		प्रश्नपुस्तिका वाळणी परीक्षा	BOOKLET NO.	एकूण गुण : 200	24.0
वेळ	: 3 (तीन) तास	वाळणा पराक्षा गणित		एकूण प्रश्न : 80 एकूण गुण : 200	1
400		सूचना		<u> </u>	
(1)	सदर प्रश्नपुस्तिकेत 80 अनिवार्य प्रश्न आहेत. उमे	दवारांनी प्रश्नांची उत्तरे वि		-	
	आहेत किंवा नाहीत याची खात्री करून घ्यावी. अ	नसा तसेच अन्य काही र	दोष आढळल्यास ही प्रश्नपुस्तिव	nा समवेक्षकांकडून लगेच ─────	
	बदऌून घ्यावी.	परीक्षा-क्रमांक			
(2)	आपला परीक्षा-क्रमांक ह्या चौकोनांत		<u></u>		ক
	न विसरता बॉलपे नने लिहावा.	_ केंद्रा	ी नी संकेताक्षरे	খাবদেবা স্বক	म
(3)	वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रि	किवर विशिष्ट जागी उत्त	त्रपत्रिकेवरील सूचनेप्रमाणे न वि	ासरता नमूद करावा.	उद्य है। अब्र
	उत्तरांपैकी सर्वात योग्य उत्तरांची क्रमांक उत्तरपत्रिके उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांक काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा श	ांसमोर छायांकित करून ाईचे पेन वापरू नये .	दर्शविला जाईल याँची काळजी	घ्यावी. <mark>ह्याकरिता फक्त</mark>	इ सील
(5)	सर्व प्रश्नांना समान गुण <u>आहेत</u> . यास्तव सर्व प्रश्नां वेगाने प्रश्न सोडवावेत.क्रॅमाने प्रश्न सोडविणे श्रेय प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नाप परतणे सोईस्कर ठरेल.	स्कर आहे पण एखादा	प्रश्न कठीण वाटल्यास त्यावर	वेळ न घालविता पुढील	नैविना
(6)	उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणा	र नाही. नमूद केलेले उत्तर	खोडून नव्याने उत्तर दिल्यास ते त	ापासले जाणार नाही.	स्व
(7)	प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन क तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरू नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिके करण्यात येतील''.	पाच्या प्रश्नांची दिलेल त सोडविलेल्या प्रत्येव	या चार पर्यायापैकी सर्वात यो ग	ग्य उत्तरेच उत्तरपत्रिकेत	नि
		ताकीद	` ` `		<u>क</u>
	। प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली		-	**	उँ।
		जास दण्यात यत उ	गरू हा पळ सपपचत सं	उर अश्रीभारतिकाणाः ।	1 17 1
पर्र	ोक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण		त्याही स्वरूपात पत्यश्र	Ŭ I	
पर्र प्रत	ोक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण त/प्रती, किंवा सदर प्रश्नपुस्तिकेतील व	हाही आ शाय कोण		वा अप्रत्यक्षपणे	
पर्र प्रत को	ोक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण	काही आशाय कोण करणे हा गुन्हा असू	न अशी कृती करणाऱ्या व	वा अप्रत्यक्षपणे यक्तीवर शासनाने	
पर्र प्रत को जा	ोक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण त/प्रती, किंवा सदर प्रश्नपुस्तिकेतील व ोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध	हाही आशय कोण करणे हा गुन्हा असू प्रकारांना प्रतिबंध	न अशी कृती करणाऱ्या व करण्याबाबतचा अधिनिय	वा अप्रत्यक्षपणे यक्तीवर शासनाने यम-82'' यातील	

.

.

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

.

StudentBounty.com

1.

www.StudentBounty.com

1. Changing the order of the integration in the double integral

3
Changing the order of the integration in the double integral
$$I = \int_{0}^{8} \int_{\frac{y}{4}}^{2} f(x, y) \, dy \, dx \text{ leads to } I = \int_{r}^{8} \int_{p}^{q} f(x, y) \, dx \, dy.$$
What is q?
(1) 4 y (2) 16 y² (3) x (4) 8

If $\int f dx$ and $\int f dx$ are lower and upper Riemann integrable on [a, b] then : 2.

(1)
$$\int_{-a}^{b} f dx \ge \int_{a}^{-b} f dx$$

(2)
$$\int_{-a}^{b} f dx = \int_{a}^{-b} f dx$$

(3)
$$\int_{-a}^{b} f dx \le \int_{a}^{-b} f dx$$

(4) None of these

- The application of Gram Schmidt process of orthonormalisation to $u_1 = (1, 1, 0) u_2 = (1, 0, 0)$ 3. $u_3 = (1, 1, 1)$ yields :
 - $\frac{1}{\sqrt{2}} (1,1,0) (1,0,0) (0,0,1)$ (2) $\frac{1}{\sqrt{2}} (1,1,0), \frac{1}{\sqrt{2}} (1,-1,0), (0,0,1)$ (1) (3) (0, 1, 0) (1, 0, 0) (0, 0, 1)(4) None of these
- The value of the integral $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-4)(z-2)} dz$ where C is circle |z|=3 traced anticlockwise : 4. (1)-2 i π (2)(3)iπ 2 i π $-i\pi$ (4)

What is the value of n so that e^{ny^2} is an integrating factor of the differential equation 5.

$$\begin{pmatrix} \frac{y^2}{2} \\ e^{-xy} \end{pmatrix} dy - dx = 0 ?$$
(1) -1 (2) 1 (3) $\frac{1}{2}$ (4) $-\frac{1}{2}$

SPACE FOR ROUGH WORK

P.T.O.

8

` **A**

									STU	
QO:	3				4				StudentBe 4	2
6.	The	number of 5 Sy	low sul	bgroups ir	i a grou	p of o	rder 45 :			41
	(1)	1	(2)	2	0	(3)	3	(4)	4	
7.	The	image of z-ai	=a un	der the tra	ansform	ation	$\omega = \frac{1}{z}$ is :			
	(1)	Circle			(2)	Stra	ight line			
	(3)	Lemniscate			(4)	Equ	iangular spiral			
8.	The	close bounded	sets are	compact	if :					
	(1)	A normed ve	tor spa	ce is finite	e dimen	sional				
	(2)	A vector space	e is fini	te dimens	ional					
	(3)	$\mathbf{P}'(x) = \mathbf{P}(x)$								
	(4)	None of these	2							
9.	If x	, y, z are posi	tive re	al numb	ers the	n mir	nimum value o	of x^2 +	$8y^2 + 27z^2$ w	here
	$\frac{1}{x}$ +	$\frac{1}{y} + \frac{1}{z} = 1$ is :	:			,				
	(1)	108	(2)	216		(3)	405	(4)	1048	
10.	The	probability tha	t two fr	iends shai	re the sa	ame bi	rth month is :		· · · · · ·	
		1					1		1	
	(1)	6	(2)	$\frac{1}{12}$		(3)	144	(4)	$\frac{1}{24}$	
		1				-(-)	2 2 2	^	1 Growthe a	
11.				ne vector i	unction	v(r)	$= 2xyz\hat{i} + x^2z$] + x-	YK from the of	rigin
		ne point p (1, 1,	1) is :							
	(1)	1								
	(2)	0 _1								
	(3)	-1 Cannot be de	tormina	d without	enorif	rina 41	no noth			
	(4)	Cannot be de			. specify	/ III Y II 	е рані 			
12.	Wha	at is the value o	f k if $\frac{1}{2}$	$\log(x^2 + $	y^2 + i	tan ⁻¹	$\frac{kx}{y}$ is analytic	?		
	(1)	- 2	(2)	-1		(3)	1	(4)	2	

SPACE FOR ROUGH WORK

--

									.0.
A					5				OU
13.	Whi	ch of the foll	owing is a	an analytic :	function	on?			
	(1)	$\frac{Z}{1+Z^2}$	(2)	ZZ		(3)	e ^{-Z²}	(4)	e ^{Z⁻²}
14.	The	particular sol	ution for	the differer	ntial ec	quatio	$n \frac{d^2 y}{dx^2} + 3 \frac{d y}{dx}$	+2y =	$5\cos x$ is:
	(1)	$0.5 \cos x + 1$.5 sinx		(2)	1.5	$\cos x + 0.5 \sin x$		
	(3)	1.5 sinx			(4)	0.5 (205 <i>X</i>		
15.	The	fixed points of	of mappir	$\log f(z) = \frac{3\mathrm{i}z}{z}$	$\frac{z + 13}{-3i}$	are :			
	(1)	$3i \pm 2$		3 ± 2i			$2\pm3i$	(4)	$-2 \pm 3i$
6.									
16.	For P:N Q:N		$\begin{array}{c} 2 \\ 3 - 2 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 $	3+2i -4 5 6i -6i 3 and iM is Herry is Skew Herry	which	n of th	e following stat		
16.	For P:N Q:N R:e	matrix M = // is skew Her M is Hermitia	$\begin{array}{c} 2 \\ 3 - 2 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 $	3+2i -4 5 6i -6i 3 and iM is Herri is Skew Herri eal eal	which rmitiar ermitia	n of th n n		ements	are correct :
	For : P : N Q : N R : e S : ei (1) For v	matrix M = M is skew Her M is Hermitia eigen values o igen values o P and R onl	$2 \qquad 3$ $3 - 2 i$ -4 -4 $3 - 4$ $3 - 4$ $3 - 4$ $3 - 4$ $3 - 4$ $5 - 4$ $3 - 4$ $5 - 4$	3+2i -4 5 6i -6i 3 and iM is Herry is Skew Herry eal eal Q and R of with usual t	which rmitiar ermitia only	n of th n n (3) gy and	e following state P and S only i with $[0, 1] \subseteq X$ is	ements (4)	are correct :
	For : P : N Q : N R : e S : ei (1) For v f : X	matrix $M = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$2 \qquad 3$ $3 - 2 i$ -4 rmitian and iM of M are reformed for the formula of the f	3+2i -4 5 6i -6i 3 and iM is Here is Skew Here eal Q and R of with usual t)=0 and $f($	which rmitiar ermitia only topolog	n of th n (3) gy and exist ?	e following state P and S only i with $[0, 1] \subseteq X$ is	ements (4) with a c	are correct : Q and S only
16. 17.	For : P: N Q: N R: e S: e (1) For v f: X (1)	matrix $M = \begin{bmatrix} \\ M & \text{is skew Hermitia} \\ \text{sigen values of } \\ P & \text{and R onl} \\ \end{bmatrix}$ which subspace $\rightarrow [0, 1]$ satistical $X = [0, 1]$	2 3 3-2i -4 rmitian and in and iM of M are re- f iM are re- f iM are re- (2) ce X ⊆ R sfying f (0) (2) problem 1	$\begin{array}{ccc} 3+2i & -4\\ 5 & 6i\\ -6i & 3 \end{array}$ and iM is Here is Skew Here eal eal Q and R of with usual the)=0 and f(X=(-1, 2)	which rmitiar ermitia only topolog (1) = 1 e 1)	(3) (3) gy and exist ? (3)	e following state P and S only i with $[0, 1] \subseteq X$ with	ements (4) with a c (4)	are correct : Q and S only ontinuous function $[0, 1] \not\subset X$
17.	For : P : N Q : N R : e S : e (1) For v f : X (1) If the (1)	matrix $M =$ M is skew Her M is skew Her M is Hermitia rigen values of P and R onl P and R onl $which subspace \rightarrow [0, 1] satisX = [0, 1]e dual of theunbounded$	$2 \qquad 3$ $3 - 2 i$ -4 rmitian and iM and iM af M are re f iM are re f iM are re f iM are r (2) $x \subseteq R$ sfying f (0) (2) problem 1 (2)	3+2i -4 5 6i -6i 3 and iM is Hen- is Skew Here eal eal Q and R of with usual the)=0 and f(X=(-1, 2) has infeasible bounded	which rmitiar ermitia only topolog (1) = 1 e 1) le solu	(3) (3) (3) (3) (3) (3)	e following state P and S only I with $[0, 1] \subseteq X$ of X = R then the value of no solution	ements (4) with a c (4) f object	are correct : Q and S only ontinuous function $[0, 1] \not\subset X$ ive function is :
17.	For f P: N Q: N R: e S: ei (1) For f f: X (1) If the (1) The	matrix $M =$ M is skew Her M is Hermitia tigen values of P and R onle which subspace $\rightarrow [0, 1]$ satistic X = [0, 1] e dual of the unbounded stationary points	$2 \qquad 3$ $3 - 2 i$ -4 rmitian and in and iM of M are reading f (0) (2) (2) problem 1 (2) (2)	3+2i -4 $5 & 6i$ $-6i & 3$ and iM is Here is Skew Here eal eal Q and R of with usual the) = 0 and f (1) X = (-1, 1) has infeasible bounded (x, y) = x ³ + 1)	which rmitiar ermitia only topolog (1) = 1 of (1) = 1 of (1) = 1 of (1) = 1 of (2) = 1 of (3) = 1 of $(3) = 1$ of (3) = 1 of $(3) = 1$ of (3) = 1 of $(3) = 1$	(3) (3) (3) (3) (3) (3) (3) z = 12y	e following state P and S only I with $[0, 1] \subseteq X$ of X = R then the value of no solution	ements (4) with a c (4) f object (4)	are correct : Q and S only ontinuous function $[0, 1] \not\subset X$ ive function is : none of these

P.T.O.

	•				6				$-x^{-1} J_3$ (Bou
20.	If J _n	(x) is the Bessel fu	unction	n of the firs	st kind	then	$\int x^{-2} J_3(x)$) dx is:		
	(1)	$x^{-2} J_2(x) + c$	(2)	$x^2 J_2(x) +$	۲c	(3)	$-x^{-2} J_3$	(x) + c (4)	$-x^{-1} J_3$ (x) + c
21.		sider wave equat u _t =0 at t=0 the				t > 0	with u (0, t	$u=u(\pi,t)$	= 0 u(x, 0)) = sinx
	(1)	2	(2)	1		(3)	0	(4)	-1	
2.		extremum for t $\left[\frac{\pi}{8}\right] = 1$ occurs for			roblen	∕8 ∩∫ 0	$\left[\left(y^1\right)^2+2y\right]$	$yy^1 - 16y^2$	dx with y	(0) = 0
			n uie i		(2)		[] 	١		
	(1)	$y = \sin(4x)$					$\sqrt{2} \sin(2x)$			
	(3)	$y=1-\cos (4x)$			(4)	<i>y</i> =	$\frac{1-\cos{(8)}}{2}$	<u>.)</u>		
3.		is an ideal of ring u/R is a ring			ring	(3)	Ru is a rin	ng (4)	None of th	nese
.4.	If A	is an open subse	t of co	mplete me	tric spa	ace of	X then :			
	(1) (3)	A is complete Complement of	Aisc	losed	(2) (4)		incomplete e of these	2		

SPACE FOR ROUGH WORK

1

A					7				Boy
	ፕኤራ		htoin	- 1 kar sourch				r -haut	the stavio in .
26.	The	volume or som	d optaniu	ea by revoiv	'ing u	ne are	a under $y = e^{-2t}$	* about	the x axis is .
	(1)	$\frac{\pi}{2}$	(2)	$\frac{\pi}{4}$		(3)	2π	(4)	$\frac{Students is}{\pi}$
27.		PID, ED, UFD prisation doma				al ide	al domains, Eu	clidear	n domains, unique
	(1)	$UFD \subset ED \subset$	PID		(2)	PID	\subset ED \subset UFD		
	(3)	$ED \subset PID \subset$	UFD		(4)	PID	\subset UFD \subset ED		
28.	The	value of $\int_{0}^{1} \int_{y^2}^{1}$	$\int_{0}^{1-x} x dx$	z dx dy:					
	(1)	$\frac{4}{35}$	(2)	$\frac{3}{35}$		(3)	<u>8</u> 35	(4)	<u>6</u> 35
9.	If f ($(z) = \frac{z}{8-z^3}, z =$	x + iy the	$en \frac{\text{Res}}{z \to 2} f$	(z) i	s :			
	(1)	$\frac{-1}{8}$	(2)	$\frac{1}{8}$		(3)	$\frac{-1}{6}$	(4)	$\frac{1}{6}$
0.	Max (1) (3)	imize 3x—4y infinitely ma unique solut	ny soluti	ons	t - 2; (2) (4)	no s	12, $x - y \le 2$, $x \ge$ olution ue solution (0, 1		
31.		2 regression linveen x and y ?	nes are 2	x - 9y + 6 = 0	and 2	x 2y -	+1=0. What is	the cor	relation co-efficient
	(1)	$\frac{-2}{3}$	(2)	$\frac{2}{3}$		(3)	$\frac{4}{9}$	(4)	None of these
32.	Let (G be a cyclic g	roup of c	rder 8. then	its g	roup c	of automorphisn	ns has e	order :

SPACE FOR ROUGH WORK

P.T.O.

QO	3				8				ined corresponding
33.	Usir	ng Euler's Metho	d take s	step size =	=0.1. fin	d appro:	ximate value d	of <i>v</i> obta	ined correspondin
								- y • • • •	and corresponding
	to x	=0.2 for initial	value p	roblem -	$\frac{1}{4x} = x$	ту ал	a y (0) ≈ 1		
	(1)	1.322	(2)	1.222		(3)	1.122	(4)	1.110
34.	lf F	is a field its only	v ideals	are A : F	a field i	itself, B :	(0) then :		
	(1)	A and B are tr	ue		(2)	A fals	e B true		
	(3)	A true B false			(4)	A and	B false		
35.		V be a vector sp er T if :	ace and	T a linea	ar operat	tor on V	. If W is a su	bspace o	of V, W is invarian
	(1)	$T(W) \subset W$			(2)	$W \subset T$	- (W)		
	(3)	T(W) = W					of the above		
36.			n of in	itial value	(4) e proble			2 <i>x</i> , y((0) = 3 and y'(0) =
36.	Let				e proble	$m \frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$	$+ y = 6 \cos 2$	2 <i>x, y</i> (1 (4)	$(0) = 3 \text{ and } y'(0) = \frac{9}{5}$
36. 37.	Let 1 Let 1 (1)	<i>y</i> be the solutio	m of y (2)	be F(S) th <u>13</u> 5	e proble nen valu	m $\frac{d^2 y}{dx^2}$ e of F(1) (3)	$+ y = 6 \cos 2$ is: $\frac{11}{5}$	(4)	
	Let Let (1) The	y be the solution Laplace transfor $\frac{17}{5}$	m of y (2) is given	be F(S) the $\frac{13}{5}$	e proble nen valu	m $\frac{d^2 y}{dx^2}$ e of F(1) (3)	$y = 6 \cos x$ is: $\frac{11}{5}$	(4) >y	
	Let (1) The $\overline{F} =$	y be the solution Laplace transfor $\frac{17}{5}$ value of a, b, c i	m of <i>y</i> (2) is given • (b <i>x</i> -3	be F(S) the $\frac{13}{5}$ by $y-z)\hat{j} +$	e proble ien valu 	$\frac{d^2 y}{dx^2}$ e of F(1) (3) if vector (+2z) k	$y = 6 \cos x$ is: $\frac{11}{5}$	(4) vy ve.	<u>9</u> 5
	Let (1) The $\overline{F} = (1)$ For	y be the solutio Laplace transfor $\frac{17}{5}$ value of a, b, c i (x+2y+az) i + 1, 4, 2	m of y (2) is given (bx-3 (2)	be F(S) the $\frac{13}{5}$ by y-z) $\hat{j} + -1, 4, 2$	e proble nen valu 	m $\frac{d^2 y}{dx^2}$ e of F(1) (3) if vector $(+2z) \hat{k}$ (3)	+ $y = 6 \cos 3$ is : $\frac{11}{5}$ F is given the is conservation -1, -4, -2	(4) yy ve. (4)	<u>9</u> 5
37.	Let (1) The $\overline{F} = (1)$ For	y be the solution Laplace transfor $\frac{17}{5}$ value of a, b, c in (x+2y+az) i + 1, 4, 2 the L.P. proble	m of y (2) is given (bx-3 (2) m Min	be F(S) th $\frac{13}{5}$ by $y-z$) $\hat{j} + -1, 4, 2$ $z = x_1 + x_2$	e proble nen valu 	m $\frac{d^2 y}{dx^2}$ e of F(1) (3) if vector (+2z) \hat{k} (3) that $5x_1$	+ $y = 6 \cos x$ is : $\frac{11}{5}$ \overline{F} is given by is conservation -1, -4, -2	(4) y ve. (4) $x + x_2 \ge 1$	$\frac{9}{5}$ -1, 4, -2
37.	Let Let 1 (1) The $\overline{F} =$ (1) For $x_{1'}$ $x_{1'}$	y be the solution Laplace transfor $\frac{17}{5}$ value of a, b, c is (x+2y+az) i + 1, 4, 2 the L.P. proble $c_2 \ge 0$ then :	m of y (2) is given (bx-3 (2) m Min nded so	be F(S) the $\frac{13}{5}$ by $y-z$) $\hat{j} + -1, 4, 2$ $z = x_1 + x$ plution	e proble nen valu , (4x+cy) 2 c_2 such	m $\frac{d^2 y}{dx^2}$ e of F(1) (3) if vector (+2z) \hat{k} (3) that $5x_1$ There	+ $y = 6 \cos x$ is: $\frac{11}{5}$ \overline{F} is given by is conservation -1, -4, -2 $+10x_2 \le 0, x_1$	(4) y ve. (4) $x + x_2 \ge 1$	$\frac{9}{5}$ -1, 4, -2
37.	Let $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (1) The $\overline{F} =$ (1) For $x_{1'} x$ (1) (3)	y be the solutio Laplace transfor $\frac{17}{5}$ value of a, b, c i $(x+2y+az)\hat{i} +$ 1, 4, 2 the L.P. proble $c_2 \ge 0$ then : There is a bour	m of y (2) is given (bx3 (2) m Min nded so nite solu	be F(S) the $\frac{13}{5}$ by $y-z$) $\hat{j} + -1, 4, 2$ $z = x_1 + x$ plution	e proble nen valu (4x+cy) (2x+cy) (2x+cy) (2x+cy) (2x+cy)	m $\frac{d^2 y}{dx^2}$ e of F(1) (3) if vector (+2z) \hat{k} (3) that $5x_1$ There	+ $y = 6 \cos x$ is : $\frac{11}{5}$ Triangle F is given the is conservation -1, -4, -2 $+10x_2 \le 0, x_1$ is no solution	(4) y ve. (4) $x + x_2 \ge 1$	$\frac{9}{5}$ -1, 4, -2
37.	Let $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (1) The $\overline{F} =$ (1) For $x_{1'} x$ (1) (3)	y be the solution Laplace transfor $\frac{17}{5}$ value of a, b, c is (x+2y+az) i + 1, 4, 2 the L.P. proble $x_2 \ge 0$ then : There is a bound There is a infin	m of y (2) (b x 3 (2) (2) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	be F(S) the $\frac{13}{5}$ by $y-z$) $\hat{j} + -1, 4, 2$ $z = x_1 + x_2$ plution	e proble nen valu (4x+cy) (2x+cy) (2x+cy) (2x+cy) (2x+cy)	m $\frac{d^2 y}{dx^2}$ e of F(1) (3) if vector (+2z) \hat{k} (3) that $5x_1$ There None	+ $y = 6 \cos x$ is : $\frac{11}{5}$ Triangle F is given the is conservation -1, -4, -2 $+10x_2 \le 0, x_1$ is no solution	(4) py ve. (4) $x + x_2 \ge 1$	$\frac{9}{5}$ -1, 4, -2 , $x_2 \ge 1$, $x_2 \le 4$ an

SPACE FOR ROUGH WORK

------2

StudentBounty.com Α 9 40. A topological space X is compact if every open covering of X contains : (1)a finite subcollection that covers X (2)a infinite subcollection that covers X (3)a finite subcollection that does not cover X none of these (4)41. Which of the following Banach Spaces is not separable ? $L^{1}[0, 1]$ (2) $L^{\infty}[0, 1]$ (3) $L^{2}[0, 1]$ (1)(4) C [0, 1] The solution of the differential equation $ydx + (x + x^2y) dy = 0$ is : 42. (1) $\frac{-1}{xy} = c$ (2) $\frac{-1}{xy} + \log y = c$ (3) $\frac{1}{xy} + \log y = c$ (4) $\log y = cx$ The function $f(z) = \left\{ \sin\left(\frac{1}{z}\right) \right\}^{-1}$ has multiple poles all of which are isolated singularity. **43**. (1)False Partially true (2)True (3)(4) None of these 44. Which of the following matrix is not diagonalisable ? $(1) \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \qquad (2) \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} \qquad (3) \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad (4) \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ Which one of the following does not satisfy the differential equation $\frac{d^3y}{dx^3} - y = 0$? 45. (1) ex (2) e^{-x} (3) $e^{-x/2} \sin\left(\frac{\sqrt{3}}{2}\right) x$ (4) $e^{-x/2} \cos\left(\frac{\sqrt{3}}{2}\right) x$ SPACE FOR ROUGH WORK P.T.O.

QO3

46. To ensure the following system of equations $2x_1 + 7x_2 - 11x_3 = 6$ $x_1 + 2x_2 + x_3 = -5$ $7x_1 + 5x_2 + 2x_3 = 17$

Converges using Gauss Seidal Method, one has to rewrite as :

(1)
$$\begin{bmatrix} 2 & 7 & -11 \\ 1 & 2 & 1 \\ 7 & 5 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -5 \\ 17 \end{bmatrix}$$

(2)
$$\begin{bmatrix} 7 & 5 & 2 \\ 1 & 2 & 1 \\ 2 & 7 & -11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 17 \\ -5 \\ 6 \end{bmatrix}$$

(3)
$$\begin{bmatrix} 7 & 5 & 2 \\ 1 & 2 & 1 \\ 2 & 7 & -11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -5 \\ 17 \end{bmatrix}$$

(4) The equations cannot be rewritten in a form to ensure convergence

47. Using Cayley Hamilton Theorem express $2A^5 - 3A^4 + A^2 - 4I$ as a linear polynomial in A where $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ (1) 128 A - 400 I (2) 138 A - 403 I (3) 138 A + 403 I (4) 57 A + 403 I

48. The Fourier transform of $e^{ax} \cos(\alpha x)$ is equal to :

(1)
$$\frac{\omega - \alpha}{(\omega - \alpha)^2 + \alpha^2}$$
 (2) $\frac{\omega + \alpha}{(\omega - \alpha)^2 + \alpha^2}$ (3) $\frac{1}{(\omega - \alpha)^2}$ (4) None of these

49. The partial differential equation
$$5 \frac{\partial^2 z}{\partial x^2} + 6 \frac{\partial^2 z}{\partial y^2} = xy$$
 is classified as :

(1) elliptic (2) parabolic (3) hyperbolic (4) none of these

50. Hamilton's equation is :

(1)
$$q_k = \frac{\partial H}{\partial P_k}$$
 (2) $-P_k = \frac{\partial H}{\partial q_k}$

(3) Both (1) and (2) (4) None of these

SPACE FOR ROUGH WORK

A

- 51. If an assignment problem consists of 6 workers and 7 projects :
 - (1) one worker will not get a project assignment
 - (2) one worker will be assigned two projects
 - (3) each worker will contribute work toward the seventh project
 - (4) one project will not get a worker assigned

52. If z=a is an isolated singularity of f and $f(z) = \sum_{-\infty}^{\infty} a_n (z-a)^n$ in its Laurent expansion in

ann(a ; 0, R). Also if $a_n \neq 0$ for infinitely many negative integers n then :

- (1) z = a is a removable singularity
- (2) z = a is a pole of order m
- (3) z = a is an essential singularity
- (4) None of these

53.	The	value of com	plex integr	al∫tan	$(2\pi z) dz$ wh	ere C is the	e curve $ z = 1$ is :
	(1)	0	(2)	C 2πi	(3)	-2πi	(4) πi

- 54. Which of the following statements is true in respect of the convergence of Newton Raphson procedure ?
 - (1) It converges under all circumstances.
 - (2) It does not converge to a root where the second differential co-efficient changes sign.
 - (3) It does not converge to a root where second differential co-efficient vanishes.
 - (4) None of these.

55. In Neumann condition :

- (1) μ is prescribed by each point of boundary ∂D of a domain D
- (2) where value of normal derivative $\frac{\partial \mu}{\partial n}$ on the boundary ∂D are specified

(3)
$$\left(\frac{\partial \mu}{\partial n} + au\right)$$
 is specified on ∂D

(4) none of these

SPACE FOR ROUGH WORK

StudentBounts.com

QO3

- StudentBounts.com A decision maker wishes to choose at least 2 projects out of a total of five. The appropriate 56. constraint is :
 - (2) $x_1 + x_2 + x_3 + x_4 + x_5 < 2$ $x_1 + x_2 + x_3 + x_4 + x_5 \le 2$ (1)(3) $x_1 + x_2 + x_3 + x_4 + x_5 = 2$ $(4) \quad x_1 + x_2 + x_3 + x_4 + x_5 \ge 2$
- Five jobs (A, B, C, D, E) are waiting to be processed. Their processing times and due dates 57. are given below using the shortest processing time dispatching rule, in which order should the jobs be processed ?

Job	Process time (days)	Job due date (days)
Α	4	7
В	7	4
C	8	11
D	3	5
E	5	8

(1) A, B, C, D, E	(2)	C, E, A, D, B
-------------------	-----	---------------

- B, D, A, E, C D, A, E, B, C (3) (4)
- To use the Hungarian Method a profit maximization assignment problem requires : 58.
 - (1)converting all profits to opportunity losses
 - (2) a dummy agent or task
 - (3) matrix expansion
 - find maximum number of lines to cover all the zeroes in a reduced matrix (4)

 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 12 (x+y)$ has the solution : **59.** (1) $z = f_1 (y + ix) + f_2 (y - ix)$ (2) $z = f_1 (y + ix) + f_2 (y - ix) + (x + y)^3$ (3) $z = (x + y)^3$ (4) None of these

Let S be non empty Lebesque measurable subset of R such that every subset of S is measurable. 60. Then the measure of S is equal to the measure of any :

- Subset of S Countable Subset of S (1)(2)
- Bounded Subset of S (3)
- Closed Subset of S
- (4)

SPACE FOR ROUGH WORK

ł				1	3				BOL
L.	The e	eigen values o	of the Stu	rm Liouville Sys	stem y'	$+\lambda y=0 0 \le x$:≤π y(0) =	=0, y'(π) =	=0 a
	(1)	$\frac{n^2}{4}$	(2)	$\frac{(2n-1)^2}{4}\pi^2$	(3)	$\frac{(2n-1)^2}{4}$	(4)	$\frac{n^2\pi^2}{4}$	ntBount 0 a
•	If A =	$= \begin{bmatrix} a+ic & -b-b\\ b+id & a-c \end{bmatrix}$	+id -ic] is ບາ	nitary matrix iff	:				
	(1)	$a^2 + b^2 + c^2 =$	0	(2)	b ² +	$c^2 + d^2 = 0$			
	(3)	$a^2 + b^2 + c^2 + c^2$	$d^2 = 1$	(4)	a ² +	$c^2 + d^2 = 0$ $b^2 + c^2 + d^2 =$	0		
3.		ability that th	ey contra	aks a truth is $\frac{4}{5}$ dict each other	when a	sked to speal	k on a fac	t?	hat is the
				dict each other		sked to speal		t?	hat is the
	proba	ability that th	ey contra (2)	dict each other $\frac{1}{5}$	when a	sked to speal	k on a fac	t?	hat is the
	proba (1) The c	ability that the $\frac{3}{20}$	ey contra (2) axiom sta	dict each other $\frac{1}{5}$	when a (3)	isked to speal 7 20	< on a fac (4)	$\frac{4}{5}$	
	proba (1) The c (1)	ability that the $\frac{3}{20}$ completeness every non en	ey contra (2) axiom sta npty set S	dict each other $\frac{1}{5}$	when a (3) 	is bounded a	k on a fac (4) 	t ?	
	proba (1) The c (1) (2) (3)	ability that the $\frac{3}{20}$ completeness every non en every non en every non en	ey contra (2) axiom sta npty set S npty set S npty set S	dict each other $\frac{1}{5}$ ates : 6 of real number 6 of real number 5 of real number	when a (3) which which which	is bounded a is bounded h is bounded h	k on a fac (4) bove has has infimu	$\frac{4}{5}$ supremu im. premum.	
	proba (1) The c (1) (2) (3)	ability that the $\frac{3}{20}$ completeness every non en every non en every non en	ey contra (2) axiom sta npty set S npty set S npty set S	dict each other $\frac{1}{5}$ ates : 6 of real number 5 of real number	when a (3) which which which	is bounded a is bounded h is bounded h	k on a fac (4) bove has has infimu	$\frac{4}{5}$ supremu im. premum.	
3. 	proba (1) The c (1) (2) (3) (4)	ability that the $\frac{3}{20}$ completeness every non en every non en every non en	ey contra (2) axiom sta npty set S npty set S npty set S	dict each other $\frac{1}{5}$ ates : 5 of real number 5 of real number 5 of real number 5 of real number	when a (3) which which which	is bounded a is bounded h is bounded h	k on a fac (4) bove has has infimu	$\frac{4}{5}$ supremu im. premum.	

66. If T is a bounded linear operator on Hilbert space H, then :

(1) T is normal iff $||T_x|| = ||T^* x||$ for every $x \in H$

(2) T is normal iff $||T_x|| > ||T^* x||$ for every $x \in H$

- (3) T is normal iff $||T_x|| \le ||T^* x||$ for every $x \in H$
- (4) None of these

SPACE FOR ROUGH WORK

QO	3				14						18
67.	(1)	ch is incorrec $P_0(x) = 1$			(2)	P ₁ (x				n (n+1)	SIII.
	(3)	$P_n(-x) = (-x)$	-1) ⁿ⁺¹ P _n	(x)	(4)	(1 –	x^{2}) $P_{n}''(x) -$	$-2x P'_n$	(x) +	n (n+1)	$P_n(x) = 0$
68.	Let ((1)	G be a group Zero	of order 1 (2)	5. Then th One	ie num	ber of (3)	Sylow sub Three	ogroups	of G (4)	of order (Five	3 is :
69.		V, W and X b ′ → W and T S and T are S and T are	$: W \rightarrow X a$ surjective	are two lin	lear ma	ps su S is	-	$S: V \rightarrow$ and T is	X is i injec	injective. tive	~ *
70.	If m	atrix $A = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 3 & 4 \\ 4 & 2 \\ 0 & 3 \end{bmatrix}$ the	en eigen v	alues o	of adj .	A are :				
	(1)	4, 16, 9	(2)	2, 4, 3		(3)	8, 12, 6		(4)	$\frac{1}{2}, \frac{1}{4}, \frac{1}{3}$	-
	(1)	1 , 1 0, 7									
- 71.		real part is e ^x ze ^z	$x \cos y$ the (2)	n the analy $(1+z) e^{z}$		nction (3)		7:	(4)	- e ^z	
 71. 72.	The (1)	real part is e ^x	(2) as of $f(x)$ esolutely interview constant (2)	$(1+z) e^{z}$ xists : tegrable or	n positi	(3) 	e ^z	7:	(4)	- e ^z	
	The (1) Four (1) (2) (3) (4)	real part is e^{x} z e^{z} fier transform if $f(x)$ is abs if $f(x)$ is pie both (1) and none of thes	(2) as of $f(x)$ esolutely interview constant (2) se	(1 + z) e ^z xists : tegrable or ntinuous o	n positi on finite	(3) ve x a e inter	e ^z		(4)	- e ^z	
72.	The (1) Four (1) (2) (3) (4)	real part is e^{x} ze^{z} fier transform if $f(x)$ is abs if $f(x)$ is pie both (1) and	(2) as of $f(x)$ esolutely interview constant (2) se	(1 + z) e ^z xists : tegrable or ntinuous o	n positi on finite	(3) ve x a e inter 10 an	e ^z		(4)	- e ^z	these
72.	The (1) Four (1) (2) (3) (4) Cova (1) The	real part is e^{x} z e^{z} fier transform if $f(x)$ is abs if $f(x)$ is pie both (1) and none of thes ariance (x, y)	(2) as of $f(x)$ esolutely interview (2) becewise condition (2) if $\Sigma x = 15$, (2) where (2)	$(1 + z) e^{z}$ xists : tegrable or ntinuous o	$\sum_{xy=1}^{n}$	(3) ve x a e inter 10 an (3)	e^{z} exists eval d n = 5 is : -2	3 2 1] is :			these

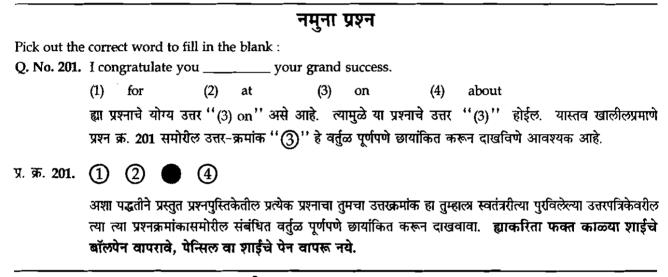
ć

SPACE FOR ROUGH WORK

.

. .a

A					15				100	5
75.	Whi	ch of the follow	ving is 1	not an integ	rating f	actor	r of xdy-ydx	= 0 :		41
	(1)	$\frac{1}{x^2}$	(2)	$\frac{1}{x^2 + y^2}$		(3)	$\frac{1}{xy}$	(4)	x y	
76.	For	the n th Legendi	re polyn	omial $C_n \frac{d}{d}$	$\frac{l^n y}{l x^n} \left(x^2 \right)$	² – 1)	ⁿ , the value	of C _n is :		
	(1)	$\frac{1}{n!2^n}$	(2)	$\frac{n!}{2^n}$	I	(3)	(n !) 2 ⁿ	(4)	$\frac{2^n}{n!}$	
 77.	Con	· 1 1 · · ·							·	
,,,	(1) (3)	maximal but both maximal	not prin	ne	(2)	prim	generated by the but not ma ther maximal f	ximal		
	(1) (3) Supj stan	maximal but	not prin l and pr l estima was ass	ne ime ate for the p	(2) j (4) i oopulatie	prim neith on n	e but not ma ner maximal r mean was 62.	ximal nor prime 	6. The popula	
	(1) (3) Supj stan	maximal but both maxima pose an interva dard deviation	not prin l and pr l estima was ass	ne ime ate for the p	(2) j (4) i populatio 6.50, and	prim neith on n	e but not ma ner maximal r mean was 62.	ximal nor prime 	6. The popula	
 78. 79.	(1) (3) Supj stan (1)	maximal but both maxima pose an interva dard deviation n of the sample	not prin l and pr l estima was ass e was : (2)	ne ime ate for the p umed to be 62.96	(2) j (4) r population 6.50, and	prim neith on n d a s (3)	e but not ma her maximal r nean was 62. ample of 100 6.62	ximal nor prime 34 to 69.4 observati (4)	6. The popula ons was used. 66.15	
 78.	(1) (3) Supj stan (1)	maximal but both maximal pose an interva dard deviation n of the sample 56.34	not prin l and pr l estima was ass e was : (2)	ne ime ate for the p umed to be 62.96	$(2) \qquad y \qquad (4) \qquad x \qquad y = x^2$	prim neith on n d a s (3)	he but not ma her maximal i mean was 62. ample of 100 6.62	ximal nor prime 34 to 69.4 observati (4)	6. The popula ons was used. 66.15	


- 0 0 0 -

.

QO3

सूचना --- (पृष्ठ 1 वरून युढे....)

- StudentBounty.com (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतदीनसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतःबरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK