↑ केंद्राची संकेताक्षरे

2013

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका स्थापत्य अभियांत्रिकी

CODE: N

एकूण गुण : 100

शेवटचा अंक

वेळ : 2 (दोन) तास

सूचना

- सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपस्तिका समवेक्षकांकडून लगेच बदलुन घ्यावी. परीक्षा-क्रमांक
 - आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.
- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमुद करावा.
- या प्रश्नपस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- ्रपस्तृत परीक्षेच्या उत्तरपत्रिकांचे मुल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार पर्यायापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

38 सील 彻 सूचनेविना पर्यवेक्षकांच्या

SEAL

नदो

Student Bount & Com कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

www.StudentBounty.com

1. Using the following data

x (feet)	0 -	10	20	30	40	50	60	70	80
d (feet)	0	4	y	9	12	15	14	8	3

Student Bounts, com by the simpson's $\frac{1}{3}$ rule, the area is 710 sq. feet. What is the value of y?

- y = 6.5(a)
- (b) y = 6
- y = 7.5(c)
- (d) y = 7

Answer options:

- (a) and (b) only (2) (1)
- only (c)
- only (a) (3)
- (4)only (d)
- At what values of λ and μ the system of equation x+y+z=6, x+2y+3z=10, 2. $x + 2y + \lambda z = \mu$ has unique solution?
 - $\lambda = 3$, $\mu \neq 10$ (a)
- λ≠3, μ≠10 (b)
- $\lambda \neq 3$, $\mu = 10$ (c)
- (d) $\lambda = 3$, $\mu = 10$

Answer options:

- (1) (a) only
- (a) and (d) only (3) (b) and (c) only (4) (d) only (2)

3.
$$\frac{\partial(\mathbf{u},\mathbf{v})}{\partial(x,y)} \times \frac{\partial(x,y)}{\partial(\mathbf{u},\mathbf{v})} = ?$$

- (a) -1
- 1 (b)
- (c) zero
- (d) 2

Answer options:

- (a) only (1)
- (2) (a) and (b)
- (3)(b) only
- (4) (d) only
- The Particular integral of $(D^2 + 6D + 5)y = 4 e^{-x}$ is equal to? 4.
 - (a) $4 e^{-x}$
- (b) $x e^x$
- (c) $x e^{-x}$
- $4 e^x$ (d)

Answer options:

- (a) only (1)
- (2) (d) only
- (a) and (d) only (4) (3)
- (c) only
- If the scalar field $f = k^2x^2y y^8$ and $\nabla^2 f$ at (0, 1) is equal to zero. What is the value of k? 5.
 - 0, 28 (a)
- 28, 0 (b)
- (c) $2\sqrt{7}, -2\sqrt{7}$
- (d) 28, -28

Answer options:

- (a) and (b) only (2)
 - (d) only
- (3) (c) only
- **(4)** (b) only

Whether the row vectors of the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ are linearly independent or 6.

dependent:

- All row vectors are linearly dependent
- All row vectors are linearly independent
- (3)Two rows are linearly independent
- (4)One row is linearly independent
- What is the positive root of $x^4 x = 10$ by Newton-Raphson method? 7.
 - 1.8533
- 1.8433
- (3) 1.8555
- 1.8055

- If $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$, then A^{100} is:

- $\begin{bmatrix} 2^{100} & 0 \\ 0 & 1 \end{bmatrix} \qquad (2) \quad \begin{bmatrix} 0 & 2^{100} \\ 0 & 1 \end{bmatrix} \qquad (3) \quad \begin{bmatrix} \infty & 2^{100} \\ 1 & 1 \end{bmatrix} \qquad (4) \quad \begin{bmatrix} 0 & 0 \\ 1 & 2^{100} \end{bmatrix}$
- 9. Ratio of the maximum bending stress in the flange to that in the web of an I section at any distance along the length of a beam is always:
 - (1)Less than one

Equal to one

(3)More than one

- No relationship exists (4)
- 10. Where does maximum shear stress occur in a rectangular shaft subjected to torsion?
 - (1)centre

- (2)corners
- middle of smaller side (3)
- (4)middle of longer side
- A simply supported beam of span 'L' supports a concentrated load 'W' at mid-span. If 11. the cross-section of beam is an I-Section, then the length of elastic-plastic zone of the plastic hinge will be:
 - (1)L/3
- (3) L/2
- 3 L/4

- Student Bounty.com 12. What is the greatest eccentricity which a load 'W' can have without producing tension the cross section of a short column of external diameter 'D' and internal diameter 'd'
 - (1)
- (2) $\frac{\pi (D^4 d^4)}{32 D^3}$ (3) $\frac{D^2 + d^2}{8 D}$ (4) $\frac{D^2 d^2}{8 D}$
- In LSM a balance beam section is defined as one in which: **13.**
 - Both steel and concrete reach their maximum permissible stress simultaneously (1)
 - The stress in steel and concrete is same (2)
 - Both steel and concrete reach their maximum permissible strain simultaneously (3)
 - (4)The beam section balances the load perfectly
- As per IS: 800 2007., A bolt required to resist both design shear force (Vsd) and design 14. tensile force (Tb) at the same time shall satisfy

 - $(1) \quad \left(\frac{\text{Vsd}}{\text{Vdb}}\right)^2 + \left(\frac{\text{Tb}}{\text{Tdb}}\right)^2 \le 1.0 \qquad (2) \quad \left(\frac{\text{Vsd}}{\text{Vdb}}\right)^2 \left(\frac{\text{Tb}}{\text{Tdb}}\right)^2 \le 1.0$

 - (3) $\left(\frac{\text{Vsd}}{\text{Vdb}}\right)^2 + \left(\frac{\text{Tb}}{\text{Tdb}}\right)^2 \ge 1.0$ (4) $\left(\frac{\text{Vsd}}{\text{Vdb}}\right)^2 \left(\frac{\text{Tb}}{\text{Tdb}}\right)^2 \ge 1.0$

Where, Vdb = design shear capacity

Tdb = design tension capacity

- **15.** What is the strain energy stored in a rod of length 'L' and axial rigidity AE due to an axial force 'P'?

- (2) $\frac{P^2L}{2 AE}$ (3) $\frac{P^2L}{3 AE}$ (4) $\frac{P^2L}{4 AE}$

SPACE FOR ROUGH WORK

Match List-I (Type of structure) with List-II (statical indeterminancy) and select the co.
answer using the codes given below.

Where

$$m = no.$$
 of members

j = no. of joints

r = no. of reactions

List-I

List-II

- (a) Rigid jointed plane frame
- (i) (m+r)-3j
- (b) Pin jointed space frame
- (ii) (6 m + r) 6j
- (c) Rigid jointed space frame
- (iii) (6 m + r) 3j
- (iv) (3 m+r)-3j

Codes:

- (a) (b) (c)
- (1) (i) (ii) (iii)
- (2) (iv) (iii) (ii)
- (3) (ii) (i) (iii)
- (4) (iv) (i) (ii)
- 17. What is the maximum admissible slenderness ratio of steel column subjected to dead and live load only?
 - (1) 120
- (2) 180
- (3) 250
- (4) 350
- 18. Which allowable stress governs the permissible bending capacity of a structural section?
 - (1) Bending compressive stress
 - (2) Tensile stress
 - (3) Bending tensile stress
 - (4) Bending compressive or bending tensile stress
- 19. If a circular shaft is subjected to a torque 'T' and bending moment 'M', the ratio of maximum bending stress to maximum shear stress is ______.
 - $(1) \quad \frac{2 \,\mathrm{M}}{\mathrm{T}}$
- $(2) \quad \frac{M}{27}$
- $(3) \frac{M}{T}$
- $(4) \quad \frac{2T}{M}$

What does a parabolic cable subjected to a uniformly distributed vertical load over the 20. entire span, develop?

Zero axial force (1)

- Large bending moment (2)
- (3)Zero bending moment
- Minor shear force (4)

21. What do three hinges in an arch make it?

- (1)Statically unstable structure
- (2) Statically determinate structure
- (3) Geometrically unstable structure
- (4)Indeterminate structure

Where is the bending stress on a beam section zero? 22.

- Depends on the shape of the beam (1)
- (2) Top fibre
- Bottom fibre (3)
- Centroid of the section **(4)**

23. What is the shape of influence line diagram for the maximum bending moment in a simply supported beam under udl?

- Rectangular (1)
- Triangular (2)
- Parabolic (3)
- (4)Circular

If f_{cu} and f_{u} are the cube compressive strengths, of concrete and yield stress of steel respectively and Es is the modulus of elasticity of the steel for all grades of concrete, what can be taken as the ultimate flexural strain in concrete?

- (1)0.002

- (3) 0.0035 (4) $\frac{f_y}{1.15 \, \text{E}_{\text{s}}} + 0.002$

The profile of the centroid of the tendon is parabolic with a central dip 'h', effective 25. prestressing force 'p' and the length 'L'. What is the equivalent upward acting uniform load?

- (1)
- (2)
- $(4) \quad \frac{8 \, h^2 p}{I}$

									THE
									CITE
NO2					8				OH
26.		ne limit state terminate bea	0	ne maxim	um limi	it on 1	redistributio	n of mome	ents in statically
	(1)	15%	(2)	25%		(3)	30%	(4)	10%
27.	Wha bars		nimum w	idth of la	cing ba	r be i	f the 20 mm	rivets are	used in lacing
	(1)	40 mm	(2)	60 mm		(3)	80 mm	(4)	20 mm
28.	Wha	ıt is Kanis me	thod base	ed on ?					
	(1)	Moment Dis	stribution	method					
	(2)	Column An	alogy me	thod					
٠;,	(3)	Method of (Consisten	t Deforma	ition				
	(4)	Strain Energ	gy method	i					
29.		at will be the neter 'd' and				-		-	drical pipe with
29.						-		-	drical pipe with
	dian (1) Wha	pd 4 t	(2) vely cour	ʻt', subjec <u>pd</u> 2 t ter balan	ted to ir	(3)	l pressure 'p	(4)	<u>p</u>
	dian (1) Wha	pd 4 t	(2) vely cour	ʻt', subjec <u>pd</u> 2 t ter balan	ted to ir	(3)	l pressure 'p	(4) load on e	<u>p</u> 2 t
	(1) Wha	pd 4 t at can effective tressed concre	(2) vely courtete beam	ʻt', subjec <u>pd</u> 2 t ter balan	ted to in	(3) ormly an e	l pressure 'p p t distributed	(4) load on e	<u>p</u> 2 t
30.	(1) What pres (1) (3)	pd 4 t at can effective tressed concrete concentric concentric con	(2) vely countete beam cable	't', subjec pd 2 t ter balan ?	ce unifo	(3) ormly an e	p t distributed eccentric cabo	(4) load on e	p 2 t
30.	(1) What pres (1) (3)	pd 4 t at can effective tressed concrete concentric concentric con	(2) vely countete beam cable cable	't', subjec pd 2 t ter balan ?	ce unifo	(3) ormly an e none the yie	p t distributed eccentric cabo	(4) load on e	p 2 t
29. 30.	(1) Whapres (1) (3)	pd 4 t at can effective tressed concentric concentration of the policy concentration contentric cont	(2) vely countete beam cable cable	't', subjec pd 2 t ter balan ?	ce unifor (2) (4)	(3) ormly an e none the yiel	p t distributed eccentric cabe e of the above	(4) load on e	p 2 t
30.	(1) What pres (1) (3) The (1) (3)	pd 4 t at can effective tressed concentric concentration of the polymer concentration of the polymer concentration	(2) vely courtete beam cable cable lastic more	't', subjec pd 2 t ter balan ?	ce uniform (2) (4) (2) (4)	(3) ormly an e none the yie Equ None	p t distributed eccentric cab e of the above	(4) load on e	p 2 t entire span on a

- SHIIDENHOUNKY.COM 33. The partial safety factor applied to the reinforcement in the design of RC structures in the limit state of strength is:
 - (1) 1.15
- 1.50 (2)
- 0.87 (3)
- Equal or less than 1.0 (4)
- 34. The flow net of earth dam gave the distance to the directrix from the focus as 5 m and coefficient of permeability of soil is 3×10^{-3} cm/s. What is the quantity of seepage per unit length of dam in m^3/s ?
 - (1) 1.5×10^{-5}
- (2) 15×10^{-5}
- 15×10^{-3} (3)
- (4) 15×10^{-4}
- A circular pile of 30 cm diameter and 7 m length passes through a recently filled up material of 3.5 m depth. The unconfined compressive strength of the soil is 60 kN/m². The -ve skin friction of the pile is:
 - (1)110 kN
- (2)330 kN
- (3)99 kN
- 198 kN (4)

- 36. Match the pairs for safe bearing capacity:
 - (a) Moist clay which can be indented
- (i) 245 kN/m^2
- with strong thumb pressure
- (b) Soft Rock

- (ii) 150 kN/m^2
- Medium sand, compact and dry (c)
- 100 kN/m^2 (iii)
- Fine sand, loose and dry (d)
- (iv) 440 kN/m²

- (d) (a) (b) (c)
- (1)(iii) (iv) (ii) (i)
- (2)(ii) (iv) (i) (iii)
- (3)(ii) (iv) (iii) (i)
- (4)(iii) (i) (iv) (ii)

											`	CHILDENTBOUL
NO.	2						10					201
37.	Mat	ch the	follo	wing	:							
	(a)	Pne	umatio	tyre	roller		(i)	Stat	ic compre	ession		`
	(b)	Shee	ep foo	t rolle	r		(ii)	Ecce	entric wei	ght ro	tation	
	(c)	Smo	oth w	heel 1	oller		(iii)	Kne	ading act	ion		
	(d)	Vibr	atory	roller			(iv)	Tan	ping and	Knea	ding	
		(a)	(b)	(c)	(d)							
	(1)	(iii)	(i)	(iv)	(ii)							
	(2)	(iv)	(iii)	(i)	(ii)							
	(3)	(iv)	(ii)	(i)	(iii)							
	(4)	(iii)	(iv)	(i)	(ii)							
8.	Wha	at are	the fa	ctors i	influe	ncing cost o	of soil i	inves	igation ?			
	(a)	non	unifo	rmity	of lay	ers	(b)	und	isturbed s	sampli	ng	
	(c)	dept	th of e	explor	ation		(d)	natu	re of pro	ject		
	Ans	wer o	ption	s:								
	(1)	(a) a	ınd (b)	(2)	(b) and (c	:)	(3)	(c) and	(d)	(4)	All the above
39.	a 10	m hig	sh slop ofined	e, the	lengt ressiv	h of circula e strength o	r arc w	vas 30 was 3	m. The s	sum of Assu	shearir ming ui	noticed that for ng forces 500 kl nit weight of so
		0 kN/	m³ w	hat w	III be	the factor o	1 Salet	, ,,,,,,	. reopec.			

Rotary boring

Wash boring

40.

(1)

(3)

In which method of site exploration, soil and rock formations are broken by repeated

Percussion boring

(4) Auger boring

(2)

blows of heavy chisel or bit suspended by a cable or drill rod?

Student Bounty Com Match List - I (giving method of estimation of pile capacity) with List - II (parameters 41. be estimated), and select correct answer using codes given below:

List - I

- (a) Dynamic formulae
- (b) Static formulae
- (c) Pile load test
- (d) Cyclic pile load test

Codes:

- (a) (b) (c) (d)
- (1)(iii) (i) (iv) (ii)
- (2) (iv) (ii) (iii) (i)
- (3) (iii) (ii) (iv) (i)
- (4)(ii) (iv) (i) (iii)

List - II

- (i) Bearing capacity of cost in situ piles
- Separating end bearing and friction bearing (ii) capacity of pile
- (iii) Bearing capacity of timber pile
- Settlement of friction bearing pile (iv)

42. Match List - I (type of foundation) with List - II (use of the foundation) select correct answer, using the codes given below:

List - I

- (a) Floating piles
- Micro piles (b)
- Combined footing (c)
- (d) Under-reamed piles

List - II

- (i) Closely spaced columns resting on compressible soil.
- (ii) Expansive soils
- Deep soft clays (iii)
- (iv) Loose sands

Codes:

- (b) (d) (a) (c)
- (1) (iii) (ii)(i) (iv)
- (2)(ii) (iv) (i) (iii)
- (3) (iii) (i) (iv) (ii)
- (4)(iii) (iv) (i) (ii)

SPACE FOR ROUGH WORK

									2.
									THE
									CAR
NO	2							12	orrect answer using codes given below: List - II (Parameters measured)
43.	Mat	ch Lis	t - I w	vith L	ist - Il	I and	select	the co	orrect answer using codes given below:
		List							List - II
		(Fiel	ld Tes	st)					(Parameters measured)
	(a)	Plate	e Loac	d Test				(i)	Total and frictional a resistance
	(b)	Stan	dard	Penet	ration	Test		(ii)	Load intensity and settlement values
	(c)	Stati	c Con	ie Pen	etrati	on Te	st	(iii)	Ned values
	(d)	Dyn	amic	Cone	Penet	ration	Test	(iv)	SPT values
	Cod	es:							
		(a)	(b)	(c)	(d)				
	(1)	(ii)	(iv)	(iii)	(i)				
	(2)	(iv)	(ii)	(iii)	(i)				
	(3)	(ii)	(iv)	(i)	(iii)				
	(4)	(iv)	(ii)	(i)	(iii)				
44.		rrect v				_	shly so	oft cla	y is to be determined choose the correct type
	(1)	Dire	ct she	ar tes	t			(2)	Triaxial shear test
	(3)	Field	i vane	shea	r test			(4)	Laboratory unconfined compression test
45.	Mate	ch the	follo	wing:	:				
	(a)	SM				(i)	Clay	with	intermediate plasticity
	(b)	МН				(ii)	Poor	rly gra	aded gravel
	(c)	GP				(iii)	Silty	sand	
	(d)	CI				(iv)	Silt	of higl	h compressibility
		(a)	(b)	(c)	(d)				
	(1)	(iv)	(iii)	(ii)	(i)				
	(2)	(iii)	(iv)	(i)	(ii)				

(3) (iv) (ii) (iii) (i) (4) (iii) (iv) (ii) (i)

Match the following: 46.

List - I

(Soil property)

- Void ratio (a)
- (b) Uniformity coefficient
- (c) Porosity

List - II

(Range of soil property)

- Always more than one (i)
- (ii) Can be more than one
- (iii) Always less than one

Answer options:

- (a) (b) (c)
- (1)(i) (iii) (ii)
- (2)(iii) (ii) (i)
- (ii) (3) (iii) (i)
- (iii) (4)(ii) (i)

If back fill of a smooth backward vertical wall 6 m high carries a uniformly distributed 47. load of 60 kN/m² and back fill soil has $\phi = 30^{\circ}$, the active earth pressure due to uniform surcharge is:

- 160 kN/m^2 (1)
- 20 kN/m^2 (2)
- 216 kN/m^2 (3)
- (4) 30 kN/m^2

StudentBounts.com

48. Match the following:

- (a) Plasticity Index
- Consistency Index (b)
- (ii)
- Liquidity Index (c)
- Toughness Index (d)
- (iv) $(\mathbf{w}_{L} \mathbf{w}_{p})$

- (a)
- (c) (d)
- (1)(iv)
- (ii)

(b)

- (i) (iii)
- (2)(ii)
- (i)

(i)

- (iv) (iii)
- (3)(iv)
- (iii) (ii)
- (4)(iv)
- (ii) (iii)

(i)

SPACE FOR ROUGH WORK

NO₂

14

49. Yield of a drainage basin is generally expressed as:

- Total volume of water flowing per year
- (b) Total volume of water stored in a day
- (c) Total volume of water flowing per day
- (d) Discharge in a day

Which of the above given statement, is/are correct?

- (1) (a) only
- (2)(b) only
- (3) (c) only
- (4)
- (c) and (d) only

Student Bounty Com

50. Hagen - Poiseuille equation for laminar flow in the circular pipes is given as:

- (b) $\frac{128 \,\mu \,\text{VL}}{\text{D}^2}$ (c) $\frac{64 \,\mu \,\text{VL}}{\text{D}^2}$

Which of the above given statements is correct?

- (1)(a) only
- (2) (b) only
- (3) (c) only
- (4)(d) only

A streamline is a line: 51.

- (1)Which is normal to the velocity vector at every point
- (2)Which represents lines of constant velocity potential
- (3)Which is normal to the lines of constant stream function
- (4)Which is tangental to the velocity vector everywhere at a given instant

52. The double mass curve technique is used for:

- Determination of average annual rainfall (a)
- Determination of cumulative rainfall (b)
- (c) Checking the inconsistency of a record of rainfall data
- (d) Measurement of effective rainfall

Which of the above given statements is/are correct?

(a) only (1)

(a) and (b) only (2)

(3)(c) only (4)(c) and (d) only

53. Match the following:

List - I

- Reynolds number (a)
- Froude number (b)
- Weber number (c)
- (d) Mach number

Codes:

- (a) (b) (c) (d)
- (1)(i) (ii) (iii) (iv)
- (2) (iv) (iii) (ii) (i)
- (ii) (3) (i) (iii) (iv)
- (4)(ii) (i) (iv) (iii)

List - II

- Inertia force and elastic force (i)
- Student Bounty.com Inertia force and surface tension (ii)
- Inertia force and Gravity force (iii)
- (iv) Inertia force and viscous force

54. As per Lacey's theory, the silt factor is:

- (1)directly proportional to average particle size
- (2)inversely proportional to average particle size
- (3) directly proportional to square root of average particle size
- (4)not related to average particle size

When the pipes are connected in parallel, the total loss of head? 55.

- (1)is equal to the sum of the loss of head in each pipe
- (2)is same in each pipe
- (3) is equal to the reciprocal of the sum of loss of head in each pipe
- (4)none of the above

According to Lacey, the bed slope 'S' for a regime channel is given by :

 $f^{4/3}/3340 Q^{1/2}$ (1)

(2) $f^{2/3}/3340 Q^{1/2}$

 $f^{5/3}/3340 Q^{1/6}$ (3)

(4) $f^{1/3}/3340 Q^{1/6}$

- 57. Levees are constructed:
 - (1) Parallel to the river flow
 - (2) Transverse to the river flow
 - (3) At some inclination to the river flow
 - (4) Sometimes parallel and sometimes transverse
- **58.** If the R.L.S of canal bed level and high flood level of drainage are 212.0 m and 210.0 m respectively, then cross drainage work will be ______.
 - (1) aqueduct
- (2) superpassage
- (3) syphon
- (4) Syphon aqueduct

- **59.** What is a drag force a function of?
 - (a) Projected area of the body
 - (b) Mass density of the fluid
 - (c) Velocity of the body

The correct answer is.

- (1) (a) and (b)
- (2) (a) and (c)
- (3) (b) and (c)
- (4) (a), (b) and (c)
- **60.** The maximum elevation to which the water surface will rise in the reservoir during design flood is known as:
 - (a) Full reservoir level
 - (b) Maximum water level
 - (c) Normal pool level
 - (d) Full tank level

Which of the above given statements is/are correct?

- (1) (a) only
- (2) (b) only
- (3) (c) only
- (4) (c) and (d) only
- **61.** What is the hydraulic radius 'R' equal to for a hydraulically efficient triangular channel with a depth of flow, 'y'?
 - (1) $2\sqrt{2}$ 1/
- (2) $\frac{y}{2}$
- (3) $\sqrt{2} y$
- $(4) \qquad \frac{y}{2\sqrt{2}}$

Student Bounty Com In a solid-roller bucket type of energy dissipator, the energy dissipation is: 62. due to formation of a hydraulic jump (1)(2) due to interaction of the free jet with air and due to impact on downstream bed (3) due to interaction of two complementary rollers (4)partly due to lateral spreading of the jet and partly due to interaction of two rollers 0.5% of diluted raw sewage sample was used in a BOD test. The dissolved oxygen was found to be 8 mg/L and 5 mg/L at the beginning of BOD test and after 5 days of incubation at 20°C respectively. BOD₅ at 20°C of raw sewage is : 1500 mg/L 600 mg/L (1)150 mg/L (2)60 mg/L (4)64. What is Dissolved Oxygen (DO) saturation level in fresh water at 0°C assuming that chloride concentration is zero (0 mg/lit)? 9.17 mg/lit (1)7.63 mg/lit (2)10.00 mg/lit (3)14.62 mg/lit (4)65. The sand used in rapid sand filter has effective size between: 0.8 to 0.95 mm (1)0.2 to 0.3 mm (2)0.35 to 0.60 mm (3)0.1 to 0.20 mm (4)66. Match List - I with List - II and select correct answer using codes given below the lists. List - I List - II (Equipment) (Pollutant removed) (a) Bag house filter (i) Coarse particles (b) Electrostatic precipitator (ii) Fine dust Adsorbers Sulphur Dioxide (c) (iii) Wet scrubber (d) (iv) Gas (a) (b) (c) (d) (1)(i) (ii)(iii) (iv)

SPACE FOR ROUGH WORK

(2)

(3)

(4)

(i)

(ii)

(ii)

(ii)

(i)

(i)

(iv)

(iii)

(iv)

(iii)

(iv)

(iii)

								SE.
								de
NO	2						18	ection process by chlorination ?
67.	Whi	ich of	the fo	llowi	ng factor	s affect d	isinfe	ection process by chlorination ?
	(a)	Fori	n of c	hlorin	e			•
	(b)	pН			,			
	(c)	Con	centra	ation				
	(d)	Con	tact ti	ime				
	(e)	Тур	e of o	rganis	m			
	(f)	Tem	perat	ure				•
	(1)	(a),	(b), (d) and	(e)	,	(2)	(a), (c), (d) and (f)
	(3)	All	of the	above	:		(4)	None of the above
68.	Mat	ch the	follo	wing	:			
	(a)	Dus	t part	icles		(i)	Dea	th by asphyxiation
	(b)	Hyd	lrogen	Fluo	ride	(ii)	Astl	hama
	(c)	CO				(iii)	Mot	tling of teeth
	(d)	Polle	ens			(iv)	Silic	eosis
		(a)	(b)	(c)	(d)			
	(1)	(i)	(ii)	(iv)	(iii)			
	(2)	(iv)	(iii)	(i)	(ii)			
	(3)	(iv)	(iii)	(ii)	(i)			
	(4)	(ii)	(iv)	(i)	(iii)			
69.	Whi	ch of	the fo	llowir	ig metho	ds can be	ado _l	pted for proper disposal of rubbish ?
	(1)	Con	posti	ng			(2)	Sanitary land fill
	(3)	Incir	nerati	on			(4)	Non-engineered land fill
70.	Aero	sol is	a:	•				
	(1)	disp	ersion	of sn	nall solid	s in liquio	d med	dia
	(2)	disp	ersion	of sn	nall solid	s or liqui	d par	ticles in gaseous media
	(3)	finel	y divi	ided p	articles o	of smoke		

SPACE FOR ROUGH WORK

dispersion of liquid particles

(4)

							19					3/18
i.	Mat	ch the	follo	wing :								
	(a)	Grav	vitatio	nal se	ttler		(i)			removal te matter)	effici	ency of P.M.
	(b)	Elec	trosta	tic pre	ecipita	ator	(ii)	> 99	9% ren	noval effi	ciency o	of P.M.
	(c)	Fabr	ic Filt	ration	L		(iii)	< 50)% ren	noval effi		
	(d)	Cent	rifuga	al coll	ector		(iv)	95-9	9% re	moval eff	iciency	of P.M.
		(a)	(b)	(c)	(d)							
	(1)	(i)	(ii)	(iv)	(iii)							
	(2)	(iii)	(iv)	(i)	(ii)							
	(3)	(i)	(iv)	(ii)	(iii)							
	(4)	(iii)	(iv)	(ii)	(i)							
•		n the :				v sludge i e is 1.1 tin					- F	it sonus comen
	(1) (2) (3) (4) Con (a) (b)	volu volu volu volu sider t Siler	me of me of the foliate zond bey	raw s raw s raw s raw s lowin	sludge sludge sludge sludge g stat 100 m	e is 1.1 tine is ten tine is 9.9 tine ements reduced harms hu	nes that mes that mes that lated to from in	of thi of thi of thi of thi noise stituti	ickene hickene ickene e pollu ions, h	d sludge d sludge ed sludge d sludge ution :	tc.	
	(1) (2) (3) (4) Con (a) (b) (c)	volu volu volu volu Sider t Sour Nois	me of me of the foliate zo and beyne from	raw s raw s raw s raw s lowin ne is 1 vond 8	sludge sludge sludge g stat 100 m 30 dB	e is 1.1 tine is ten tine is 9.9 tine ements reduced harms hu	nes that mes that mes that lated to from in man he sured a	of thi of thi of thi of thi noise stituti	ickene hickene ickene e pollu ions, h	d sludge d sludge ed sludge d sludge ution:	tc.	
3.	(1) (2) (3) (4) Con (a) (b) (c)	voluvoluvoluvolusider t	me of me of the foliate zo and beyne from	raw s raw s raw s raw s llowin ne is 1 vond 8 n auto	sludge sludge sludge g stat 100 m 30 dB	e is 1.1 tine is ten tine is 9.9 tine ements redistance harms hules is mea	nes that mes that mes that lated to from in man he sured a orrect ?	of thi of thi of thi of thi noise stituti	ickene hickene ckene pollu ions, h syster	d sludge d sludge d sludge d sludge tion: ospitals e m	tc.	(a), (b) and (
	(1) (2) (3) (4) Con (a) (b) (c) Whi (1)	voluvoluvolusider to Siler Nois ch of (a) a	me of me of the following from the about that p	raw s raw s raw s raw s llowin ne is 1 vond 8 n auto	sludge sludge sludge g stat 100 m 30 dB omobi tateme (2)	e is 1.1 time is ten time is 9.9 time ements redustance harms hulles is mealents are controlled (b) and	nes that mes that lated to from in man he sured a orrect?	of this of the original orig	ickene hickene ckene e pollu ions, h system free fi (a) a	d sludge d sludge d sludge d sludge ution : nospitals e m eld distan	etc.	_
3.	(1) (2) (3) (4) Con (a) (b) (c) Whi (1)	voluvoluvolusider to Sour Nois (a) a	me of me of the following from the about that pknow	raw s raw s raw s raw s llowin ne is 1 vond 8 n auto	sludge sludge sludge g stat 100 m 30 dB omobi tateme (2)	e is 1.1 time is ten time is 9.9 time ements redustance harms hulles is mealents are controlled (b) and	nes that mes that lated to from in man he sured a orrect?	of this of the original orig	ickene hickene ckene e pollu ions, h system free fi (a) a	d sludge d sludge d sludge d sludge ution : nospitals e m eld distan	tc. ce (4)	(a), (b) and (a
3.	(1) (2) (3) (4) (4) (b) (c) Whi (1) The from (1)	voluvoluvoluvolusider t SilerSourNoisch of t (a) a	me of me of the folice zo and bey the about that p know age	raw s raw s raw s raw s lowin ne is 1 rond 8 n auto ove si erloca n as :	sludge sludge sludge g stat 100 m 30 dB omobil tateme (2) tes the	e is 1.1 time is ten time is nine time is 9.9 time ements reductance harms hules is mealents are controlled (b) and the rough soli	nes that mes that mes that lated to from in man he sured a orrect ? (c) d waste	of this of the of this of thi	ickene hickene ckene e pollu ions, h system free fi (a) a	d sludge d sludge ed sludge d sludge ution: nospitals e m eld distan	tc. ce (4)	(a), (b) and (o
3.	(1) (2) (3) (4) (4) (b) (c) Whi (1) The from (1)	voluvoluvoluvolusider t SilerSourNoisch of t (a) a	me of me of me of the following from the above that p know age	raw s raw s raw s raw s lowin ne is 1 rond 8 n auto ove si erloca n as :	sludge	e is 1.1 tine is ten tine is nine tie is 9.9 tine ements redistance harms hules is mealents are controlled to the controlled is mealents are controlled is soliced to the controlled in the controlled	nes that mes that mes that lated to from in man he sured a orrect ? (c) d waste	of thing of the stitution of the stit	ickene hickene ckene e pollu ions, h system (a) a xtracts Was	d sludge d sludge ed sludge d sludge ution: nospitals e m eld distan	tc. (4) d or susp	(a), (b) and (o

NO:	2						20					17/8	1
76.	Wha	at is th	ne Dec	ibel (d	dB) va	alue of sou	nd du	ıring	normal c	onvers	ation ?	1	Un
	(1)	0 dE	3		(2)	20 dB		(3)) 80 dE	3	(4)	60 dB	1
77.		ewage near		nent,	the ho	rizontal flo	ow gri	t cha	mbers are	e desig	ned to ma	intain a vel	ocity
	(1)	0.3 1	m/s		(2)	0.9 m/s		(3)) 1.0 m	ı/s	(4)	1.2 m/s	
78.		up I rumer		ins p	aram	eters/pro	perty	of b	itumen	and G	roup II	lists meth	ods/
		Gro	up I					G	roup II				
	(P)	Soft	ening	point			(i)	Ру	cnomete	r			
	(Q)	Flas	h and	Fire p	oint		(ii)	Pe	nsky Ma	rtens c	losed cup)	
•	(R)	Grad	ding o	f Bitu	men		(iii)) Pe	netrome	ter			
	(S)	Spec	cific G	ravity			(iv)) Ri	ng and B	all			
	The	corre	ct mat	ch of	Group	p I with G	roup	II is					
		(P)	(Q)	(R)	(S)								
	(1)	(i)	(ii)	(iii)	(iv)								
	(2)	(iv)	(iii)	(ii)	(i)								
	(3)	(iv)	(ii)	(iii)	(i)								
	(4)	(i)	(iii)	(ii)	(iv)								
79.	7.0 r	n wid	e with	ı a tra	nsver		2.0%					crete paver ght of the cr	
	(1)	1.75	0 cm		(2)	17.500 cı	n	(3)	0.007	m	(4)	0.070 m	
80.	inter	sectio	n. Wi	ith X a	as the		confl	ict po	oints whe	n both		an uncontr	

									Sill
					24				lab, in the wint
A					21				10
81.	Wha seas		onal stress	develope	d at the	botto	m of rigid	pavement s	lab, in the wint
	(1)	Compressiv	e stress						
	(2)	Tensile stre	ss						
	(3)	Both Comp	ressive and	d Tensile	stress				
	(4)	None of the	e above						
82.	Wha	at is traffic de	ensity ?						
	(1)	No. of vehi	cles movin	ig in speci	ific dire	ction _j	per hour		
	(2)	No. of vehi		-	ific dire	ction	per lane pe	er day	
	(3)	No. of vehi	•	0					
	(4)	No. of vehi	cles passin	g a given	point i	n one	hour		
83.		n urban area, 100 meter. H		•		_			ole length of ke
	(1)	410	(2)	400		(3)	415	(4)	425
34.		v many numb i two-way tra		ing confli	ct point	s are t	here on a r	right angled	road intersection
	(1)	04	(2)	08		(3)	16	(4)	24
35.		tative Equiva tor-trailer un	•	tor sugge	ested by	y the	I.R.C for	bus, truck a	and agricultur
	(1)	1.5	(2)	2.0		(3)	2.5	(4)	3.0
36.	A cc	mpound cur	ve consists	of :					
	(1)	Proportiona	ate super e	levation	(2)	Cur	ves with d	ifferent radi	us
	(3)	Combined 1	horizontal	curves	(4)	Two	circular c	urves of diff	ferent radii
37.	If ar	equation is	subtracted	l from a c	onstant	k, th	e weight o	f the resulti	ng equation wi
	(1)	weight of e	quation di	vided by l	k				
	(2)	weight of e	quation m	ultiplied b	y k				
				141 11 1 1	1.2				
	(3)	weight of e	quation m	ultiplied t	by K ²				

									Total .
NO	2				22				on of:
88.	In t	heodolite travers	se comr	outations, C	Gales t	able is	useful for deter	rminati	on of :
	(1)	Independent of	•		(2)		endent co-ordir	nates	
	(3)	Both (1) and ((2)		(4)	Nor	e of the above		
89.	The	representative f	raction	(R.F) of sca	ale 1 c	m = !	500 m is :		
	(1)	1:500	(2)	1:5000		(3)	1:50000	(4)	1:50
90.	The	magnetic bearing	ng of su	ın at noon	was 1	70°. I	lence magnetic	declina	tion is :
	(1)	10° E	(2)	10° W		(3)	10° S	(4)	10° N
91.		ack sight readir						ed staf	f reading to the
	(1)	200. 800 m	(2)	201. 450	m	(3)	201. 000 m	(4)	203. 700 m
92.		ower is situated o	n the fa	ar side of th	e rive	r and i	s inaccessible. B	ut it is	visible. It can be
	(1)	Radiation	(2)	Traversin	g	(3)	Intersection	(4)	Resection
93.	The	ratio of tensile	strength	ı to compre	essive	streng	th of concrete is	about	:
	(1)	1/5	(2)	1/10		(3)	1/2	(4)	1/20
94.	At v	what height non-	-combu	stible mate	rial sh	all be	used in constru	ction o	f a building ?
	(1)	20 m above	(2)	15 m abo	ve	(3)	30 m above	(4)	25 m above
95.		minimum aggre climate shall no			ngs, e	xcludi	ng doors in resid	dential	buildings in wet
	(1)	$\frac{1}{10}$ th of the fl	oor are	a	(2)	$\frac{1}{6}$ th	of the floor are	ea	
	(3)	$\frac{1}{8}$ th of the flo	or area		(4)	$\frac{1}{12}$ t	h of the floor ar	ea	
—— 96.	Wha	at is the main co	nstitue	nt in fire p	roof p	aints ?			
	(1)	Aluminium po		•	(2)		lead		

Copper powder

(3)

(4) Asbestos fibres

23

- 97. A brick moulded with a rounded angle is called as:
 - (1) Bull nose
- (2) Horse nose
- (3) Cow nose
- (4) Donkey nose
- 98. The guidelines for Concrete Mix Design are covered in:
 - (1) IS: 10262 1982
- (2) IS: 14272 1985
- (3) IS: 10272 1983
- (4) IS: 14273-1985
- **99.** A rough estimate of the quantity of dynamite required in grams for blasting rocks is given by :
 - (1) $L^2/0.008$
- (2) $L^{2/3}/340$
- (3) $L^2/500$
- (4) L/250

- 100. Lean to Roof is suitable for the span:
 - (1) upto 1.5 m
- (2) upto 2.5 m
- (3) upto 3.5 m
- (4) upto 4.5 m

- o 0 o -

सूचना — (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरत्दीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर धेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

7

Pick out the correct word to fill in the blank: Q. No. 201. I congratulate you ______ your grand success. (1) (2)(3) on (4)about ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''(3)'' हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्र. क्र. 201. (1) (2) (4)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK