and is uselisions involves that the task of mnemonical	ntains r if there (2) (4) sed to have olving	True False ash n a part (3)	les is called a edge between e, True, False e, True, True keys in to a taicular key x is less than m	forest. every pa ble of size (4)	e m, where n<=m		
662.	(i) (ii) (iii) (1) (3) If he (1) In a (1) (2) (3) (4) If no	Network is a An undirecte A graph is sa True, False, T True, True, T is any hashing expected numb less than 1 two - pass assesse separate the separate the synthesize the	graph to d graph id to be frue function (2) embler, to symbol, abol table e target dencies a	which concomplete and is uselisions involved the task of mnemonical memorial ecode. program.	ntains r if there (2) (4) ed to he volving n n the pas	True False ash n a part (3) ss II is e and	les is called a edge between e, True, False e, True, True keys in to a taicular key x is less than m to:	forest. every pa ble of size (4)	e m, where n<=m		

- $F = \{(a, 1), (b, 2), (c, 1), (d, 2)\}$ (1)
- $F = \{(a, 1), (b, 2), (a, 2), (c, 1), (d, 2)\}$
- (3) $F = \{(a, 1), (b, 2), (c, 3), (d, 3), (a, 2)\}$
- (4) $F = \{(a, 1), (b, 2), (c, 3)\}\$
- 66. Which of the following algorithms solve the all-pair shortest path problem?
 - (1)Dijkstra's Algo

(2) Floyd's Algo

(3) Prim's Algo

- (4) Kruskal's Algo
- 67. A spanning tree of a graph is one that includes:
 - All the vertices of the graph (1)
 - (2) All the edges of the graph
 - (3) Only the vertices of odd degree
 - (4) Only the vertices of even degree
- 68. Binary search tree is an example of:
 - (1)Divide and conquer technique
- (2) Greedy algorithm

(3)Back tracking

- (4)Dynamic programming
- 69. In paging system where page size is 2048 words, and the available physical memory is equal to $2^{17} = 128$ K words, the length of the physical address is equal to:
 - (1)16 bit
- (2)28 bit
- 17 bit
- **(4)** 34 bit
- 70. Which of the memory allocation schemes are subject to external fragmentation?
 - Multiple Contiguous Fixed Partitions (1)
 - Multiple Contiguous Variable Partitions (2)
 - (3) Paging
 - (4)Segmentation

- 71. The strategy of making processes that are logically runnable to be temporarily suspe called:
 - Non-preemptive scheduling (1)
- Preemptive scheduling (2)

Shortest job first (3)

- First come first serve (4)
- If the grammar conforms to a classification given in one of these lists, then it automatically 72. conforms to all grammar classifications listed to the right of it:
 - LL(1), LR(0), LR(1), LL(2) (1)
- (2)LR(0), SLR(1), LR(4), LR(1)
- LR(0), SLR(1), LALR(1), LR(1) (3)
- (4)LR(1), LALR(1), SLR(1), LR(0)
- The minimum and maximum eigen values of the matrix $\begin{bmatrix} 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ are -2 and 6 respectively. 73.

What is the other eigen value?

- 5 (1)
- **(2)**
- (3) 1
- (4) -11
- 74. The Newton-Raphson method formula for finding the square root of a real number R from the equation $X^2 - R = 0$ is :
 - (1) $X_{i+1} = X_i/2$

- (2) $X_{i+1} = 3X_i/2$
- (3) $X_{i+1} = \frac{1}{2} (3X_i + R/X_i)$
- (4) none of these
- **75.** The bisection method of finding roots of non-linear equations falls under the category of ___ method. a (an)
 - (1) open
- bracketing (2)
- (3) random
- (4)graphical
- 76. The content of a 4-bit register is initially 1101. The register is shifted 2 times to the right with the serial input being 1011101.

What is the content of the register after each shift?

- 1110, 0111 (1)
- 0001, 1000 (2)
- 1101, 1011 (3)
- (4)1001, 1001

77. What is the output of the following expression?

int z,
$$x=5$$
, $y=-10$, $a=4$, $b=2$;

$$z = x + +y *b/a;$$

- (1)5
- (2) 6
- 10 (3)
- 11 **(4)**

StudentBounts.com

-

- 78. Let P(A) denote the power set of A. If $P(A) \subseteq B$ then:
 - (1) $2^{|A|} \le |B|$
- (2) $2^{|A|} \ge |B|$
- (3) $2^{|A|} < |B|$
- (4) $2^{|A|} \ge 2^{|B|}$
- 79. Suppose we run Dijkstra's single source shortest-path algorithm on the following edge weighted directed graph with vertex P as the source. In what order do the nodes get included into the set of vertices for which the shortest path distances are finalized?

(1) P, Q, R, S, T, U

(2) P, Q, R, U, S, T

(3) P, Q, R, U, T, S

- (4) P, Q, T, R, U, S
- 80. The Postfix form of the expression

(A + B)*(C*D - E)*F/G is :

- (1) AB + CD*E FG/**
- (2) AB + CD*E F**G/
- (3) AB + CD*E *F*G/
- (4) $AB + CDE^* *F*G/$

-000-

सूचना — (पृष्ठ 1 वरून पुढे....)

- StudentBounty.com (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतः बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

	नमुना प्रश्न
Pick out the	correct word to fill in the blank:
Q. No. 201.	I congratulate you your grand success.
	(1) for (2) at (3) on (4) about
	ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव खालीलप्रमाणे
	प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''③'' हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.
प्र. क्र. 201.	① ② ● ④
	अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील
	त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे
	बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्या कामासाठी जागा /SPACE FOR ROUGH WORK