3-11	Elosuson Ul Burnele	~ स्टेयल् हर्गल		N 210	
	न चरे.य	(रिक्राम - ?	A HTV, 2092	ide.	
Λ		2014	(प्रश्नपुस्तिका क्रमांक	CODE :	0
		प्रश्नपुस्तिका	BOOKLET NO.		57
	-	चाळणी परीक्षा		एकूण प्रश्न : 81	
ऽ: 3 (तीन)) तास	भौतिकशास्त्र		एकूण गुण : 20	0
		सूचना			-
<u>सदर प्रश्नपु</u> आहेत किंव	<u>स्तर्कत 80 अनिवाये प्रश्न आहेत.</u> उ 1 नाहीत याची खात्री करून घ्यावी	मेदवारानी प्रश्नाची उत्तरे असा तसेच अन्य काही त	लेहिण्यास सुरुवात करण्यापृ रोष आदलल्याम ही प्रश्नप	्वी या प्रश्नपुस्तिकेत सर्व प्रश् फ्तिका समवेशकांकहन लो	ल च
जाहत (प)प बदलून घ्या	वी.	परीक्षा-कमांक]
आपला परीर	भ्रा-कमांक ह्या चौकोनांत				
न विसरता	बॉलपेनने लिहावा.	केंद्रा	ि च <u>ी सं</u> केताक्षरे	शेवटचा अंक	न -
वर छापलेल	। प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरप			न विसरता नमूद करावा.	W
या प्रश्नपुरि उत्तरांपैकी स् उत्तरक्रमांक काळ्या श ॉ	तकताल प्रत्यक प्रश्नाल 4 पंथायी उ विति योग्य उत्तराचा क्रमांक उत्तरपत्रि नमूद करताना तो संबंधित प्रश्नक्रमांव ईंचे बॉलपेन वापरावे, पेन्सिल वा	तर सुचावला असून त्यान केवरील सूचनेप्रमाणे तुमच कासमोर छायांकित करून शाईंचे पेन वापरू नये .	ा, 2, 3 आणि 4 अस क्र या उत्तरपत्रिकेवर नमूद कराव दर्शविला जाईल याची काव	माक ।दलल आहत. त्या च त्रा. अशा प्रकारे उत्तरपत्रिकेव ठजी घ्यावी. ह्याकरिता फव	ਦੀ ਕੇ ਸ਼ਾ ਸੀ ਕੇ ਹੋ
सर्व प्रश्नांना वेगाने प्रश्न प्रश्नाकडे र परतणे सोईर	समान गुण आहेत. यास्तव सर्व प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रे क्लावे. अशा प्रकारे शेवटच्या प्रश्नाप कर ठरेल.	<u>गंची उत्तरे द्यावीत</u> . घोईमु यस्कर आहे पण एखादा गर्यंत पोहोचल्यानंतर वेळ	ळे चुका होणार नाहीत याची प्रश्न कठीण वाटल्यास त्य शिल्लक राहिल्यास कठीण	दक्षता घेऊनच शक्य तितक गवर वेळ न घालविता पुढी म्हणून वगळलेल्या प्रश्नांक	ह् नेविना हे
उत्तरपत्रिकेत	एकदा नमूद केलेले उत्तर खोडता येण	ार नाही. नमूद केलेले उत्तर	खोडून नव्याने उत्तर दिल्यास	ते तपासले जाणार नाही.	<u>व</u>
प्रस्तुत परी तसेच''उमे नमूद करा करण्यात रे	क्षेच्या उत्तरपत्रिकांचे मूल्यांकन ख दवाराने वस्तुनिष्ठ बहुपर्यायी स्व वीत. अन्यथा त्यांच्या उत्तरपत्रिवे Iतील''.	करताना उमेदवाराच्या रूपाच्या प्रश्नांची दिलेल फत सोडविलेल्या प्रत्येव	उत्तरपत्रिकेतील योग्य उन् या चार पर्यांयापैकी सर्वात 5 चार चुकीच्या उत्तरांसा	तरांनाच गुण दिले जातील योग्य उत्तरेच उत्तरपत्रिके ठी एका प्रश्नाचे गुण वज	॥ कांच्या स्
		ताकीद			d
ा प्रश्नपत्रिवे १	hसाठी आयोगाने विहित केलेल	त्रे वेळ संपेपर्यंत ही प	ग्रुनपुस्तिका आयोगाचे को की के जंगेन्य	ो मालमत्ता असून ती	טי קי
क्षिकिक्षात ए.ए.ची कि	उमदवाराला पराक्षसाठी वापरए हेवा सहर गण्डप्रतिबंध वील	ग्यास दण्यात यत अ कारी शाणग कोग	गह. हा वळ सपपयत ब्लामी स्वरूपान गल	सदर प्रश्नपुास्तकचा १९ वा आप्ताभाणो	4
ार प्रता, र जित्याही छ	ग्वतीस परविणे. तसेच प्रसिद्ध	करणे हा गन्हा अस	त अश्री कती करणाऱ्य	ा व्यक्तीवर आसनाने	
ारी केलेल्य	ा ''परीक्षांमध्ये होणाऱ्या गैर	प्रकारांना प्रतिबंध	करण्याबाबतचा अधि	नियम-82'' यातील	
रतुदीनुसार	तसेच प्रचलित कायद्याच्या तर	तुदीनुसार कारवाई व	फरण्यात येईल व दोषी	व्यक्ती कमाल एक	
र्षांच्या कारा	वासाच्या आणि/किंवा रुपये ए	क हजार रकमेच्या द	ंडाच्या शिक्षेस पात्र हो	ईल.	
सेच ह्या प्रश्	गपत्रिकेसाठी विहित केलेली वेत	ळ संपण्याआधी ही प्र	रनपुस्तिका अनधिकृतप	ाणे बाळगणे हा सुद्धा	
हा असून त	से करणारी व्यक्ती आयोगाच्या	कर्मचारीवृंदापैकी, त	ासेच परीक्षेच्या पर्यवेक्ष	कीयवृंदापैकी असली	
रीही अशा व	पक्तीविरूद्ध उक्त अधिनियमान्	सार कारवाई करण्या —	त येईल व दोषी व्यक्ती 	शिक्षेस पात्र होईल.	
पुर्ढ	तेल मूचना प्रश्नप	पुस्तिके च ्या	अंतिम पृष्ठान	बर पहा	
					I

and the constant of the state of the state

a mension come destable all classifications and compared on the Company

Α

Note :

Assume suitable data as necessary.

- Mass of an electron = 9.1×10^{-31} kg; Charge of an electron = 1.6×10^{-19} C
- StudentBounts.com - Planck's constant $h = 6.62 \times 10^{-34}$ J-s; Avagadro's number $N = 6.023 \times 10^{26}$ /kg mole

3

- Velocity of light $c = 3 \times 10^8$ m/s; Boltzmann's constant $K = 1.38 \times 10^{-23}$ J/K

- Permittivity of free space $\epsilon_0 = 8.85 \times 10^{-12}$ F/m; Permeability of free space $\frac{\mu}{0} = 4\pi \times 10^{-7}$ H/m

- 1. An electron is bound in a 1 D-potential well of width 2 Au but of infinite height. Find its energy value in the ground state :
 - $1.5 \times 10^{-18} \text{ eV}$ (1)
 - 9.43 eV (2)(4)
 - $9.43 \times 10^4 \text{ eV}$ (3)None of the above
- 2. The relation between one Bohr magneton and one nuclear magneton is :

(1)	$\mu_{\rm B} = \frac{e\hbar}{2m_{\rm e}} \mu_{\rm N}$	(2)	$\mu_{\rm B} = 1836 \ \mu_{\rm N}$
(3)	$\mu_{\rm B} = 1386 \ \mu_{\rm N}$	(4)	$\mu_{\rm B} = \frac{1}{10} \ \mu_{\rm N}$

The complementary function of $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \sin x$ is given by : 3.

(1)	C ₁ xe ^x	(2)	$(C_1 + C_2 x)e^{2x}$
(3)	$(C_1 + C_2 x)e^x$	(4)	None of the above

The relation between the phase velocity V_p and group velocity V_g of matter waves of 4. wavelength λ is :

(1)	$V_{\rm g} = V_{\rm p} + V_{\rm p} \frac{\mathrm{d}\lambda}{V_{\rm g}}$	(2)	$V_{g} = V_{p} - \lambda \frac{dV_{p}}{d\lambda}$
(3)	$V_{\rm g} = V_{\rm p} - \frac{1}{\lambda} \frac{\mathrm{d}V_{\rm p}}{\mathrm{d}\lambda}$	(4)	$V_{\rm g} = V_{\rm p} + \lambda \; \frac{{\rm d}V_{\rm p}}{{\rm d}\lambda}$

5. In a LASER stimulated emission occurs because photons are : (2)Mesons (4) Muons (1)Fermions Bosons (3)

SPACE FOR ROUGH WORK

P.T.O.

NO3

4

- Faraday's Law states that : 6.
 - When the magnetic flux linked with a circuit changes an emf is induced in it. (1)
- StudentBounty.com An induced current in a closed conducting loop will appear in such a direction that it (2)opposes the original flux change.
 - The line integral of the tangential component of the magnetic field over any closed (3) path is equal to the amount of current enclosed by the loop.
 - All of the above. (4)
- 7. The radioactive emission producing maximum ionization in a gas is : (1) β - rays (2) γ - rays (3) α - rays (4) X - rays

8. According to Kepler's Second Law, the radius vector to a planet from the sun sweeps out equal area in equal intervals of time. The law is a consequence of conservation of :

- Potential energy (1)Kinetic energy (2)
- (3)Angular momentum (4) Mass
- Molybdenum has a BCC structure. Its density is 10.2×10^3 kg/m³ and its atomic weight is 9. 95.94. The radius of the molybdenum atom is :
 - 1.364 Au (1) 3.15 Au (2)
 - 2.227 Au None of the above (3) (4)
- Maxwell's second electromagnetic equation describes : 10.
 - Gauss's Law of electrostatics (1)
 - Gauss's Law of electromagnetism (2)
 - Faraday's Law of electromagnetic induction (3)
 - All of the above (4)
- If v is the velocity of the spaceship with respect to a given frame of reference, where an 11. observer makes observations, then according to Einstein's special theory of relativity, the mass of the spaceship increases by a factor :

(1)
$$\sqrt{1 - \frac{v^2}{c^2}}$$
 (2) $\frac{m_o}{\sqrt{1 - \frac{v^2}{c^2}}}$ (3) $\frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$ (4) $m_o\sqrt{1 - \frac{v^2}{c^2}}$

12. If N is the total number of atoms in the crystal and E_{v} is the energy required for vacancy formation, then the equilibrium number of vacancies 'n' is given by :

(1)
$$n = N \exp\left[-\frac{E_v}{KT}\right]$$
 (2) $n = \frac{1}{N} \exp\left[-\frac{E_v}{KT}\right]$
(3) $n = N \exp\left[\frac{E_v}{KT}\right]$ (4) $n = N \exp\left[\frac{E_v}{KT} - 1\right]$

				<u>S</u>							
				ilde.							
A			5	TBOU							
13.	The	vector product of two vector	rs is :								
	(1)	Distributive	(2)	Commutative							
	(3)	Not commutative	(4)	Non distributive							
<u> </u>	If b	If both the junctions of a transistor are reverse biased the transistor is said to be in :									
	(1)	Inverted mode	(2)	Saturation region							
	(3)	Active region	(4)	Cut-off region							
15.	Let	d ₁ , d ₂ and d ₃ be the interplar	nar spacings	of the (100), (110) and (111) planes respective							
	of a	cubic crystal system. If d_1 :	$d_2: d_3:: 1:$	$\sqrt{2}: \frac{1}{\sqrt{3}}$ then the structure is :							
	(1)	Simple cubic	(2)	Body centered cubic							
	(3)	Face centered cubic	(4)	Base centered cubic							
16.	Heis	enberg's uncertainty princip	le arises due	e to :							
	(1)	inaccuracy of measuring in	nstruments.								
	(2)	size of the matter particle.									
	(3)	wave nature of matter.									
	(4)	particle nature of matter.									
17.	In a	N-type extrinsic semiconduc	tor the Fern	ni Energy level is :							
	(1)	At the centre of the forbide	len energy g	gap.							
	(2)	Just below the conduction	band.								
	(3)	Just above the valence ban	d.								
	(4)	Anywhere in the forbidder	n energy gap	p.							
18.	In a	half wave rectifier, the load	current flow	vs for :							
	(1)	the complete cycle of the ir	nput signal.								
	(2)	only for the positive half cy	vele of the in	nput signal.							
	(3)	less than half cycle of the in	nput signal.								

(4) more than half cycle but less than the complete cycle of the input signal.

NO3

6

StudentBounts.com

19. The Laplace transform of $e^{3t}sin^{2}t$ is :

(1)
$$\frac{1}{2}\left[\frac{1}{S} - \frac{S}{S^2 + 4}\right]$$
 (2) $\frac{1}{2}\left[\frac{1}{S - 3} - \frac{S - 3}{(S - 3)^2 + 4}\right]$

(3)
$$\frac{1}{2}\left[\frac{1}{S-3} + \frac{S-3}{(S-3)^2 + 4}\right]$$
 (4) $\frac{1}{2}\left[\frac{1}{S-3} - \frac{S-3}{(S-3)^2 - 4}\right]$

- 20. The susceptibility of a superconductor is :
 - (1) positive and small (2) positive and unity
 - (3) negative and small (4) negative and unity
- 21. If there are 9×10^{28} valence electrons/m³ and the conductivity of copper is 6×10^7 mho/m, the mobility of the electrons is given by :

(1) 4.16
$$\frac{\text{m}^2}{\text{VS}}$$
 (2) 4.163 × 10³ $\frac{\text{m}^2}{\text{VS}}$

(3)
$$4.16 \times 10^{-3} \frac{\text{m}^2}{\text{VS}}$$
 (4) $4.163 \times 10^{-4} \frac{\text{m}^2}{\text{VS}}$

- 22. If the earth receives 2 cal/min/cm² of Solar energy, what is the amplitude of the electric field of radiation ?
 - (1) 376.72 Volt/m (2) 726.6 Volt/m
 - (3) 1.928 Volt/m (4) None of the above
- 23. An event occurs at x = 100 m, y = 10 m, z = 5 m and $t = 1 \times 10^{-4}$ sec, in a frame S. Find the co-ordinates of this event in a frame S' which is moving with velocity 2.7×10^8 m/s with respect to frame S along the common XX' axes using Lorentz Transformation :
 - (1) x' = -60720 m, y' = 5 m, z' = 10 m
 - (2) x' = -61720 m, y' = 10 m, z' = 5 m
 - (3) x' = -66720 m, y' = 10 m, z' = 5 m
 - (4) None of the above

Α

StudentBounts.com The one dimensional time dependant Schrodinger's wave equation is given by : 24.

(1)
$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial t^2} + \nabla\psi = i\hbar \frac{\partial\psi}{\partial x}$$
 (2) $-\frac{h}{2m}\frac{\partial\psi}{\partial t} = i\hbar \frac{\partial^2\psi}{\partial x^2} + \nabla\psi$

- (3) $-\frac{\hbar^2}{2m}\frac{\partial^2 \psi}{\partial r^2} + V\psi = i\hbar\frac{\partial \psi}{\partial t}$ (4) None of the above
- 25. The wavelength of continuous X-rays depends upon :
 - Target material (1)(2)Filament current
 - Accelerating potential difference (4) All of the above (3)

26. A Field Effect Transistor (FET) :

- (1)uses a high concentration emitter junction.
- (2)uses a forward biased PN junction.
- (3)has a very high input resistance.
- (4)depends on minority carrier flow.
- 27. In j - j coupling, the following interaction is stronger :
 - (1)Spin and orbital angular momentum vectors of each electron
 - (2)Between spin vectors of each electron
 - (3)Between orbital angular momentum vectors of each electron
 - (4) Resultant spin vector and Resultant orbital angular momentum vector of the atom
- 28. In a LCR circuit, the discharge will be oscillatory if :

(1)
$$R^2 = \frac{4L}{C}$$
 (2) $R^2 > \frac{4L}{C}$ (3) $R^2 < \frac{4L}{C}$ (4) $R^2 < \frac{L}{4C}$

- 29. A Flipflop is called a latch when it is :
 - (1)level triggered edge triggered (2)
 - (3)both edge and level triggered untriggered (4)
- 30. The input impedance of an active filter is :
 - Zero. (1)
 - (2) 100 Ω.
 - (3) in the range from a few $k\Omega$ to some thousand $M\Omega$.
 - (4) in the range from a few $k\Omega$ to some hundred $k\Omega$.

						1	Students	
NO3				8			100	245
31.	A beam of X-Rays first order Bragg' is :	λ=0.842 s diffract	Au is incide ion occurs.	ent on a cry The glanc	stal at a glar ing angle fo	ncing angle or the third	of 8° 35' whe order diffra	in the com
	(1) 25.05°	(2)	26.55°	(3)	24.56°	(4)	53.10°	
								_ \

- 32. A ballot box with mass 6 kg slides with a speed 4 m/s across a frictionless floor in the positive x-direction. It suddenly explodes into two pieces. One piece with mass $m_1 = 2$ kg moves in the positive x-direction with speed $v_1 = 8$ m/s. What is the velocity of the second piece ? -4 m/s4 m/sNone of the above (1)(2)(3) 2 m/s(4)
- Assuming each fission event produces 200 MeV of energy, find the energy produced due to 33. fission of 1 gm of U^{235} :
 - 8.2×10^7 J 3.6×10^{6}] (1)(2) 8.2×10^{10} J (3) None of the above (4)
- A cyclotron with its dees of radius 2 m has a magnetic field of 0.75 wb/m^2 . The maximum 34. energy to which a proton (mass = 1.67×10^{-27} kg) can be accelerated is :

(1)	1.73×10^{-11} eV	(2)	107.9×10 ⁶ keV
(3)	1.73×10^{-11} J	(4)	107.9 keV

35. If two objects A and B are moving with velocities u and v, with respect to each other along the x-axis, the relative velocity of A with respect to B is given by :

(1)
$$v_x = \frac{v - u}{1 - \frac{uv}{c^2}}$$
 (2) $v_x = \frac{v - u}{\sqrt{1 - \frac{v^2}{c^2}}}$ (3) $v_x = \frac{u - v}{1 - \frac{uv}{c}}$ (4) $v_x = \frac{u - v}{1 - \frac{uv}{c^2}}$

- 36. The Potential barrier in a PN junction is due to the charges on either side of the junction. These charges are :
 - Minority carriers. (1)
 - (2)Majority carriers.
 - (3) Both majority and minority carriers.
 - (4) Fixed donor and acceptor ions.

37. A perfect Black Body is :

- A good absorber of all radiations. (1)
- (2)A perfect radiator of all radiations.
- (3)A good absorber and also a perfect radiator when hot.
- One which can be maintained at a constant temperature. (4)

SPACE FOR ROUGH WORK

NO₃

www.StudentBounty.com

- 42. The critical magnetic field of a superconductor :
 - (1) does not depend on temperature.
 - (2) increases if temperature increases.
 - (3) increases if temperature decreases.
 - (4) does not depend on superconducting transition temperature.

43. The Poynting vector \vec{S} is given by :

(1)
$$\vec{S} = \underbrace{\left(\vec{E} \times \vec{B}\right)K}_{\epsilon_0}$$
 (2) $\vec{S} = \frac{\vec{E} \times \vec{B}}{\epsilon_0}$
(3) $\vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_0}$ (4) $\vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_0 C}$

SPACE FOR ROUGH WORK

P.T.O.

O3		10	oou
. At	every instant the ratio of the ele	ctric field	to the magnetic field of an electromagnetic way
15 E	equal to :		
(1)	Wave amplitude	(2)	$\frac{\epsilon_0}{\epsilon_0}$
	-		μ0
(3)	С	(4)	$\frac{2\pi}{2}$
			Λ
. The	e splitting of spectral lines by th	ne action o	f an electric field is known as :
(1)	Paschen - Back effect	(2)	Zeeman effect
(3)	Stark effect	(4)	Lorentz effect
and .	placement current density $\left(\frac{-}{\omega\epsilon}\right)$) is :	1 1
(1)	placement current density $\left(\frac{1}{\omega\epsilon}\right)$ $\frac{1}{100}$ (2) 1) is : 	(3) less than $\frac{1}{100}$ (4) more than $\frac{1}{100}$
(1) . The abo	placement current density $\left(\frac{1}{\omega\epsilon}\right)^{-1}$ (2) 1 e angular momentum of a discout the axis of rotation is 8×10^{-1}) is : whose ro	(3) less than $\frac{1}{100}$ (4) more than $\frac{1}{100}$ etational energy is 10 kJ and moment of inertians given by :
(1) . The abo (1)	placement current density $\left(\frac{1}{\omega\epsilon}\right)^{-1}$ (2) 1 e angular momentum of a discout the axis of rotation is 8×10^{-1} 4 kg m ² /s	$\int is:$ whose ro $^{-4}$ kg m ² i. (2)	(3) less than $\frac{1}{100}$ (4) more than $\frac{1}{100}$ etational energy is 10 kJ and moment of inertians given by : 16 kg m ² /s
(1) . The abo (1) (3)	placement current density $\left(\frac{1}{\omega\epsilon}\right)^{-1}$ (2) 1 e angular momentum of a discout the axis of rotation is 8×10^{-1} 4 kg m ² /s 2 kg m ² /s) is : whose ro $^{-4}$ kg m ² is (2) (4)	(3) less than $\frac{1}{100}$ (4) more than $\frac{1}{100}$ etational energy is 10 kJ and moment of inertians given by : 16 kg m ² /s None of the above
(1) . The abo (1) (3) . In a	placement current density $\left(\frac{1}{\omega\epsilon} + \frac{1}{100}\right)$ (2) 1 e angular momentum of a discout the axis of rotation is 8×10^{-10} 4 kg m ² /s 2 kg m ² /s a transistor the base is :) is : whose ro -4 kg m ² i (2) (4)	(3) less than $\frac{1}{100}$ (4) more than $\frac{1}{100}$ etational energy is 10 kJ and moment of inertia s given by : 16 kg m ² /s None of the above
(1) . The abo (1) (3) . In a (1)	placement current density $\left(\frac{1}{\omega\epsilon}\right)^{-1}$ $\frac{1}{100}$ (2) 1 e angular momentum of a disc but the axis of rotation is 8×10^{-1} 4 kg m ² /s 2 kg m ² /s a transistor the base is : thin and heavily doped) is : whose ro -4 kg m ² i (2) (4) (2)	(3) less than $\frac{1}{100}$ (4) more than $\frac{1}{100}$ etational energy is 10 kJ and moment of inertials given by : 16 kg m ² /s None of the above thin and moderately doped
 (1) The abc (1) (3) In a (1) (3) 	placement current density $\left(\frac{1}{\omega\epsilon}\right)^{-1}$ $\frac{1}{100}$ (2) 1 e angular momentum of a discout the axis of rotation is 8×10^{-1} 4 kg m ² /s 2 kg m ² /s a transistor the base is : thin and heavily doped large and heavily doped) is : whose ro $^{-4}$ kg m ² i. (2) (4) (2) (4)	(3) less than $\frac{1}{100}$ (4) more than $\frac{1}{100}$ tational energy is 10 kJ and moment of inertials given by : 16 kg m ² /s None of the above thin and moderately doped thin and lightly doped
(1) (1) (3) (3) (3) (3)	placement current density $\left(\frac{1}{\omega\epsilon} + \frac{1}{100}\right)$ (2) 1 e angular momentum of a disc but the axis of rotation is 8×10^{-1} 4 kg m ² /s 2 kg m ² /s a transistor the base is : thin and heavily doped large and heavily doped large A/D convertor is ext) is : whose ro -4 kg m ² i (2) (4) (2) (4) (2) (4) ensively u	(3) less than $\frac{1}{100}$ (4) more than $\frac{1}{100}$ etational energy is 10 kJ and moment of inertials given by : 16 kg m ² /s None of the above thin and moderately doped thin and lightly doped sed in :
 (1) The abo (1) (3) In a (1) (3) A d (1) 	placement current density $\left(\frac{1}{\omega\epsilon}\right)^{-1}$ $\frac{1}{100}$ (2) 1 e angular momentum of a disc but the axis of rotation is 8×10^{-1} 4 kg m ² /s 2 kg m ² /s a transistor the base is : thin and heavily doped large and heavily doped large A/D convertor is ext De-multiplexers) is : whose ro -4 kg m ² i (2) (4) (2) (4) ensively u (2)	(3) less than $\frac{1}{100}$ (4) more than $\frac{1}{100}$ tational energy is 10 kJ and moment of inertials s given by : 16 kg m ² /s None of the above thin and moderately doped thin and lightly doped sed in : Multiplexers
 (1) The abox (1) (3) A d (1) (3) 	placement current density $\begin{bmatrix} \frac{1}{\omega \epsilon} \\ \frac{1}{100} \end{bmatrix}$ (2) 1 e angular momentum of a disc put the axis of rotation is 8×10^{-7} 4 kg m ² /s 2 kg m ² /s a transistor the base is : thin and heavily doped large and heavily doped large and heavily doped lual slope A/D convertor is ext De-multiplexers Digital voltmeters) is : whose ro -4 kg m ² i (2) (4) (2) (4) ensively u (2) (4) (4)	(3) less than $\frac{1}{100}$ (4) more than $\frac{1}{100}$ etational energy is 10 kJ and moment of inertials given by : 16 kg m ² /s None of the above thin and moderately doped thin and lightly doped sed in : Multiplexers Ripple counters
 (1) (1) (1) (3) (1) (3) (3) (3) (3) (3) (1) (3) (3) (1) (1) (1) (1) (2) (3) 	placement current density $\begin{bmatrix} \frac{1}{\omega \epsilon} \\ \frac{1}{100} \end{bmatrix}$ (2) 1 e angular momentum of a disc out the axis of rotation is 8×10^{-7} 4 kg m ² /s 2 kg m ² /s a transistor the base is : thin and heavily doped large and heavily doped large and heavily doped lual slope A/D convertor is ext De-multiplexers Digital voltmeters) is : whose ro -4 kg m ² i (2) (4) (2) (4) ensively u (2) (4) arges of or	(3) less than $\frac{1}{100}$ (4) more than $\frac{1}{100}$ tational energy is 10 kJ and moment of inertials given by : 16 kg m ² /s None of the above thin and moderately doped thin and lightly doped sed in : Multiplexers Ripple counters ne Coulomb each when they are at a distance of
 (1) (1) (1) (3) (1) (3) (3) (3) (1) (3) (1) (1) (1) 	placement current density $\begin{bmatrix} \frac{1}{\omega \epsilon} \\ \frac{1}{100} \end{bmatrix}$ (2) 1 e angular momentum of a disc but the axis of rotation is 8×10^{-7} 4 kg m ² /s 2 kg m ² /s a transistor the base is : thin and heavily doped large and heavily doped large and heavily doped lual slope A/D convertor is ext De-multiplexers Digital voltmeters culate the force between two chas: 8.986 N) is : whose ro -4 kg m ² i (2) (4) (2) (4) ensively u (2) (4) arges of or (2)	(3) less than $\frac{1}{100}$ (4) more than $\frac{1}{100}$ trational energy is 10 kJ and moment of inertials s given by : 16 kg m ² /s None of the above thin and moderately doped thin and lightly doped sed in : Multiplexers Ripple counters ne Coulomb each when they are at a distance of 89.86 × 10 ⁴ N

SPACE FOR ROUGH WORK

-

				Chr.
A			11	302
51.	The	most unsymmetrical crystal syster	n is :	
	(1)	Monoclinic	(2)	Orthorhombic
	(3)	Triclinic	(4)	Cubic
52.	The requ	size of the aperture should be of the the size of the aperture should be of the size of th	ne ord	er of the incident wave length. This condition is
	(1)	Interference	(2)	Rectilinear propogation
	(3)	Diffraction	(4)	Polarization
; 3.	γ-r If th mas	ays of 2.21 MeV energy are used to the mass of the deuterium atom is the neutron is given by :	o split 2.0147	a deuterium nucleus into a proton and neutron 72 amu and mass of proton is 1.00813 amu, the
	(1)	0.00238 amu	(2)	1.00897 amu
	(3)	1.00813 amu	(4)	None of the above
4.	In T	hermodynamics ISOCHORIC proc	ess is	one in which :
	(1)	Temperature remains constant	(2)	Pressure remains constant
	(3)	Volume remains constant	(4)	Energy remains constant
5.	A pı	oton is made up of :	_	
	(1)	One-quark and one anti-quark		
	(2)	Two up quarks and one down q	uark	
	(3)	Two down quarks and one up q	uark	
	(4)	None of the above		
56.	The	geometrical aspect of the crystal st	ructu	re is given by :
	(1)	Basis	(2)	Unit cell
	(3)	Space lattice	(4)	Lattice array
57.	Acco	ording to Planck's law, the energy	densi	ty of radiation is given by :
	(1)	$Q = \frac{8\pi^{3}h\nu^{3}}{c^{3}} \left[\frac{1}{e^{h\nu/kT} - 1} \right] .$	(2)	$Q = \frac{8\pi h\nu^{3}}{c^{3}} \left[\frac{1}{e^{h\nu/kT} - 1} \right]$
		$8\pi^3h\nu^3$ 1	<i>(</i>))	$O = \frac{8\pi h^3 \nu^3}{2} \begin{bmatrix} 1 \end{bmatrix}$

P.T.O.

e e compositor e la constante andre an

NO₃

- 58. The First Law of Thermodynamics states that :
- StudentBounty.com When two bodies are in thermal contact and no exchange of heat takes place, they (1)in thermal equilibrium.
 - The ratio of the work done and heat produced is always constant. (2)
 - (3) Heat cannot flow from a cold body to a hot body without the aid of some external agency.
 - All of the above. (4)

59. The moment of inertia of a solid sphere of mass M and radius R, about its diameter is :

(1)
$$\frac{7}{5}$$
 MR²
(2) $\frac{MR^2}{2}$
(3) $\frac{2}{5}$ MR²
(4) None of the above

60. The product AB of two matrices

A =	$\begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}$	3 0 2 1 0 2	and B =	2 1 -1	3 2 1	4 3 2	is :	
(1)	$\begin{bmatrix} -1\\ -1\\ -2 \end{bmatrix}$	12 7 1	11] 8 5]				(2)	$\begin{bmatrix} 5 & 9 & 13 \\ -1 & 2 & 4 \\ -2 & 2 & 4 \end{bmatrix}$
(3)	$\begin{bmatrix} 2\\ -1\\ 0 \end{bmatrix}$	9 0 4 3 0 4					(4)	None of the above

In the liquid drop model of the nucleus, the nuclear forces play the role of : 61.

(1) Cohesive force (2)Surface tension force Coulomb's attractive force (3) Viscous force (4)

62.	If the	e magnetic susceptibility is around	-10	$^{-6}$, the material is :
	(1)	paramagnetic	(2)	diamagnetic

ferromagnetic (4) ferrimagnetic (3)

SPACE FOR ROUGH WORK

www.StudentBounty.com

Α					13	3			100		
63.	3. Ampere's law allows us to calculate :										
	(1)	(1) Magnetic field caused by any current distribution.									
	(2) Magnetic field caused by a current carrying conductor in case of symmetry.										
	(3) The total magnetic flux produced by a linear current carrying conductor.										
	(4)	None of the	above.								
64.	Whe 2.21 perr	en NaCl cryst 5×10 ⁻⁷ C/m nittivity of Na	al is subje ² . If the Cl is :	cted to an permittivit	electri y of fr	ic field c ee space	of 50 V/cm e is 8.854×	n, the resul 10 ⁻¹² F/r	ting polarization i n, then the relativ		
	(1)	5.006	(2)	5.666		(3)	6.006	(4)	6.506		
55.	Elec Finc h=0	trons bombar I the energy o 5.62×10 ⁻³⁴ Js	ding the f f each ele s and e =	anode of a c tron at th 1.6×10 ⁻¹⁹	Coolie e mom C.	dge tube ent of in	e produces npact. Giv	s X-rays of ven	wavelength 1 Au		
	(1)	0.1241 keV			(2)) 12.41 eV					
	(3)	1.241 keV			(4)	12.41	keV				
56.	X-Ra	ays which giv	e a line sp	pectrum ar	e calleo	d as :					
	(1)	Continuous	X-Rays		(2)	Chara	cteristic X	-Rays			
	(3)	K_{α} X-Rays			(4)	Brems	trallung X	-Rays			
67.	In a	In an amplifier, the coupling capacitors are used to :									
	(1)	control the o	output.								
	(2)	to limit the	bandwidt	h.							
	(3)	to match the	e impedai	nces.							
	(4)	to prevent d	c mixing	with input	t or ou	tput.					
68.	The	main functior	n of a diel	ectric is :							
	(1)	Electrical in	sulation		(2)	Charge storage					
	(3)	Measuring r	nagnetic	ield	(4)	Measu	ring electr	ric field			
	Whi	ch of the follo	wing par	ticles are E	Bosons	?					
69.						(2) 1	.	(4)	Electrone		

www.StudentBounty.com

and the second second

NO3 14 70. A 10 mW LASER has a beam diameter of 1.6 mm. What is the intensity of the light that it is uniform across the beam ? (1) 1.243 kW/m² (2) 4.97 kW/m² (3) 4.97 MW/m² (4) 4.97×10^{-3} W/m² 71. An Electronic Register consists of a group of :

- (1) multiplexers
 (2) flipflops
 (3) logic gates
 (4) microprocessors
- 72. Two particles of masses 100 gm and 300 gm have at a given time, position 2i + 5j + 13k and -6i + 4j 2k cm respectively and velocities 10i 7j 3k and 7i 9j + 6k cm/sec respectively. The velocity of the second particle in a frame of reference travelling with the centre of mass is :
 - (1) $\frac{31i 34j + 15k}{4}$ cm/sec (2) $\frac{-3i 2j + 9k}{4}$ cm/sec (3) $\frac{-16i + 17j + 7k}{4}$ cm/sec (4) None of the above
- **73.** Electrons are accelerated upto a Kinetic energy of 10⁹eV. Find the ratio of their mass to the rest of the mass :
 - (1) $\frac{m}{m_0} = 1.77 \times 10^{-27}$ (2) $\frac{m}{m_0} = 9.15 \times 10^3$ (3) $\frac{m}{m_0} = 1.95 \times 10^3$ (4) $\frac{m}{m_0} = 0.95 \times 10^3$

74. The Boolean expression Y = A + B represents :

- (1) AND Gate (2) Exclusive OR Gate
- (3) OR Gate (4) NAND Gate

75. In an elastic collision :

- (1) Kinetic energy is conserved but momentum is not conserved.
- (2) The two colliding bodies stick to each other after collision.
- (3) Kinetic energy and momentum are conserved.
- (4) Kinetic energy is not conserved.

SPACE FOR ROUGH WORK

www.StudentBounty.com

									THE		
A					15	15				BOL	
76.	Constant forces $\vec{P} = 2\vec{i} - 5\vec{j} + 6\vec{k}$ and $\vec{Q} = -\vec{i} + 2\vec{j} - \vec{k}$ act on a particle. Determine the work done when the particle is displaced from point A to point B, the position vectors of A and B being $4\vec{i} - 3\vec{j} - 2\vec{k}$ and $6\vec{i} + \vec{j} - 3\vec{k}$ respectively :										
	(1) (3)	–15 units –21 units			(2) (4)	21 u Non	nits e of the abov	ve			
77.	A FET amplifier in the common source configuration uses a load resistance of 250 k Ω . The ac drain resistance of the device is 100 k Ω and transconductance is 0.5 mA/V. The voltage gain is :										
	(1)	71.4	(2)	- 35.71		(3)	-71.4	(4)	35.71		
78.	An velo	An electron is confined in a box of length 10^{-8} m. Calculate the minimum uncertainty in velocity :									
	(1)	11.595 m/s			(2)	1.159	$05 \times 10^2 \text{ m/s}$	s			
	(3)	11.595×10^3 m	/s		(4)	1.055	$5 \times 10^{-26} \text{ m}$	/s			
79.	The	The splitting of spectral lines under the action of a magnetic field is known as :									
	(1)	Raman effect			(2)	Lym	an effect				
	(3)	Zeeman effect			(4)	Stark	effect				
80.	The Zero-Point energy of a Harmonic Oscillator is given by :										
	(1)	$E_0 = \frac{1}{2} \hbar \omega^2$			(2)	E ₀ =	$\frac{\hbar^2\omega^2}{2\pi}$				
	(3)	$\mathbf{E}_0 = \frac{1}{2}\hbar\boldsymbol{\omega}$			(4)	None	e of the abov	ve			

-000-

NO3

सूचना --- (पुष्ठ 1 वरून पुढे....)

- StudentBounty.com (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतःबरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK