वेळ : 3 (तीन) तास

सूचना

(1) सदर प्रश्नपुस्तिकेत 80 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढलल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.
(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने ल्रिहावा.

(3) वर छापलेल्ल प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
(4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचविली असून त्यांना $1,2,3$ आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तराभैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळया शाईच्चे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
(5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घोईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घाल्सविता पुठील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक रहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
(6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
(7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ' उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार पर्यांयायैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील"'.

साकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेल्ली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची माल्मत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणान्या व्यक्तीवर शासनाने जारी के लेल्या "परीक्षांमध्ये होणान्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82" यातील तरतुदीनुसार तसेच प्रचल्ति कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्चा शिक्षेस पात्र होईल.
तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेल्ली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळाणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असल्भी तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल्य

पुठील्न गूचना प्रश्नपार्तिके च्या अंतिम पष्टात्रू वरा

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

Note :

Assume suitable data as necessary.

- Mass of an electron $=9.1 \times 10^{-31} \mathrm{~kg}$; Charge of an electron $=1.6 \times 10^{-19} \mathrm{C}$
- Planck's constant $\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J}-\mathrm{s}$; Avagadro's number $\mathrm{N}=6.023 \times 10^{26} / \mathrm{kg}$ mole
- Velocity of light $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$; Boltzmann's constant $\mathrm{K}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
- Permittivity of free space $\epsilon_{o}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$; Permeability of free space ${ }_{o}^{\mu}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$

1. An electron is bound in a 1 D-potential well of width 2 Au but of infinite height. Find its energy value in the ground state :
(1) $1.5 \times 10^{-18} \mathrm{eV}$
(2) 9.43 eV
(3) $9.43 \times 10^{4} \mathrm{eV}$
(4) None of the above
2. The relation between one Bohr magneton and one nuclear magneton is:
(1) $\mu_{B}=\frac{\mathrm{e} \hbar}{2 \mathrm{~m}_{\mathrm{e}}} \mu_{\mathrm{N}}$
(2) $\mu_{B}=1836 \mu_{N}$
(3) $\mu_{B}=1386 \mu_{N}$
(4) $\mu_{B}=\frac{1}{10} \mu_{N}$
3. The complementary function of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=x \mathrm{e}^{x} \sin x$ is given by :
(1) $C_{1} x e^{x}$
(2) $\left(C_{1}+C_{2} x\right) \mathrm{e}^{2 x}$
(3) $\left(C_{1}+C_{2} x\right) \mathrm{e}^{x}$
(4) None of the above
4. The relation between the phase velocity V_{p} and group velocity V_{g} of matter waves of wavelength λ is :
(1) $V_{\mathrm{g}}=V_{\mathrm{p}}+V_{\mathrm{p}} \frac{\mathrm{d} \lambda}{V_{\mathrm{g}}}$
(2) $\quad V_{g}=V_{p}-\lambda \frac{d V_{p}}{d \lambda}$
(3) $V_{\mathrm{g}}=V_{\mathrm{p}}-\frac{1}{\lambda} \frac{\mathrm{~d} V_{\mathrm{p}}}{\mathrm{d} \lambda}$
(4) $\quad V_{g}=V_{p}+\lambda \frac{d V_{p}}{d \lambda}$
5. In a LASER stimulated emission occurs because photons are :
(1) Fermions
(2) Bosons
(3) Mesons
(4) Muons

SPACE FOR ROUGH WORK

P.T.O.
6. Faraday's Law states that :
(1) When the magnetic flux linked with a circuit changes an emf is induced in it.
(2) An induced current in a closed conducting loop will appear in such a direction that it opposes the original flux change.
(3) The line integral of the tangential component of the magnetic field over any closed path is equal to the amount of current enclosed by the loop.
(4) All of the above.
7. The radioactive emission producing maximum ionization in a gas is :
(1) β - rays
(2) γ-rays
(3) α-rays
(4) X - rays
8. According to Kepler's Second Law, the radius vector to a planet from the sun sweeps out equal area in equal intervals of time. The law is a consequence of conservation of :
(1) Potential energy
(2) Kinetic energy
(3) Angular momentum
(4) Mass
9. Molybdenum has a $B C C$ structure. Its density is $10.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and its atomic weight is 95.94. The radius of the molybdenum atom is :
(1) 3.15 Au
(2) 1.364 Au
(3) 2.227 Au
(4) None of the above
10. Maxwell's second electromagnetic equation describes :
(1) Gauss's Law of electrostatics
(2) Gauss's Law of electromagnetism
(3) Faraday's Law of electromagnetic induction
(4) All of the above
11. If v is the velocity of the spaceship with respect to a given frame of reference, where an observer makes observations, then according to Einstein's special theory of relativity, the mass of the spaceship increases by a factor :
(1) $\sqrt{1-\frac{v^{2}}{c^{2}}}$
(2) $\frac{m_{o}}{\sqrt{1-\frac{v^{2}}{\mathrm{c}^{2}}}}$
(3) $\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
(4) $m_{o} \sqrt{1-\frac{v^{2}}{c^{2}}}$
12. If N is the total number of atoms in the crystal and E_{v} is the energy required for vacancy formation, then the equilibrium number of vacancies ' n ' is given by :
(1) $\mathrm{n}=\mathrm{N} \exp \left[-\frac{\mathrm{E}_{v}}{\mathrm{KT}}\right]$
(2) $\mathrm{n}=\frac{1}{\mathrm{~N}} \exp \left[-\frac{\mathrm{E}_{v}}{\mathrm{KT}}\right]$
(3) $\mathrm{n}=\mathrm{N} \exp \left[\frac{\mathrm{E}_{v}}{\mathrm{KT}}\right]$
$\mathrm{n}=\mathrm{N} \exp \left[\frac{\mathrm{E}_{0}}{\mathrm{KT}}-1\right]$

SPACE FOR ROUGH WORK

13. The vector product of two vectors is :
(1) Distributive
(2) Commutative
(3) Not commutative
(4) Non distributive
14. If both the junctions of a transistor are reverse biased the transistor is said to be in :
(1) Inverted mode
(2) Saturation region
(3) Active region
(4) Cut-off region
15. Let $\mathrm{d}_{1}, \mathrm{~d}_{2}$ and d_{3} be the interplanar spacings of the (100), (110) and (111) planes respectively, of a cubic crystal system. If $d_{1}: d_{2}: d_{3}:: 1: \sqrt{2}: \frac{1}{\sqrt{3}}$ then the structure is :
(1) Simple cubic
(2) Body centered cubic
(3) Face centered cubic
(4) Base centered cubic
16. Heisenberg's uncertainty principle arises due to :
(1) inaccuracy of measuring instruments.
(2) size of the matter particle.
(3) wave nature of matter.
(4) particle nature of matter.
17. In a N -type extrinsic semiconductor the Fermi Energy level is :
(1) At the centre of the forbidden energy gap.
(2) Just below the conduction band.
(3) Just above the valence band.
(4) Anywhere in the forbidden energy gap.
18. In a half wave rectifier, the load current flows for :
(1) the complete cycle of the input signal.
(2) only for the positive half cycle of the input signal.
(3) less than half cycle of the input signal.
(4) more than half cycle but less than the complete cycle of the input signal.
19. The Laplace transform of $e^{3 t} \sin ^{2} t$ is :
(1) $\frac{1}{2}\left[\frac{1}{\mathrm{~S}}-\frac{\mathrm{S}}{\mathrm{S}^{2}+4}\right]$
(2) $\frac{1}{2}\left[\frac{1}{S-3}-\frac{S-3}{(S-3)^{2}+4}\right]$
(3) $\frac{1}{2}\left[\frac{1}{S-3}+\frac{S-3}{(S-3)^{2}+4}\right]$
(4) $\frac{1}{2}\left[\frac{1}{\mathrm{~S}-3}-\frac{\mathrm{S}-3}{(\mathrm{~S}-3)^{2}-4}\right]$
20. The susceptibility of a superconductor is:
(1) positive and small
(2) positive and unity
(3) negative and small
(4) negative and unity
21. If there are 9×10^{28} valence electrons/ m^{3} and the conductivity of copper is $6 \times 10^{7} \mathrm{mho} / \mathrm{m}$, the mobility of the electrons is given by :
(1) $4.16 \frac{\mathrm{~m}^{2}}{\mathrm{VS}}$
(2) $4.163 \times 10^{3} \frac{\mathrm{~m}^{2}}{\mathrm{VS}}$
(3) $4.16 \times 10^{-3} \frac{\mathrm{~m}^{2}}{\mathrm{VS}}$
(4) $4.163 \times 10^{-4} \frac{\mathrm{~m}^{2}}{\mathrm{VS}}$
22. If the earth receives $2 \mathrm{cal} / \mathrm{min} / \mathrm{cm}^{2}$ of Solar energy, what is the amplitude of the electric field of radiation?
(1) $376.72 \mathrm{Volt} / \mathrm{m}$
(2) 726.6 Volt/m
(3) $1.928 \mathrm{Volt} / \mathrm{m}$
(4) None of the above
23. An event occurs at $x=100 \mathrm{~m}, y=10 \mathrm{~m}, z=5 \mathrm{~m}$ and $\mathrm{t}=1 \times 10^{-4} \mathrm{sec}$, in a frame S . Find the co-ordinates of this event in a frame S^{\prime} which is moving with velocity $2.7 \times 10^{8} \mathrm{~m} / \mathrm{s}$ with respect to frame S along the common $\mathrm{XX'}^{\prime}$ axes using Lorentz Transformation :
(1) $x^{\prime}=-60720 \mathrm{~m}, y^{\prime}=5 \mathrm{~m}, z^{\prime}=10 \mathrm{~m}$
(2) $x^{\prime}=-61720 \mathrm{~m}, y^{\prime}=10 \mathrm{~m}, z^{\prime}=5 \mathrm{~m}$
(3) $x^{\prime}=-66720 \mathrm{~m}, y^{\prime}=10 \mathrm{~m}, z^{\prime}=5 \mathrm{~m}$
(4) None of the above

SPACE FOR ROUGH WORK

A
24. The one dimensional time dependant Schrodinger's wave equation is given by :
(1) $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial t^{2}}+V \psi=i \hbar \frac{\partial \psi}{\partial x}$
(2) $-\frac{h}{2 m} \frac{\partial \psi}{\partial t}=i \hbar \frac{\partial^{2} \psi}{\partial x^{2}}+V \psi$
(3) $-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\partial^{2} \psi}{\partial x^{2}}+V \psi=\mathrm{i} \hbar \frac{\partial \psi}{\partial \mathrm{t}}$
(4) None of the above
25. The wavelength of continuous X-rays depends upon :
(1) Target material
(2) Filament current
(3) Accelerating potential difference
(4) All of the above
26. A Field Effect Transistor (FET) :
(1) uses a high concentration emitter junction.
(2) uses a forward biased PN junction.
(3) has a very high input resistance.
(4) depends on minority carrier flow.
27. In $\mathrm{j}-\mathrm{j}$ coupling, the following interaction is stronger :
(1) Spin and orbital angular momentum vectors of each electron
(2) Between spin vectors of each electron
(3) Between orbital angular momentum vectors of each electron
(4) Resultant spin vector and Resultant orbital angular momentum vector of the atom
28. In a LCR circuit, the discharge will be oscillatory if :
(1) $\mathrm{R}^{2}=\frac{4 \mathrm{~L}}{\mathrm{C}}$
(2) $\mathrm{R}^{2}>\frac{4 \mathrm{~L}}{\mathrm{C}}$
(3) $\mathrm{R}^{2}<\frac{4 \mathrm{~L}}{\mathrm{C}}$
(4) $R^{2}<\frac{L}{4 C}$
29. A Flipflop is called a latch when it is :
(1) edge triggered
(2) level triggered
(3) both edge and level triggered
(4) untriggered
30. The input impedance of an active filter is :
(1) Zero.
(2) 100Ω.
(3) in the range from a few $\mathrm{k} \Omega$ to some thousand $\mathrm{M} \Omega$.
(4) in the range from a few $k \Omega$ to some hundred $k \Omega$.

SPACE FOR ROUGH WORK

P.T.O.
31. A beam of X-Rays $\lambda=0.842 \mathrm{Au}$ is incident on a crystal at a glancing angle of $8^{\circ} 35^{\prime}$ when first order Bragg's diffraction occurs. The glancing angle for the third order diffractio is :
(1) 25.05°
(2) 26.55°
(3) 24.56°
(4) 53.10°
32. A ballot box with mass 6 kg slides with a speed $4 \mathrm{~m} / \mathrm{s}$ across a frictionless floor in the positive x-direction. It suddenly explodes into two pieces. One piece with mass $\mathrm{m}_{1}=2 \mathrm{~kg}$ moves in the positive x-direction with speed $v_{1}=8 \mathrm{~m} / \mathrm{s}$. What is the velocity of the second piece?
(1) $-4 \mathrm{~m} / \mathrm{s}$
(2) $4 \mathrm{~m} / \mathrm{s}$
(3) $2 \mathrm{~m} / \mathrm{s}$
(4) None of the above
33. Assuming each fission event produces 200 MeV of energy, find the energy produced due to fission of $1 \mathrm{gm}^{2} \mathrm{U}^{235}$:
(1) $8.2 \times 10^{7} \mathrm{~J}$
(2) $3.6 \times 10^{6} \mathrm{~J}$
(3) $8.2 \times 10^{10} \mathrm{~J}$
(4) None of the above
34. A cyclotron with its dees of radius 2 m has a magnetic field of $0.75 \mathrm{wb} / \mathrm{m}^{2}$. The maximum energy to which a proton (mass $=1.67 \times 10^{-27} \mathrm{~kg}$) can be accelerated is:
(1) $1.73 \times 10^{-11} \mathrm{eV}$
(2) $107.9 \times 10^{6} \mathrm{keV}$
(3) $1.73 \times 10^{-11} \mathrm{~J}$
(4) 107.9 keV
35. If two objects A and B are moving with velocities u and v, with respect to each other along the x-axis, the relative velocity of A with respect to B is given by :
(1) $\quad v_{x}=\frac{v-u}{1-\frac{u v}{c^{2}}}$
(2) $v_{x}=\frac{v-u}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
(3) $v_{x}=\frac{u-v}{1-\frac{u v}{c}}$
(4) $v_{x}=\frac{u-v}{1-\frac{u v}{c^{2}}}$
36. The Potential barrier in a PN junction is due to the charges on either side of the junction.

These charges are :
(1) Minority carriers.
(2) Majority carriers.
(3) Both majority and minority carriers.
(4) Fixed donor and acceptor ions.
37. A perfect Black Body is:
(1) A good absorber of all radiations.
(2) A perfect radiator of all radiations.
(3) A good absorber and also a perfect radiator when hot.
(4) One which can be maintained at a constant temperature.

SPACE FOR ROUGH WORK

38. The radiant energy of the sun results from :
(1) nuclear fission
(2) combustion
(3) nuclear fusion
(4) cosmic radiation
39. If the mass of one ${ }_{17} \mathrm{Cl}^{35}$ nucleus is 34.9800 amu , mass of one neutron is 1.008665 amu and mass of one proton is 1.007825 amu , the Binding energy per nucleon of ${ }_{17} \mathrm{Cl}^{35}$ is :
(1) 288 MeV
(2) 8.22 MeV
(3) 931 MeV
(4) None of the above
40. The magnetic flux density in air at a point 5 cm from a long straight wire carrying a current of 15 Amp is :
(1) $6 \times 10^{-6} \mathrm{wb} / \mathrm{m}^{2}$
(2) $6 \times 10^{-5} \mathrm{wb} / \mathrm{m}^{2}$
(3) $3 \times 10^{-6} \mathrm{wb} / \mathrm{m}^{2}$
(4) $3 \times 10^{-5} \mathrm{Tesla}$
41. Find the De Broglie wave length of a 46 gm golf ball moving at $30 \mathrm{~m} / \mathrm{s}$. Planck's constant $\mathrm{h}=6.62 \times 10^{-34} \mathrm{Js}$
(1) 1380 m
(2) $4.8 \times 10^{-34} \mathrm{~m}$
(3) $4.8 \times 10^{-31} \mathrm{~m}$
(4) $4.8 \times 10^{34} \mathrm{~m}$
42. The critical magnetic field of a superconductor :
(1) does not depend on temperature.
(2) increases if temperature increases.
(3) increases if temperature decreases.
(4) does not depend on superconducting transition temperature.
43. The Poynting vector \vec{S} is given by :
(1) $\quad \vec{S}=\frac{(\vec{E} \times \vec{B}) K}{\epsilon_{0}}$
(2) $\vec{S}=\frac{\vec{E} \times \vec{B}}{\epsilon_{0}}$
(3) $\vec{S}=\frac{\vec{E} \times \vec{B}}{\mu_{0}}$
(4) $\vec{S}=\frac{\vec{E} \times \vec{B}}{\mu_{0} C}$
P.T.O.

NO3

44. At every instant the ratio of the electric field to the magnetic field of an electromagnetic wa is equal to :
(1) Wave amplitude
(2) $\frac{\epsilon_{0}}{\mu_{0}}$
(3) C
(4) $\frac{2 \pi}{\lambda}$
45. The splitting of spectral lines by the action of an electric field is known as :
(1) Paschen - Back effect
(2) Zeeman effect
(3) Stark effect
(4) Lorentz effect
46. For dielectrics the ratio of the magnitude of the conduction current density to that of the displacement current density $\left(\frac{\sigma}{\omega \epsilon}\right)$ is :
(1) $\frac{1}{100}$
(2) 1
(3) less than $\frac{1}{100}$
(4) more than $\frac{1}{100}$
47. The angular momentum of a disc whose rotational energy is 10 kJ and moment of inertia about the axis of rotation is $8 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{2}$ is given by :
(1) $4 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$
(2) $16 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$
(3) $2 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$
(4) None of the above
48. In a transistor the base is :
(1) thin and heavily doped
(2) thin and moderately doped
(3) large and heavily doped
(4) thin and lightly doped
49. A dual slope A / D convertor is extensively used in :
(1) De-multiplexers
(2) Multiplexers
(3) Digital voltmeters
(4) Ripple counters
50. Calculate the force between two charges of one Coulomb each when they are at a distance of 1 m :
(1) 8.986 N
(2) $89.86 \times 10^{4} \mathrm{~N}$
(3) $8.986 \times 10^{9} \mathrm{~N}$
(4) None of the above

SPACE FOR ROUGH WORK

51. The most unsymmetrical crystal system is :
(1) Monoclinic
(2) Orthorhombic
(3) Triclinic
(4) Cubic
52. The size of the aperture should be of the order of the incident wave length. This condition is required for :
(1) Interference
(2) Rectilinear propogation
(3) Diffraction
(4) Polarization
53. $\quad \gamma$ - rays of 2.21 MeV energy are used to split a deuterium nucleus into a proton and neutron. If the mass of the deuterium atom is 2.01472 amu and mass of proton is 1.00813 amu , the mass of the neutron is given by:
(1) 0.00238 amu
(2) 1.00897 amu
(3) 1.00813 amu
(4) None of the above
54. In Thermodynamics ISOCHORIC process is one in which :
(1) Temperature remains constant
(2) Pressure remains constant
(3) Volume remains constant
(4) Energy remains constant
55. A proton is made up of:
(1) One-quark and one anti-quark
(2) Two up quarks and one down quark
(3) Two down quarks and one up quark
(4) None of the above
56. The geometrical aspect of the crystal structure is given by :
(1) Basis
(2) Unit cell
(3) Space lattice
(4) Lattice array
57. According to Planck's law, the energy density of radiation is given by :
(1) $\mathrm{Q}=\frac{8 \pi^{3} \mathrm{~h} \nu^{3}}{c^{3}}\left[\frac{1}{\mathrm{e}^{\mathrm{h} v / \mathrm{kT}}-1}\right]$
(2) $\mathrm{Q}=\frac{8 \pi \mathrm{~h} \nu^{3}}{\mathrm{c}^{3}}\left[\frac{1}{\mathrm{e}^{\mathrm{hv} / \mathrm{kT}}-1}\right]$
(3) $\mathrm{Q}=\frac{8 \pi^{3} \mathrm{~h} \nu^{3}}{\mathrm{c}^{3}}\left[\frac{1}{\mathrm{e}^{\mathrm{h} v / \mathrm{kT}}-2}\right]$
(4) $\mathrm{Q}=\frac{8 \pi \mathrm{~h}^{3} v^{3}}{\mathrm{c}^{5}}\left[\frac{1}{\mathrm{e}^{\mathrm{h} v / \mathrm{kT}}-1}\right]$

SPACE FOR ROUGH WORK

P.T.O.
58. The First Law of Thermodynamics states that:
(1) When two bodies are in thermal contact and no exchange of heat takes place, they in thermal equilibrium.
(2) The ratio of the work done and heat produced is always constant.
(3) Heat cannot flow from a cold body to a hot body without the aid of some external agency.
(4) All of the above.
59. The moment of inertia of a solid sphere of mass M and radius R , about its diameter is :
(1) $\frac{7}{5} \mathrm{MR}^{2}$
(2) $\frac{\mathrm{MR}^{2}}{2}$
(3) $\frac{2}{5} \mathrm{MR}^{2}$
(4) None of the above
60. The product AB of two matrices
$A=\left[\begin{array}{rrr}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{rrr}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2\end{array}\right]$ is :
(1) $\left[\begin{array}{rrr}-1 & 12 & 11 \\ -1 & 7 & 8 \\ -2 & -1 & 5\end{array}\right]$
(2) $\left[\begin{array}{rrr}5 & 9 & 13 \\ -1 & 2 & 4 \\ -2 & 2 & 4\end{array}\right]$
(3) $\left[\begin{array}{rrr}2 & 9 & 0 \\ -1 & 4 & 3 \\ 0 & 0 & 4\end{array}\right]$
(4) None of the above
61. In the liquid drop model of the nucleus, the nuclear forces play the role of :
(1) Cohesive force
(2) Surface tension force
(3) Viscous force
(4) Coulomb's attractive force
62. If the magnetic susceptibility is around -10^{-6}, the material is :
(1) paramagnetic
(2) diamagnetic
(3) ferromagnetic
(4) ferrimagnetic

SPACE FOR ROUGH WORK

63. Ampere's law allows us to calculate :
(1) Magnetic field caused by any current distribution.
(2) Magnetic field caused by a current carrying conductor in case of symmetry.
(3) The total magnetic flux produced by a linear current carrying conductor.
(4) None of the above.
64. When NaCl crystal is subjected to an electric field of $50 \mathrm{~V} / \mathrm{cm}$, the resulting polarization is $2.215 \times 10^{-7} \mathrm{C} / \mathrm{m}^{2}$. If the permittivity of free space is $8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$, then the relative permittivity of NaCl is :
(1) 5.006
(2) 5.666
(3) 6.006
(4) 6.506
65. Electrons bombarding the anode of a Coolidge tube produces X -rays of wavelength 1 Au . Find the energy of each electron at the moment of impact. Given
$h=6.62 \times 10^{-34} \mathrm{Js}$ and $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$.
(1) 0.1241 keV
(2) 12.41 eV
(3) 1.241 keV
(4) 12.41 keV
66. X-Rays which give a line spectrum are called as :
(1) Continuous X-Rays
(2) Characteristic X-Rays
(3) $\mathrm{K}_{\alpha} \mathrm{X}$-Rays
(4) Bremstrallung X-Rays
67. In an amplifier, the coupling capacitors are used to :
(1) control the output.
(2) to limit the bandwidth.
(3) to match the impedances.
(4) to prevent dc mixing with input or output.
68. The main function of a dielectric is :
(1) Electrical insulation
(2) Charge storage
(3) Measuring magnetic field
(4) Measuring electric field
69. Which of the following particles are Bosons ?
(1) Leptons
(2) Mesons
(3) Muons
(4) Electrons

SPACE FOR ROUGH WORK

70. A 10 mW LASER has a beam diameter of 1.6 mm . What is the intensity of the light that it is uniform across the beam?
(1) $1.243 \mathrm{~kW} / \mathrm{m}^{2}$
(2) $4.97 \mathrm{~kW} / \mathrm{m}^{2}$
(3) $4.97 \mathrm{MW} / \mathrm{m}^{2}$
(4) $4.97 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2}$
71. An Electronic Register consists of a group of :
(1) multiplexers
(2) flipflops
(3) logic gates
(4) microprocessors
72. Two particles of masses 100 gm and 300 gm have at a given time, position $2 i+5 \mathrm{j}+13 \mathrm{k}$ and $-6 i+4 j-2 k \mathrm{~cm}$ respectively and velocities $10 \mathrm{i}-7 \mathrm{j}-3 \mathrm{k}$ and $7 \mathrm{j}-9 \mathrm{j}+6 \mathrm{kcm} / \mathrm{sec}$ respectively. The velocity of the second particle in a frame of reference travelling with the centre of mass is:
(1) $\frac{31 \mathrm{i}-34 \mathrm{j}+15 \mathrm{k}}{4} \mathrm{~cm} / \mathrm{sec}$
(2) $\frac{-3 i-2 j+9 k}{4} \mathrm{~cm} / \mathrm{sec}$
(3) $\frac{-16 \mathrm{i}+17 \mathrm{j}+7 \mathrm{k}}{4} \mathrm{~cm} / \mathrm{sec}$
(4) None of the above
73. Electrons are accelerated upto a Kinetic energy of $10^{9} \mathrm{eV}$. Find the ratio of their mass to the rest of the mass :
(1) $\frac{\mathrm{m}}{\mathrm{m}_{0}}=1.77 \times 10^{-27}$
(2) $\frac{\mathrm{m}}{\mathrm{m}_{0}}=9.15 \times 10^{3}$
(3) $\frac{\mathrm{m}}{\mathrm{m}_{0}}=1.95 \times 10^{3}$
(4) $\frac{\mathrm{m}}{\mathrm{m}_{0}}=0.95 \times 10^{3}$
74. The Boolean expression $\mathrm{Y}=\mathrm{A}+\mathrm{B}$ represents :
(1) AND Gate
(2) Exclusive OR Gate
(3) OR Gate
(4) NAND Gate
75. In an elastic collision :
(1) Kinetic energy is conserved but momentum is not conserved.
(2) The two colliding bodies stick to each other after collision.
(3) Kinetic energy and momentum are conserved.
(4) Kinetic energy is not conserved.

SPACE FOR ROUGH WORK

A
76. Constant forces $\vec{P}=2 \vec{i}-5 \vec{j}+6 \vec{k}$ and $\vec{Q}=-\vec{i}+2 \vec{j}-\vec{k}$ act on a particle. Deter the work done when the particle is displaced from point A to point B, the position vectors A and B being $4 \vec{i}-3 \vec{j}-2 \vec{k}$ and $6 \vec{i}+\vec{j}-3 \vec{k}$ respectively :
(1) -15 units
(2) 21 units
(3) -21 units
(4) None of the above
77. A FET amplifier in the common source configuration uses a load resistance of $250 \mathrm{k} \Omega$. The ac drain resistance of the device is $100 \mathrm{k} \Omega$ and transconductance is $0.5 \mathrm{~mA} / \mathrm{V}$. The voltage gain is :
(1) 71.4
(2) -35.71
(3) -71.4
(4) 35.71
78. An electron is confined in a box of length $10^{-8} \mathrm{~m}$. Calculate the minimum uncertainty in velocity :
(1) $11.595 \mathrm{~m} / \mathrm{s}$
(2) $1.1595 \times 10^{2} \mathrm{~m} / \mathrm{s}$
(3) $11.595 \times 10^{3} \mathrm{~m} / \mathrm{s}$
(4) $1.055 \times 10^{-26} \mathrm{~m} / \mathrm{s}$
79. The splitting of spectral lines under the action of a magnetic field is known as :
(1) Raman effect
(2) Lyman effect
(3) Zeeman effect
(4) Stark effect
80. The Zero-Point energy of a Harmonic Oscillator is given by :
(1) $\mathrm{E}_{0}=\frac{1}{2} \hbar \omega^{2}$
(2) $\mathrm{E}_{0}=\frac{\hbar^{2} \omega^{2}}{2 \pi}$
(3) $\mathrm{E}_{0}=\frac{1}{2} \hbar \omega$
(4) None of the above

SPACE FOR ROUGH WORK

P.T.O.

सूचना - (पृष्ठ 1 वरून पुठे....)

(8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपो करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणान्या गैप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकयेच्या दंडाच्या शिक्षेस पात्र होईल.
(9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवारला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

Pick out the correct word to fill in the blank :
Q. No. 201. I congratulate you \qquad your grand success.
(1) for
(2) at
(3) on
(4) about

ह्या प्रश्नाचे योग्य उत्तर " (3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खाल्लिल्रप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक "(3)" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्र. क्र. 201. (1) (2) (4)
अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकतील प्रत्येक प्रश्नाचा तुमचा उत्तखकमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळया शाईचे बॉल्रयेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

