AQA Level 2 Certificate in Further Mathematics

Worksheets - Teacher Booklet

Level 2

Specification

Level 2 Certificate in Further Mathematics 8360

Worksheets - Teacher Booklet

Our specification is published on our website (www.aqa.org.uk). We will let centres know in writing about any changes to the specification. We will also publish changes on our website. The definitive version of our specification will always be the one on our website, this may differ from printed versions.

You can get further copies of this Teacher Resource from:
The GCSE Mathematics Department
AQA
Devas Street
Manchester
M16 6EX

Or, you can download a copy from our All About Maths website (http://allaboutmaths.aqa.org.uk/).

Copyright © 2012 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications, including the specifications. However, registered centres for AQA are permitted to copy material from this specification booklet for their own internal use.

The Assessment and Qualifications Alliance (AQA), is a company limited by guarantee registered in England and Wales (company number 3644723), and a registered charity 1073334.
Registered address:
AQA
Devas Street,
Manchester
M15 6EX

Contents

1	Coordinate Geometry - Circles	7
2	Geometric Problems and Proof	17
3	Algebraic Proof	26
4	Trigonometry	31
5	Matrices - 1	37
6	Matrices - 2	41
7	Inequalities	46
8	Functions	53
9	Coordinate Geometry - Calculus	59
10	Factor Theorem	68
11	Sequences	75
12	Algebraic Problems - including ratio	84

Glossary for Mark Schemes

These examinations are marked in such a way as to award positive achievement wherever possible. Thus, for these papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.

M Dep A method mark dependent on a previous method mark being awarded.

B Dep A mark that can only be awarded if a previous independent mark has been awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$

1 Coordinate Geometry - Circles

Question 1

Write down the equation of each of these circles.
(a) Centre $(0,3)$ radius 2
(b) Centre $(1,-5)$ radius 4
(c) Centre $(-3,4)$ radius $\sqrt{7}$
(d) Centre $(8,15)$ radius 17

Does this circle pass through the origin?
Show working to support your answer.

Mark Scheme

(a) $x^{2}+(y-3)^{2}=4$
(b) $\quad(x-1)^{2}+(y+5)^{2}=16$
(c) $\quad(x+3)^{2}+(y-4)^{2}=7$
(d) $\quad(x-8)^{2}+(y-15)^{2}=289$
$(-8)^{2}+(-15)^{2}$
$64+225=289$, Yes

B2
B2

B2

B2

M1

A1

Question 2

Write down the centre and radius of each of these circles.
(a) $x^{2}+y^{2}=36$
(b) $(x-3)^{2}+(y-4)^{2}=100$
(c) $\quad(x+5)^{2}+y^{2}=3$

Mark Scheme

(a)	$(r)=6$	$($ centre $=)(0,0)$	B2	B1 For each
(b)	$(r)=10$	$($ centre $=)(3,4)$	B2	B1 For each
(c)	$(r)=\sqrt{3}$	$($ centre $=)(-5,0)$	B2	B1 For each

Question 3 (non-calculator)

$A B$ is the diameter of a circle.
A is $(-3,6)$ and B is $(5,12)$.
Work out the equation of the circle.

Mark Scheme

$\frac{-3+5}{2}$ or $\frac{6+12}{2}$
$(1,9)$
$\sqrt{(5-1)^{2}+(12-9)^{2}}$

5
$(x-1)^{2}+(y-9)^{2}=25$

M1

A1
M1

A1
A 1 ft ft Their centre and radius

Question 4 (non-calculator)

$P Q$ is a diameter of a circle, centre C.

Not drawn
accurately
(a) Work out the coordinates of Q.
(b) Work out the equation of the circle.

Mark Scheme

(a) $(3,3)$
(b) $\sqrt{2^{2}+1^{2}}$
$\sqrt{5}$
$(x-1)^{2}+(y-2)^{2}=5$

B1
M1 oe

A1

B1 ft
ft Their radius

Question 5 (non-calculator)

$A(12,6)$ and $B(14,4)$ are two points on a circle, centre $C(20,12)$.

Not drawn accurately
(a) Work out the coordinates of the midpoint M, of $A B$.
(b) Show that the length $C M=7 \sqrt{2}$
(c) Work out the radius of the circle.

Mark Scheme

(a) $\frac{12+14}{2}$ or $\frac{6+4}{2}$
$(13,5)$
(b) $\sqrt{(20-13)^{2}+(12-5)^{2}}$
$\sqrt{98}$

$$
\sqrt{49 \times 2}=7 \sqrt{2}
$$

(c) $\sqrt{(20-12)^{2}+(12-6)^{2}}$ 10

M1 ft Their M

A1 $\quad \sqrt{7^{2}+7^{2}}$
A1 $\quad \sqrt{7^{2}(1+1)}=7 \sqrt{2}$
M1 oe
A1

Question 6

$(0,-2),(0,12)$ and $(4,12)$ are three points on a circle, centre C.

Not drawn
accurately

Work out the coordinates of C.
(3 marks)

Mark Scheme

$\frac{-2+12}{2}$
$\frac{0+4}{2}$
M1

C $(2,5)$
A1

Question 7

$A B$ is a diameter of the circle $A B C$.

Not drawn
accurately

Work out the value of k.

Mark Scheme

Gradient $A C=\frac{6-3}{4--2}$
M1 oe
$=\frac{3}{6} \quad\left(=\frac{1}{2}\right)$
A1 oe

Gradient $B C=-2$
B1 ft
$\frac{6-k}{4-6}=-2$
$k=2$
A1

Question 8

A circle has equation $(x-5)^{2}+(y-4)^{2}=100$
Show that the point $(13,-2)$ lies on the circle.

Mark Scheme

$(13-5)^{2}+(-2-4)^{2}$
M1
$64+36=100$
A1

Question 9

The point $(13,-2)$ lies on the circle $(x-a)^{2}+(y-4)^{2}=100$
Work out the two possible values of a.

Mark Scheme

$(13-a)^{2}+(-2-4)^{2}=100$	M1
$169-13 a-13 a+a^{2}+36(=100)$	M1 \quad Allow 1 error
$a^{2}-26 a+105=0$	M1
$(a-5)(a-21)=0$	
$a=5$ and $a=21$	A1

Question 10

A circle passes through the points $(0,3)$ and $(0,11)$ and has centre $(6, k)$

(a) Work out the value of k.
(b) Hence find the equation of the circle.

Mark Scheme

(a) $\frac{3+11}{2}$
$k=7$
(b) $\sqrt{6^{2}+(7-3)^{2}}$
$\sqrt{52}$
$(x-6)^{2}+(y-7)^{2}=52$

M1 oe eg, $3+4$

A1
M1 oe
ft Their k
A1

A1 $\mathrm{ft} \quad \mathrm{ft}$ Their k and their radius

Question 11 (non-calculator)

The equation of this circle, centre C, is $(x-3)^{2}+(y-5)^{2}=17$ $P(4,1)$ is a point on the circle.

(a) Show working to explain why $O P$ is a tangent to the circle.
(b) Show that the length $O P$ is equal to the radius of the circle.

Mark Scheme

(a) $\quad C$ is $(3,5)$

B1

Gradient $C P=\frac{5-1}{3-4}$
-4
A1
Gradient $O P=\frac{1}{4}$
B1
$-4 \times \frac{1}{4}=-1$
A1

So perpendicular (ie, tangent)
(b) $r=\sqrt{17}$ B1
$O P=\sqrt{4^{2}+1^{2}} \quad \mathrm{M} 1$
$=\sqrt{17} \quad \mathrm{~A} 1$

Question 12 (non-calculator)

The equation of this circle is $\quad x^{2}+y^{2}=20$
$P(4,2)$ is a point on the circle.

Not drawn accurately

Work out the equation of the tangent to the circle at P.
Give your answer in the form $y=m x+c$

Mark Scheme

Gradient $O P=\frac{2}{4} \quad\left(=\frac{1}{2}\right)$
Gradient of tangent $=-2$
$y-2=-2(x-4)$
$y=-2 x+10$

2 Geometric Problems and Proof

Question 1

$S Q$ is a tangent to the circle at Q.
$P R=Q R$

Not drawn
accurately

Prove that $R Q$ bisects angle $P Q S$.
(3 marks)

Mark Scheme

Let angle $S Q R=x$
\therefore angle $R P Q=x$ alternate segment
\therefore angle $R Q P=x$ isosceles triangle
$\therefore \angle R Q S=\angle R Q P$

M1 Any order of angles

M1
A1 SC2 'Correct' solution without reasons

Question 2

$P Q R S$ is a trapezium.
Angle $P S R=$ angle $Q R S$

Prove that $P Q R S$ is a cyclic quadrilateral.

Mark Scheme

Let angle $P S R=x=$ angle $Q R S$
M1 $\angle P Q R=180-x$
$\therefore \angle S P Q=180-x$
Allied angles on parallel lines
$\therefore \angle S P Q+\angle Q R S=180$
$P Q R S$ is a cyclic quadrilateral (converse of) opposite angles add up to 180°

A1 $\angle P S R+\angle P Q R=180$

Not drawn accurately

A1 SC2 'Correct' solution without reasons

Question 3

$p: q: r=4: 6: 5$

Not drawn accurately

Work out s.

Mark Scheme

$p+r=180$	M1	
$4 x+5 x=180$	M1	oe
$(9 x=180)$	A1	
$x=20$		
$6 x=120$	M1	ft Their x
$s=60$	A1ft	ft Their x

Question 4

O is the centre of the circle.
$A O B C$ and $E D C$ are straight lines.

Not drawn
accurately

Prove that $\quad 4 x+y=90$

Mark Scheme

$\angle B E D=x$
M1
angles in same segment
$\angle A E B=90^{\circ}$
A1
angle in semicircle $=90^{\circ}$
In $\triangle A C E$
A1
$y+x+2 x+x+90=180$
angle sum of a triangle $=180$

$$
\begin{aligned}
y+4 x & =180-90 \\
& =90
\end{aligned}
$$

A1 SC2 'Correct' solution without reasons

Question 5

QS bisects both of the angles $P S R$ and $P Q R$.

Not drawn accurately

Prove that $Q S$ is a diameter of the circle.

Mark Scheme

$2 x+2 y=180$
M1
opposite angles of a cyclic quadrilateral $=180$
$x+y=90$
A1
$\therefore \angle Q P S=90$
A1
angle sum of triangle $=180$
QS is diameter
A1 SC2 'Correct’ solution without reasons
(converse of) angle in a semicircle = 90)

Question 6

$R S X$ is a straight line.
$X T$ is a tangent to the circle at T.
$S X=S T$

Not drawn accurately

Prove that triangle $R X T$ is isosceles.

Mark Scheme

Let $\angle S X T=x$
M1
$\therefore \angle S T X=x$ isosceles triangle
$\therefore \angle S R T=x$ alternate segment
\therefore triangle $R X T=$ is isosceles -
2 base angles equal

M1
A1 SC2 'Correct' solution without reasons

Question 7

O is the centre of the circle.
$A B$ bisects angle $O B C$.

Not drawn
accurately

Prove that $\quad y=90+x$
(5 marks)

Mark Scheme

$\angle O A B=x$ isosceles triangle
$\angle B O A=180-2 x$
angle sum of triangle $=180$
Reflex $\hat{B O A}=360-(180-2 x)$
$($ Angles at a point $=360)=180+2 x$
$y=90+x$
Angle at centre $=2 \times$ angle at circumference

M1
M1
M1

A1
A1 SC3 'Correct' solution without reasons

Question 8

$R T Q, R S P$ and $P T V$ are all straight lines.
$P T=P Q$
Not drawn

Prove that $P T V$ is a tangent to circle $R S T$ at T

Mark Scheme

$\angle Q T P=x$ isosceles triangle
M1
$\angle V T R=x$ vertically opposite angles
M1
equal
$\angle T Q P=x=\angle R S T$ exterior angle of cyclic
M1
accurately

Question 9

$A B F$ is a common tangent to the two circles at A and B.
$C D E$ is a straight line.
$A C$ is parallel to $B D$.

Prove that $A D$ is parallel to $B E$.

Mark Scheme

$\angle E D B=x$ alternate segment
$\therefore \angle D C A=x$ corresponding angles equal
$\therefore \angle D A B=x$ alternate segment
ie, $\angle D A B=\angle E B F$
$\therefore A D$ is parallel to $B E$
(converse of) corresponding angles equal

3 Algebraic Proof

Question 1

Prove that $4(p-3)-2(2 p-1)$ is always a negative integer.

Mark Scheme

$4 p-12-4 p+2$
M1
4 terms with 3 correct

- 10
A1

Question 2

Prove that $8(y+3)+3(2-y)$ is a multiple of 5 when y is a positive integer.

Mark Scheme

$8 y+24+6-3 y$ or $5 y+30$
M2
M1 4 terms with 3 correct
$5 y+30$ and $5(y+6)$
A1
oe eg, $5 y+30$ and states both terms divisible by 5

Question 3

a is a positive integer.
Prove that $4 a^{2}(2 a+1)-(2 a)^{2}$ is a cube number.
Mark Scheme

$8 a^{3}+4 a^{2}-4 a^{2}$ or $8 a^{3}$	M2	M1 3 terms with 2 correct
$8 a^{3}$ and $(2 a)^{3}$	A1	oe eg, $8 a^{3}$ and states that 8 is a cube number

Question 4

a and b are positive integers.
$a<b$
Prove that $\frac{a x+3 a}{b x+3 b}<1 \quad x \neq-3$

Mark Scheme

$a(x+3)$ or $b(x+3)$
M1
$\frac{a(x+3)}{b(x+3)}$ and cancelling seen
$\frac{a}{b}$ and explains that as numerator is smaller than denominator value will be <1

A1

A1 oe

Question 5

(a) Express $x^{2}+6 x+11$ in the form $(x+a)^{2}+b$ where a and b are integers.
(b) Hence, prove that $x^{2}+6 x+11$ is always positive.

Mark Scheme

(a) $\quad a=3$
B1
$b=2$
B1 ft
ft 11 - their a^{2}
(b) $\quad(x+3)^{2} \geq 0$
M1 oe Allow their a
Adding 2 means always positive
A1 Must have $a=3$ and $b=2$

Question 6

Prove that, for all values of $x, x^{2}+2 x+6>0$

Mark Scheme

$(x+1)^{2}$
B1
$(x+1)^{2}+5$
B1 ft

M1
A1
ft Their $(x+1)^{2}$
oe Allow their 1
Must have $(x+1)^{2}+5$

Question 7

$\mathrm{f}(x)=(2 x+3)^{2}+8(x+2)$ for all values of x.
Prove that there is exactly one value of x for which $\mathrm{f}(x)=0$

Mark Scheme

$4 x^{2}+6 x+6 x+9+8 x+16$ or
M2
M1 Allow one error in expansions
$4 x^{2}+20 x+25$
$4 x^{2}+20 x+25$ and $(2 x+5)^{2}$

Explains that only solution is
$(x=)-2.5$

A1

A1
oe
eg, explains that because the brackets are the same there is exactly one solution

Question 8

The nth term of a sequence is $\frac{1}{2} n(n+1)$
(a) Work out an expression for the $(n-1)$ th term of the sequence.

Give your answer in its simplest form.
(2 marks)
(b) Hence, or otherwise, prove that the sum of any consecutive pair of terms of the sequence is a square number.

Mark Scheme

(a) $\quad \frac{1}{2}(n-1)(n-1+1)$
$\frac{1}{2} n(n-1)$
(b) $\frac{1}{2} n(n+1)+\frac{1}{2} n(n-1)$
$\frac{1}{2} n^{2}+\frac{1}{2} n+\frac{1}{2} n^{2}-\frac{1}{2} n$
n^{2}

Alt $\quad \frac{1}{2} n(n+1)+\frac{1}{2}(n+1)(n+1+1)$
$\frac{1}{2} n^{2}+\frac{1}{2} n+\frac{1}{2} n^{2}+n+\frac{1}{2} n+1$
$(n+1)^{2}$

M1

A1

M1

M1 Expands brackets

A1

M1 oe

M1 Expands brackets
oe eg, $n^{2}+2 n+1$
ft Their $\frac{1}{2}(n+1)(n+1+1)$
oe eg, $\frac{1}{2} n^{2}-\frac{1}{2} n$
$\frac{1}{2} n(n+1)+$ their (a)
ft Their (a)

A1

Question 9

Prove that $\frac{x^{2}-4}{5 x-10} \times \frac{10 x^{2}}{x+2}$ is always positive.

Mark Scheme

$$
\frac{(x+2)(x-2)}{5(x-2)}
$$

M2

At least one correct cancellation in the product
$2 x^{2}$

Explains that $2>0$ and $x^{2} \geq 0$ so $2 x^{2}$ always positive

M1

A1

M1 For either numerator or denominator factorised correctly
oe eg, $\frac{10 x^{2}}{5}$
A1 oe eg, Explains that $10>0$ and $5>0$ and $x^{2} \geq 0$ so $\frac{10 x^{2}}{5}$ always positive

Question 10

$\mathrm{f}(n)=n^{2}-n$
Prove that $\mathrm{f}(3 n)+\mathrm{f}(n+1)=k n(5 n-1) \quad$ where k is an integer.
(3 marks)

Mark Scheme

$(3 n)^{2}-3 n+\left\{(n+1)^{2}-(n+1)\right\}$
$9 n^{2}-3 n+n^{2}+n+n+1-n-1$
$10 n^{2}-2 n$ and $2 n(5 n-1)$

M1 oe $9 n^{2}-3 n$ or $n^{2}+n+n+1-n-1$
A1 oe eg, $10 n^{2}-2 n$
A1 oe eg $10 n^{2}-2 n$ and $k=2$

4 Trigonometry

Question 1 (non-calculator)

Work out the exact value of $\sin 60^{\circ}+\sin 120^{\circ}+\sin 270^{\circ}$.
Give your answer in its simplest form.

Mark Scheme
$\sqrt{ } 3 / 2+\sqrt{3} / 2-1$
$\sqrt{ } 3 / 2+\sqrt{ } 3 / 2-1$
$\sqrt{ } 3-1$

A1

Any 2 values correctly stated in surd form
All 3 values correctly stated in surd form

Question 2 (non-calculator)

Are these statements true or false?

Mark Scheme

False	A1
True	A1
False	A1
True	A1

Question 3 (non-calculator)

Work out the area of triangle $A B C$.
Write your answer in its simplest form.
Not drawn

(3 marks)

Mark Scheme

Evidence that $\sin 45^{\circ}=1 / \sqrt{ } 2$
B1
Area $=\frac{1}{2} \times 5 \times 6 \sqrt{ } 2 \times \sin 45^{\circ}$
M1

15
A1

Question 4 (calculator or non-calculator)

Show that $\quad \tan ^{2} \theta \equiv \frac{1}{\cos ^{2} \theta}-1$

Mark Scheme

$$
\begin{aligned}
& \tan \theta \equiv \frac{\sin \theta}{\cos \theta} \text { seen } \\
& \text { M1 } \\
& \frac{\sin ^{2} \theta}{\cos ^{2} \theta} \equiv \frac{1-\cos ^{2} \theta}{\cos ^{2} \theta} \\
& \tan \theta \equiv \frac{1}{\cos ^{2} \theta}-1 \\
& \text { A1 Accurate method with clear steps is } \\
& \text { required for all } 3 \text { marks } \\
& \text { Alt } \frac{1-\cos ^{2} \theta}{\cos ^{2} \theta} \\
& \text { M1 oe } \\
& \frac{\sin ^{2} \theta}{\cos ^{2} \theta} \\
& \text { M1 } \\
& \tan ^{2} \theta \\
& \text { A1 Accurate method with clear steps is } \\
& \text { required for all } 3 \text { marks }
\end{aligned}
$$

Question 5 (calculator)

$A C$ is a diameter of the circle.
$A C=5 \mathrm{~cm}, A D=4 \mathrm{~cm}$
Not drawn

accurately

Work out angle $A B D$.

Mark Scheme

Evidence that angle $A D C$ is a right angle
M1
$\sin A C D=\frac{4}{5}$
$A C D=[53.1,53.13010235]$
Angle ABD $=$ [53.1, 53.13010235]

M1

A1 Allow 53 with method seen
B1 ft ft From 3rd mark their angle $A C D$

Question 6 (calculator)

A hanging basket is made from a hemisphere and three chains.
The radius of the hemisphere is 10 cm .
Each chain is 30 cm long.
The chains are equally spaced around the rim of the hemisphere.
Work out angle $A O B$.

Mark Scheme

A triangle formed with A, B and the centre of
the hemisphere with 2 sides of 10 cm and an angle of 120°
$\left(A B^{2}=\right) 10^{2}+10^{2}-2 \times 10 \times 10 \times \cos 120$
$(A B=)[17.3,17.321]$
$(\cos A O B=) \frac{30^{2}+30^{2}-\text { their } A B^{2}}{2 \times 30 \times 30}$
[33.557, 33.6]

M1

M1
M1 $2 \times 10 \times \sin 60$

A1 oe eg, $\sqrt{300}$
M1 $2 \times \sin ^{-1}(0.5$ their $A B \div 30)$

A1 ft ft Their $A B$
Accept 34 with correct method seen

Question 7 (calculator)

Solve the following equation for $0<\theta<360^{\circ}$.

$$
\tan ^{2} \theta=2
$$

(4 marks)

Mark Scheme

$\tan \theta=+\sqrt{ } 2$ or $\tan \theta=-\sqrt{ } 2$	M 1
$[54.7,54.74]$ or $[125.26,125.3]$	A 1
$180+$ their $[54.7,54.74]$ or	M 1
$180+$ their $[125.26,125.3]$	A 1 ft
$[54.7,54.74]$ and $[125.26,125.3]$ and	
$180+$ their $[54.7,54.74]$ and	
$180+$ their $[125.26,125.3]$	

All 4 solutions
[54.7,54.74] and [125.26,125.3] must be correct
ft For other two solutions

Question 8 (calculator)

Solve the following equation for $0<\theta<360^{\circ}$.

$$
3 \cos ^{2} \theta+2 \cos \theta-1=0
$$

Mark Scheme

$(3 \cos \theta-1)(\cos \theta+1)$
$\cos \theta=-1$ so $\theta=180^{\circ}$
$\cos \theta=\frac{1}{3}$ so $\theta=[70.5,70.53]$
$\theta=289.5^{0}$

A1 ft ft 360 - their [70.5, 70.53]

M2

A1

A1

M2 Fully correct use of quadratic formula
M1 $(a \cos \theta+b)(c \cos \theta+d)$ where $a c=3$ and $b d= \pm 1$ or
quadratic formula with one sign error

5 Matrices 1

Question 1

Work out
(a) $\left(\begin{array}{cc}4 & 2 \\ -3 & 5\end{array}\right)\binom{7}{1}$
(b) $\quad\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right)\binom{-3}{-4}$
(c) $\quad 2\left(\begin{array}{ll}5 & -2 \\ 6 & -3\end{array}\right)$
(d) $\quad\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{3}{-2}$
(e) $6\left(\begin{array}{cc}-4 & 7 \\ -1 & -3\end{array}\right)$
(f) $\quad\left(\begin{array}{ll}8 & 4 \\ 4 & 2\end{array}\right)\binom{-3}{6}$
(12 marks)

Mark Scheme

Each question 2 marks. M1 for a correct row by column multiplication. A1 for the correct answer.
(a) $\binom{30}{-16}$
(b) $\binom{-15}{-20}$
(c) $\left(\begin{array}{ll}10 & -4 \\ 12 & -6\end{array}\right)$
(d) $\binom{3}{-2}$
(e) $\left(\begin{array}{cc}-24 & 42 \\ -6 & -18\end{array}\right)$
(f) $\binom{0}{0}$

Question 2

Work out
(a) $\left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right)\left(\begin{array}{cc}0 & 3 \\ 1 & -4\end{array}\right)$
(b) $\quad\left(\begin{array}{cc}-3 & -2 \\ -1 & 5\end{array}\right)\left(\begin{array}{cc}-2 & 4 \\ 3 & 4\end{array}\right)$
(c) $\quad\left(\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right)\left(\begin{array}{cc}5 & -2 \\ -7 & 3\end{array}\right)$
(d) $\left(\begin{array}{cc}10 & -7 \\ 9 & 8\end{array}\right)\left(\begin{array}{cc}2 & 4 \\ -2 & 3\end{array}\right)$
(e) $\left(\begin{array}{ll}1 & -2 \\ 3 & -5\end{array}\right)\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$
(f) $\quad\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)\left(\begin{array}{ll}1 & -2 \\ 3 & -5\end{array}\right)$
(12 marks)

Mark Scheme

Each question 2 marks. M1 for a correct row by column multiplication. A1 for the correct answer.
(a) $\left(\begin{array}{cc}-1 & 10 \\ 3 & -9\end{array}\right)$
(b) $\quad\left(\begin{array}{cc}0 & -20 \\ 17 & 16\end{array}\right)$
(c) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(d) $\left(\begin{array}{cc}34 & 19 \\ 2 & 60\end{array}\right)$
(e) $\left(\begin{array}{ll}0 & -5 \\ 1 & -11\end{array}\right)$
(f) $\quad\left(\begin{array}{ll}11 & -19 \\ 13 & -22\end{array}\right)$

Question 3 (non-calculator)

Work out, giving your answers as simply as possible.
(a) $\left(\begin{array}{cc}\sqrt{2} & 1 \\ -1 & 3 \sqrt{2}\end{array}\right)\left(\begin{array}{cc}\sqrt{2} & 0 \\ -3 & -2 \sqrt{2}\end{array}\right)$
(b)
$\left(\begin{array}{cc}-\frac{1}{2} & -1 \\ \frac{3}{2} & 5\end{array}\right)\left(\begin{array}{cc}-2 & 4 \\ -\frac{1}{2} & 3\end{array}\right)$
(c)
$\left(\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right)^{2}$
(d) $\quad\left(\begin{array}{cc}3 \sqrt{3} & -4 \\ 2 & 3 \sqrt{3}\end{array}\right)\left(\begin{array}{cc}\sqrt{3} & 1 \\ -4 & 0\end{array}\right)$
(e)
$\left(\begin{array}{ll}\frac{1}{3} & \frac{1}{2} \\ \frac{2}{3} & \frac{1}{4}\end{array}\right)\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$
(f)

$$
\left(\begin{array}{cc}
\sqrt{2} & 2 \\
7 & \sqrt{3}
\end{array}\right)^{2}
$$

(17 marks)

Mark Scheme

3 marks per question. 1 mark for multiplication of row by column, 1 mark for 2 simplified elements, 1 for other 2 elements correct. Part (c) 2 marks.
(a) $\left(\begin{array}{cc}-1 & -2 \sqrt{2} \\ -10 \sqrt{2} & -12\end{array}\right)$
(b) $\left(\begin{array}{cc}\frac{3}{2} & -5 \\ -\frac{11}{2} & 21\end{array}\right)$
(c) $\left(\begin{array}{ll}23 & 16 \\ 56 & 39\end{array}\right)$
(d) $\left(\begin{array}{cc}25 & 3 \sqrt{3} \\ -10 \sqrt{3} & 2\end{array}\right)$
(e) $\left(\begin{array}{cc}\frac{7}{6} & 3 \\ \frac{19}{12} & 3\end{array}\right)$
(f) $\left(\begin{array}{cc}16 & 2 \sqrt{2}+2 \sqrt{3} \\ 7 \sqrt{2}+7 \sqrt{3} & 17\end{array}\right)$

Question 4

Work out, giving your answers as simply as possible.
(a) $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\binom{p}{p+1}$
(b) $\quad\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)\binom{x}{y}$
(c) $\quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{m}{2 m}$
(d) $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)\left(\begin{array}{cc}-a & 0 \\ 0 & a\end{array}\right)$
(e) $\quad\left(\begin{array}{cc}4 t & 0 \\ 0 & 4 t\end{array}\right)\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$
(f) $\quad\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{3}{-2}$
(13 marks)

Mark Scheme

Each question 2 marks. M1 for a correct row by column multiplication. A1 for the correct answer.
(f) 3 marks. 2 for 1 pair correctly multiplied, 1 for final answer.
(a) $\binom{-p}{-p-1}$
(b) $\binom{3 x}{3 y}$
(c) $\binom{2 m}{m}$
(d) $\left(\begin{array}{cc}-2 a & 0 \\ 0 & 2 a\end{array}\right)$
(e) $\quad\left(\begin{array}{cc}12 t & 0 \\ 0 & 12 t\end{array}\right)$
(f) $\quad\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\binom{3}{-2}=\binom{-3}{-2}$

Question 5

Work out, giving your answers as simply as possible.
(a) $\left(\begin{array}{cc}2 x & -3 \\ -5 & 4 x\end{array}\right)\left(\begin{array}{cc}x & 3 x \\ -3 & 0\end{array}\right)$
(b) $\quad\left(\begin{array}{cc}a & 3 a \\ -2 & 1\end{array}\right)\left(\begin{array}{cc}7 & 8 \\ -10 & 11\end{array}\right)$
(c) $\left(\begin{array}{ll}x & 0 \\ 1 & x\end{array}\right)^{2}$
(d) $\left(\begin{array}{cc}y & y \\ -3 & x\end{array}\right)\left(\begin{array}{cc}2 & 3 y \\ 0 & 1\end{array}\right)$
(e) $\quad\left(\begin{array}{cc}a+1 & a \\ a+2 & a+1\end{array}\right)\left(\begin{array}{cc}a+1 & -a \\ -a-2 & a+1\end{array}\right)$
(f) $\left(\begin{array}{cc}3 x & -3 \\ -9 & x+1\end{array}\right)^{2}$
(14 marks)

Mark Scheme

(a) to (d) 2 marks each
(e) and (f) 3 marks each, 1 for a correct multiplication, 1 for two elements correct, 1 for all correct.
(a) $\left(\begin{array}{cc}2 x^{2}+9 & 6 x^{2} \\ -17 x & -15 x\end{array}\right)$
(b) $\left(\begin{array}{ll}-23 a & 41 a \\ -24 & -5\end{array}\right)$
(c) $\left(\begin{array}{cc}x^{2} & 0 \\ 2 x & x^{2}\end{array}\right)$
(d) $\quad\left(\begin{array}{rr}2 y & 3 y^{2}+y \\ -6 & -9 y+x\end{array}\right)$
(e) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(f) $\quad\left(\begin{array}{cc}9 x^{2}+27 & -12 x-3 \\ -36 x-9 & x^{2}+2 x+28\end{array}\right)$

6 Matrices 2

Question 1

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & -1 \\
3 & 4
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ll}
7 & 4 \\
5 & 3
\end{array}\right) \quad \mathbf{C}=\left(\begin{array}{cc}
-2 & 3 \\
1 & -1
\end{array}\right)
$$

Work out
(a) $A B$
(b) BC
(c) 3 A
(d) BA
(e) $-C$
(f) $\quad \mathbf{B}\left(\begin{array}{cc}1 & -4 \\ -5 & 7\end{array}\right)$
(12 marks)

Mark Scheme

Each question 2 marks. M1 for a correct row by column multiplication. A1 for the correct answer.
(a) $\quad\left(\begin{array}{cc}9 & 5 \\ 41 & 24\end{array}\right)$
(b) $\left(\begin{array}{ll}-10 & 17 \\ -7 & 12\end{array}\right)$
(c) $\left(\begin{array}{rr}6 & -3 \\ 9 & 12\end{array}\right)$
(d) $\left(\begin{array}{ll}26 & 9 \\ 19 & 7\end{array}\right)$
(e) $\left(\begin{array}{cc}2 & -3 \\ -1 & 1\end{array}\right)$
(f) $\left(\begin{array}{ll}-13 & 0 \\ -10 & 1\end{array}\right)$

Question 2

$$
\mathbf{P}=\left(\begin{array}{cc}
-2 & 0 \\
5 & 1
\end{array}\right) \quad \mathbf{Q}=\left(\begin{array}{cc}
-4 & 1 \\
3 & -2
\end{array}\right) \quad \mathbf{C}=\binom{3}{-2}
$$

Work out
(a) \mathbf{P}^{2}
(b) QP
(c) $5 \mathbf{Q}$
(d) PC
(e) IQ
(f) $3 \mathbf{I}$
(12 marks)

Mark Scheme

Each question 2 marks. M1 for a correct row by column multiplication. A1 for the correct answer.
(a) $\quad\left(\begin{array}{cc}4 & 0 \\ -5 & 1\end{array}\right)$
(b) $\left(\begin{array}{cc}13 & 1 \\ -16 & -2\end{array}\right)$
(c) $\left(\begin{array}{cc}-20 & 5 \\ 15 & -10\end{array}\right)$
(d) $\quad\binom{-6}{13}$
(e) $\quad\left(\begin{array}{cc}-4 & 1 \\ 3 & -2\end{array}\right)$
(f) $\quad\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$

Question 3

$\left(\begin{array}{ll}-2 & a \\ -4 & 3\end{array}\right)\binom{3}{7}=\binom{22}{9}$
Work out the value of a.
(2 marks)

Mark Scheme

$-6+7 a=22$	M1
$a=4$	A1

Question 4

Work out the values of a, b and c.

$$
\left(\begin{array}{ll}
2 & a \\
3 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
2 & b
\end{array}\right)=\left(\begin{array}{ll}
12 & 26 \\
c & 13
\end{array}\right)
$$

(3 marks)

Mark Scheme

$a=5$
B1
$b=4$
B1
$c=5$
B1

Question 5

Work out the image of the point $D(-1,2)$ after transformation by the matrix $\left(\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right)$
(2 marks)

Mark Scheme

$(4,3)$
B2
B1 For (4, ?), (?, 3) or $\binom{4}{3}$.

Question 6

The point $A(m, n)$ is transformed to the point $A^{\prime}(-2,0)$ by the matrix $\left(\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right)$
Work out the values of m and n.
(4 marks)

Mark Scheme

$2 m+3 n=-2, m+n=$
M1, A1 M1 For either
A1 For both

Attempt to solve
M1
$m=2, n=-2$
A1

Question 7

The matrix A represents a reflection in the line $y=x$.
Write down the matrix A .
The unit square is transformed by the matrix A and then by rotation through -90° about O.
Work out the matrix representing the combined transformation.
(4 marks)

Mark Scheme
$A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
B1

Rotation $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
B1

Combined $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad$ M1 \quad Multiplication in correct order
$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
A1

Question 8

Describe fully the transformation given by the matrix $\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$

Mark Scheme

Reflection, in the line $y=-x$
B1, B1

Question 9 (non-calculator)

The unit square $O A B C$ is transformed by the matrix $\left(\begin{array}{ll}h & 0 \\ 0 & h\end{array}\right)$ to the square $O A^{\prime} B^{\prime} C^{\prime}$.
The area of $O A^{\prime} B^{\prime} C^{\prime}$ is 27.
Work out the exact value of h.

Mark Scheme

Vertices of image $A^{\prime}(h, 0) B^{\prime}(h, h) C^{\prime}(0, h)$
Area of $O A^{\prime} B^{\prime} C^{\prime} .=h^{2}$
$h=3 \sqrt{ } 3$

B1 Any one correct
M1
A1

Question 10

$\mathbf{A}=\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$
The point $P(2,7)$ is transformed by matrix $\mathbf{B A}$ to \mathbf{P}^{\prime}.
Show that P lies on the line $7 x+2 y=0$

Mark Scheme

$$
\begin{aligned}
& B A=\left(\begin{array}{cc}
-3 & 0 \\
0 & 3
\end{array}\right) \\
& \left(\begin{array}{cc}
-3 & 0 \\
0 & 3
\end{array}\right)\binom{2}{7}=\binom{-6}{21}
\end{aligned}
$$

B1

Show this satisfies $7 x+2 y=0$
M1

7
 Inequalities

Question 1

$-6<3 x \leq 6$
x is an integer
Write down all the possible values for x.
(2 marks)

Mark Scheme

$-2<x \leq 2$		M1		
-1	0	1	2	A2

M1

A2

A1 3 correct with none incorrect or 4 correct with one incorrect

Question 2

Solve $\quad 6 x>24-2 x$
(2 marks)
Mark Scheme

$6 x+2 x>24$	M1 oe
$x>3$	A1

Question 3

Solve $\quad 4(2 x-1)<2$
(3 marks)
Mark Scheme
$8 x-4<2$
M1 oe
$2 x-1<\frac{2}{4}$ oe
$8 x<2+4$
M1
oe
$2 x<\frac{2}{4}+1$ oe
$x<\frac{3}{4}$
A1

Question 4

A rhombus and a rectangle are shown.
The perimeter of the rhombus is greater than the perimeter of the rectangle.
Not drawn
accurately

$2 y+6$

$2 y+10$

Show that $\quad y>k \quad$ where k is an integer.

Mark Scheme

$4(2 y+6)>2 y+10+2 y+10+y+4+y+4$
M2 oe eg, $8 y+24>6 y+28$
M1 $4(2 y+6)$ or
$2 y+10+2 y+10+y+4+y+4$
$8 y-6 y>28-24$
M1
oe
$y>2$ or $k=2$
A1

Question 5

$p<-1$ and $q>1$
Tick the correct box for each statement.

	Always true $5 p<0$	Sometimes true	Never true
$p^{2}<0$	\square	\square	
$p+q>0$	\square	\square	\square
$-1<\frac{q}{p}<0$	\square	\square	\square

Mark Scheme

Always
B4
B1 For each correct part
Never
Sometimes
Sometimes

Question 6

(a) Write down the coordinates of points A and B.
(b) Hence, or otherwise, solve $16-x^{2} \geq 0$ (2 marks)

Mark Scheme

(a) $(4,0)$
$(-4,0)$
(b) $-4 \leq x \leq 4$

Alt $\quad(4+x)(4-x)$ and -4 and 4
(b)
$-4 \leq x \leq 4$

M1
B1
B1 SC1 4 and -4 seen
B2ft ft Their 4 and their -4
B1 ft $-4<x<4$

A1

Question 7

(a) Factorise $x^{2}+3 x$
(b) Sketch $y=x^{2}+3 x$

Label the x values of the points of intersection with the x-axis.
(c) Hence, or otherwise, solve $x^{2}+3 x<0$
(2 marks)

Mark Scheme
(a) $x(x+3)$
B1
(b) U-shaped parabola
0 and -3 labelled on x-axis
(c) $\quad x<-3$ and $x>0$

M1
A1 ft ft Their factors in (a)
B2 $\mathrm{ft} \quad \mathrm{ft}$ Their factors in (a)
B1 ft $x \leq-3$ and $x \geq 0$

Question 8

Solve $\quad(x-5)(x+2) \geq 0$

Mark Scheme

5 and -2
Sketch of graph
$y=(x-5)(x+2)$
$x<-2$ and $x>5$

B1
M1
Sign diagram using their 5 and their -2

A1

Question 9

Solve $\quad x^{2}+4 x-12<0$
(4 marks)

Mark Scheme

$(x+6)(x-2)$
M1 $(x+a)(x+b)$ where $a b= \pm 12$ or $a+b= \pm 4$

A1

M1 Sign diagram using their -6 and their 2

Question 10

Solve $\quad 2 x^{2}-x-3<0$
(4 marks)

Mark Scheme

$(2 x-3)(x+1)$
$\frac{3}{2}$ and -1

Sketch of graph
$y=(2 x-3)(x+1)$
$-1<x<\frac{3}{2}$

M1
$(2 x+a)(x+b)$ where $a b= \pm 3$ or $a+2 b= \pm 1$

A1 oe

M
Sign diagram using their $\frac{3}{2}$ and their -1

A1

Question 11

Solve $\quad 3 x^{2}>14 x-8$
(4 marks)

Mark Scheme

$(3 x-2)(x-4)$
M1 $(3 x+a)(x+b)$ where $a b= \pm 8$ or $a+3 b= \pm 14$
$\frac{2}{3}$ and 4
Sketch of graph
$y=(3 x-2)(x-4)$
$x<\frac{2}{3}$ and $x>4$
A1

M1
Sign diagram using their $\frac{2}{3}$ and their 4
A1

Question12

A triangle and a square are shown.

n

Work out the range of values of n for which
area of triangle < area of square
(5 marks)

Mark Scheme

$n^{2}>\frac{1}{2}(4 n-8) n$	M1 oe	
$0>n^{2}-4 n$	A1	
$n(n-4)$	M1	Factorises their quadratic expression
Sketch of graph of	$y=n(n-4)$	M1
$0<n<4$	A1	
52		AQA 1

8 Functions

Question 1 (non-calculator)

$f(x)=2 x^{3}-250$
Work out x when $\mathrm{f}(x)=0$
(3 marks)

Mark Scheme

$2 x^{3}-250=0$
$x^{3}=\frac{250}{2}$
$x=5$

M1
M1 oe

A1

Question 2

$f(x)=x^{2}+a x-8$
$\mathrm{f}(-3)=13$
Work out the value of a.

Mark Scheme

$(-3)^{2}+a(-3)-8=13$
$9-8-13=3 a$
$a=-4$

M1
M1 oe Allow 1 error
A1

Question 3

$f(x)=x^{2}+3 x-10$
Show that $\quad \mathrm{f}(x+2)=x(x+7)$

Mark Scheme

$(x+2)^{2}+3(x+2)-10$
$x^{2}+2 x+2 x+4+3 x+6-10$
$x^{2}+7 x$
$=x(x+7)$

M1
M1
A1

Question 4

Work out the range for each of these functions.
(a) $\mathrm{f}(x)=x^{2}+6 \quad$ for all x
(b) $\quad \mathrm{f}(x)=3 x-5 \quad-2 \leqslant x \leqslant 6$
(c) $\mathrm{f}(x)=3 x^{4} \quad x<-2$

Mark Scheme

(a) $\mathrm{f}(x) \geqslant 6$
B1
(b) $-11 \leqslant \mathrm{f}(x) \leqslant 13$
B1
B1 For -11 or 13 seen
(c) $\mathrm{f}(x)>48$
B1

Question 5

(a) $\mathrm{f}(x)=\frac{x+2}{x-3}$

Give a reason why $x>0$ is not a suitable domain for $\mathrm{f}(x)$.
(b) Give a possible domain for $\mathrm{f}(x)=\sqrt{x-5}$

Mark Scheme

(a) Not defined when $x=3$ or cannot divide by 0 when $x=3$
(b) $\quad x \geqslant a$ where $a \geqslant 5$ or $x>a$ where $a \geqslant 5$

B1 oe

B1 eg $x \geqslant 5$
$x>6$
Allow list of x values if all are $\geqslant 5$

Question 6

$\mathrm{f}(x)=3-2 x \quad a<x<b$
The range of $\mathrm{f}(x)$ is $\quad-5<\mathrm{f}(x)<5$
Work out a and b.

Mark Scheme

Either $\quad 3-2 x=-5$ or $3-2 x=5 \quad$ M1
$a=-1$
$b=4$

M1
A1
A1 $\quad \mathrm{SC} 2 a=4, b=-1$

Question 7

Here is a sketch of $\mathrm{f}(x)=x^{2}+6 x+a \quad$ for all x, where a is a constant

The range of $\mathrm{f}(x)$ is
$\mathrm{f}(x) \geqslant 11$
Work out the value of a.
(3 marks)

Mark Scheme

Attempt to complete the square in the form
M1
$(x+3)^{2}$

$$
\begin{aligned}
& (x+3)^{2}-9+a \\
& a=20
\end{aligned}
$$

A1
oeA1

Question 8

(a) Factorise $x^{2}-5 x-14$
(2 marks)
(b) Sketch the function $\mathrm{f}(x)=x^{2}-5 x-14$ for all x.

Label the points of intersection with the x and y axes.
(3 marks)

Mark Scheme

(a) $(x+a)(x+b)$
M1 $a b=-14$ or $a+b=-5$
$(x-7)(x+2)$
A1

B1 Curve through their $(7,0)$ and $(-2,0)$ (from 8(a))

B1 Curve through ($0,-14$)
B1 Smooth U shape
(b)

Question 9

$$
\begin{array}{cl}
f(x)=-x^{2} & 0 \leqslant x<2 \\
-4 & 2 \leqslant x<3 \\
2 x-10 & 3 \leqslant x \leqslant 5
\end{array}
$$

Draw the graph of $\mathrm{f}(x)$ for values of x from 0 to 5

Mark Scheme

B3 B1 For each part

Question 10

Here is a sketch of the function $\mathrm{f}(x)$ for values of x from 0 to 7 .

$$
\begin{array}{rl}
f(x)=2 x & 0 \leqslant x<1 \\
3-x & 1 \leqslant x<4 \\
\frac{x-7}{3} & 4 \leqslant x \leqslant 7
\end{array}
$$

Show that
area of triangle A : area of triangle $B=3: 2$
(4 marks)

Mark Scheme

$(3,0)$ and $(7,0)$ marked or used M1
$(1,2)$ and $(4,-1)$ marked or used M1
Either of their triangular areas calculated M1 correctly
$\frac{1}{2} \times 3 \times 2$ and $\frac{1}{2} \times 4 \times 1=3: 2$
A1

9
 Coordinate Geometry - Calculus

Question 1

For each of these straight lines, work out
(i) The gradient of the line
(1 mark for each part)
(ii) The gradient of the line that is perpendicular to the given line
(1 mark for each part)
(iii) The y-intercept of the line
(1 mark for each part)
(a) $y=5 x-4$
(b) $3 y=9-6 x$
(c) $3 y-12=2 x$
(d) $5 x-2 y+15=0$
(e) $\frac{x}{4}-\frac{y}{3}=2$

Mark Scheme

(a) 5
B1
$-\frac{1}{5}$
B1 ft
$\mathrm{ft} \frac{-1}{\text { their } 5}$
B1
-4
B1
(d) $\frac{5}{2}$
3
B1
(c) $\frac{2}{3}$
B1
$\frac{1}{2}$
B1 ft
(b) -2
$\mathrm{ft} \frac{-1}{\text { their }-2}$

B1 ft
$\mathrm{ft} \frac{-1}{\text { their } \frac{2}{3}}$
$-\frac{3}{2}$

B1
4

B1
(e) $\frac{3}{4}$
$-\frac{4}{3}$
B1 ft

$$
\mathrm{ft} \frac{-1}{\text { their } \frac{3}{4}}
$$

-6
B1

Question 2

For each of these straight line segments, $A B$, work out
(i) The mid-point of $A B$
(ii) The gradient of $A B$
(iii) The length of $A B$, giving your answer as an integer or a surd
(2 marks for each part)
(1 mark for each part)
(2 marks for each part)
(a) $\quad A=(-3,-4) \quad B=(4,3)$
(b) $\quad A=(-4,1) \quad B=(1,5)$
(c) $\quad A=(5,-2) \quad B=(0,10)$
(d) $\quad A=(-2,-6) \quad B=(-6,0)$
(e) $\quad A=(1,9) \quad B=(9,-6)$
(f) $\quad A=(7,1) \quad B=(-5,-3)$

Mark Scheme

(a)
$\left(\frac{1}{2},-\frac{1}{2}\right)$
B2
B1 For each coordinate
(b)
$\left(-1 \frac{1}{2}, 3\right)$
B2
B1 For each coordinate
1
B1
$\sqrt{ }\left(7^{2}+7^{2}\right) \quad \mathrm{M} 1$
$\sqrt{ } 98$ or $7 \sqrt{ } 2 \quad$ A1
A1
$\frac{4}{5}$
B1
$\sqrt{ }\left(5^{2}+4^{2}\right)$
M1
$\sqrt{ } 41 \quad$ A1
(c)

B1 For each coordinate

(d) $(-4,-3)$
B1 For each coordinate

$\left(2 \frac{1}{2}, 4\right)$	B2
$-\frac{12}{5}$	B1
$\sqrt{ }\left(5^{2}+12^{2}\right)$	M1
13	A1

$-\frac{3}{2}$
B1

$\sqrt{ }\left(4^{2}+6^{2}\right)$	M1
$\sqrt{ } 52$ or $2 \sqrt{ } 13$	A1

(e)

$\left(5,1 \frac{1}{2}\right)$	B2
$-\frac{15}{8}$	B1
$\sqrt{ }\left(8^{2}+15^{2}\right)$	M1
17	A1

B2
B1 For each coordinate
(f) $(1,-1)$

B2
1

M1
13
A1

号

$\frac{1}{3}$

$\sqrt{ }\left(12^{2}+4^{2}\right)$	M1
$\sqrt{ } 160$ or $4 \sqrt{ } 10$	A1

Question 3

In each of these line segments, B lies between A and C.
Work out the coordinates of C in each case.
(a)

$$
A=(-1,3) \quad B=(1,1) \quad \text { and } \quad A B: B C=1: 2
$$

(b) $\quad A=(-4,-2) \quad B=(2,-5)$ and $A B: B C=3: 1$
(c) $\quad A=(11,0) \quad B=(1,-5)$ and $A B: B C=5: 3$
(d) $\quad A=(-6,2) \quad B=(0,4) \quad$ and $\quad A B: B C=2: 3$
(e) $\quad A=(2,-9) \quad B=(-3,1)$ and $A B: B C=5: 4$

Mark Scheme

(a)	$(5,-3)$	B2	B1 For each coordinate
(b)	$(4,-6)$	B2	B1 For each coordinate
(c)	$(-5,-8)$	B2	B1 For each coordinate
(d)	$(9,7)$	B2	B1 For each coordinate
(e)	$(-7,9)$	B2	B1 For each coordinate

Question 4

Work out the coordinates of the points of intersection of the curve $y=x^{2}+7$ and the straight line $y=5 x+1$

Mark Scheme
$x^{2}+7=5 x+1$
M1
or
$x^{2}-5 x+6=0$
$(x-2)(x-3)=0$
M1 Attempt to factorise the quadratic
$(2,11)$ or $(3,16)$
A1 ft ft Their factors
$(2,11)$ and $(3,16)$
A1

Question 5

Line L has equation $\quad y+3 x=7$
Line N is perpendicular to line L and passes through $(3,-1)$.
Work out the equation of line N.
Give your answer in the form $y=a x+b$

Mark Scheme

Gradient of $L=-3$	B1
Gradient of $N=\frac{1}{3}$	M1
$y-(-1)=\frac{1}{3}(x-3)$	M1
$y=\frac{1}{3} x-2$	A1

Question 6

Work out $\frac{d y}{d x}$ for each of the following
$y=7 x+3$
(1 mark)
(b) $y=8-5 x+x^{2}$
(2 marks)
(a)
(c) $y=3 x^{3}+4 x$
(2 marks)
(d) $y=x^{3}-7 x^{2}+10 x-1$
(2 marks)
(e) $y=4 x\left(x^{2}+2 x-3\right)$
(3 marks)
(f) $\quad y=(3 x-5)(x+8)$
(3 marks)
(g) $y=x(7-x)(6-2 x)$
(3 marks)
(h) $\quad y=(x+3)(x-1)(x-6)$
(4 marks)

Mark Scheme

(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=7$
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-5$
(c) $\frac{\mathrm{d} y}{\mathrm{~d} x}=9 x^{2}+4$
(d) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-14 x+10$
(e) $y=4 x^{3}+8 x^{2}-12 x$
$\frac{d y}{d x}=12 x^{2}+16 x-12$
(f) $y=3 x^{2}+19 x-40$
$\frac{d y}{d x}=6 x+19$
(g) $y=42 x-20 x^{2}+2 x^{3}$
$\frac{d y}{d x}=42-40 x+6 x^{2}$
(h) $y=x^{3}-4 x^{2}-15 x+18$
$\frac{d y}{d x}=3 x^{2}-8 x-15 x$

B2 B1 For each term

B2 B1 For each term

B2 B1 For two terms correct

B2ft B1 For one term correct
B2ft B1 For one term correct ft Their $y=\ldots$.
B1

B1
B2ft B1 For two terms correct ft Their $y=\ldots$.

B1

B1
B2ft B1 For two terms correct
ft Their $y=\ldots$.
B2 B1 For four terms, three of which are correct

B2ft B1 For two terms correct
ft Their $y=\ldots$...

Question 7

A curve has equation $y=x^{3}+x^{2}+2 x-4$
Work out the equation of the tangent to this curve where $x=-2$
Give your answer in the form $y=a x+b$
(5 marks)

Mark Scheme

$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+2 x+2$	M 1	
(when $x=-2)$ gradient tgt $=10$	A 1	
(when $x=-2)$ $y=-12$	B 1	
$y-(-12)=10(x-(-2))$	$\mathrm{M} 1 \quad$ oe	
$y=10 x+8$	$\mathrm{~A} 1 \mathrm{ft} \quad \mathrm{ft}$ Their m and c	

Question 8

A curve has equation $y=x^{3}+2 x^{2}-9 x+3$
Work out the equation of the normal to this curve at the point $(1,-3)$
Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(5 marks)

Mark Scheme

$\frac{d y}{d x}=3 x^{2}+4 x-9$
M1
(when $x=1$) gradient tgt $=-2$
A1
(when $x=1$) gradient $\mathrm{nl}=\frac{1}{2}$
A1 ft ft Their -2
$y-(-3)=\frac{1}{2}(x-1)$
$x-2 y-7=0$
M1 oe
A1ft ft Their m and c

Question 9

A curve has equation $y=x^{3}-6 x^{2}+20$
(a) Write down an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(b) Work out the coordinates of the stationary points and determine whether they are maximum or minimum.

Sketch the curve on the axes clearly labelling the stationary points.

Mark Scheme
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-12 x$

M1
(b) $3 x^{2}-12 x=0$ or $3 x(x-4)=0$

M1
$x=0$ and $x=4$
A1
$(0,20)$ and $(4,-12)$
A1
Testing the sign of $\frac{d y}{d x}$ for values of M1 x either side of 0 and 4

Maximum at $(0,20)$ Minimum at $(4,-12)$
(c)

A1 If previous M1 earned
B2
B1 For correct general shape
B1 ft For labelling the stationary points

Question 10

A curve has equation $y=x^{3}-x^{2}+k x-2$
(a) Write down an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(b) The curve has a minimum point at the point where $x=2$

Work out the value of k.
(c) Work out the x coordinate of the maximum point on the curve.

Mark Scheme

(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-2 x+k$
B1
(b) $3(2)^{2}-2(2)+k=0$
$k=-8$
A1
(c) $3 x^{2}-2 x-8=0$
M1
$(3 x+4)(x-2)=0$
A1
Maximum at $x=-\frac{4}{3}$
A1

Question 11

(a) Show that the line $y=\frac{1}{2} x-\frac{9}{4}$ is the tangent to the curve $y=\frac{1}{4} x^{2}-x$ at the point $\mathrm{A}\left(3,-\frac{3}{4}\right)$.
(b) The point B on the curve is such that the tangent at B is perpendicular to the tangent at A, as shown in the diagram.

Not drawn accurately

Work out the coordinates of B.

Mark Scheme

(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} x-1$
$($ when $x=3) \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{2}-1=\frac{1}{2}$
A1
$y-\left(-\frac{3}{4}\right)=\frac{1}{2}(x-3)$
M1
$y=\frac{1}{2} x-1 \frac{1}{2}-\frac{3}{4}$
A1 Clearly shown since $y=\frac{1}{2} x-\frac{9}{4}$ answer given
(b) Gradient tangent at $B=-2$

B1
$\frac{1}{2} x-1=-2$
M1
$x=-2$
A1 ft ft Their tangent gradient
$B=(-2,3)$
A1

10 Factor Theorem

Question 1

(a) Show that $x(x+4)(x-9)=x^{3}-5 x^{2}-36 x$
(1 mark)
(b) Write down the x values of the three points where the graph of $y=x^{3}-5 x^{2}-36 x$ crosses the x-axis.

Mark Scheme

(a) $\quad x\left(x^{2}-5 x-36\right)$
B1
(b) $x=0, x=-4, x=9$
B2
B1 For two solutions

Question 2

$f(x)=x^{3}+2 x^{2}-5 x-6$
(a) Work out $f(1)$ and $f(-1)$
(2 marks)
(b) Work out $f(2)$ and $f(-2)$ (2 marks)
(c) Work out $f(3)$ and $f(-3)$ (2 marks)
(d) Write down the three linear factors of $\mathrm{f}(x)$.

Mark Scheme

(a) $f(1)=1+2-5-6=-8$ B1
$f(-1)=-1+2+5-6=0$ B1
(b) $\mathrm{f}(2)=8+8-10-6=0$
(c) $f(3)=27+18-15-6=24$ B1 $f(-3)=-27+18+15-6=0$ B1
(d) $(x+1),(x-2)$ and $(x+3)$B1

Question 3

(a) Show that $(x+5)$ is a factor of $x^{3}+7 x^{2}+2 x-40$
(b) Work out the other two linear factors of $x^{3}+7 x^{2}+2 x-40$
(c) Hence, solve $x^{3}+7 x^{2}+2 x-40=0$

Mark Scheme

(a) $(-5)^{3}+7(-5)^{2}+2(-5)-40$
$-125+175-10-40=0$
(b) $x^{3}+7 x^{2}+2 x-40$ $\equiv(x+5)\left(x^{2}+k x-8\right)$
$(x-2)$
$(x+4)$
Alt 1 Substitutes another value into the
M1 oe
A1 \quad Clearly shown to $=0$
M1 Sight of x^{2} and -8 in a quadratic factor
(b) expression and tests for ${ }^{\prime}=0$ '
$(x-2) \quad \mathrm{A} 1$
$(x+4) \quad$ A1
Alt 2 Long division of polynomials getting as M1
(b) far as $x^{2}+2 x$
$(x-2)$
A1
$(x+4)$
A1
(c) $\quad(x=)-5,-4$ and 2

Question 4

A sketch of $y=x^{3}+5 x^{2}+9 x+k$ where k is an integer, is shown.

Work out the value of k.

Mark Scheme

$(-2)^{3}+5(-2)^{2}+9(-2)+k=0$	M1
$-8+20-18+k=0$	A1
$k=6$	A1

Question 5

(a) $(x+3)$ is a factor of $\mathrm{f}(x)=x^{3}+x^{2}+a x-72$ where a is an integer.

Work out the value of a.
(b) Work out the other linear factors of $\mathrm{f}(x)$.

Mark Scheme

(a) $(-3)^{3}+(-3)^{2}+(-3) a-72=0$
$-27+9-3 a-72=0$
$a=-30$
(b) $x^{3}+x^{2}-30 x-72$ $\equiv(x+3)\left(x^{2}+k x-24\right)$
$(x+4)$
A1
$(x-6)$
A1
Alt 1 Substitutes another value into the
M1
(b) expression and tests for ' $=0$ '
$(x+4) \quad$ A1
$(x-6)$
A1
Alt 2 Long division of polynomials getting as far M1
(b) as $x^{2}-2 x$
$(x+4)$
A1
$(x-6)$
$(x-6) \quad$ A1

A1

M1 Sight of x^{2} and -24 in a quadratic factor

Question 6

$(x-3)$ and $(x+4)$ are factors of $\mathrm{f}(x)=x^{3}+a x^{2}+b x+24$ where a and b are integers.
(a) Work out the third linear factor of $\mathrm{f}(x)$.
(b) Work out the values of a and b.

Mark Scheme

(a) $\quad(x-3)(x+4)(x+k)$
$\equiv x^{3}+a x^{2}+b x+24$
$(x-2)$
(b) $\quad(x-3)(x+4)(x-2)$
$(x-3)\left(x^{2}+2 x-8\right)$
$x^{3}-x^{2}-14 x+24$
$a=-1$ and $b=-14$
Alt Substitutes any two of
(b) $\quad x=-4, x=2$ or $x=3$
into $x^{3}+a x^{2}+b x+24$ to create simultaneous equations

Any two of
$-64+16 a-4 b+24=0$
or
$8+4 a+2 b+24=0$
or
$27+9 a+3 b+24=0$
$a=-1$
$b=-14$

M1
M1 or $-3 \times 4 \times k=24$

A1
M1
M1 oe
A1
A1ft ft Their expansion
M1

1

A1
A1 ft ft Their first solution

Question 7

(a) $(x-5)$ is a factor of $\mathrm{f}(x)=x^{3}+k x^{2}+9 x-20$ where k is an integer. Work out the value of k.
(b) Express $\mathrm{f}(x)$ as a product of $(x-5)$ and a quadratic factor.
(c) Show that $(x-5)$ is the only linear factor of $\mathrm{f}(x)$.

Mark Scheme

(a) $(5)^{3}+k(5)^{2}+9(5)-20=0$

M1
$125+25 k+45-20=0$
A1
$k=-6$
(b) $x^{3}-6 x^{2}+9 x-20$
$\equiv(x-5)\left(x^{2}+k x+4\right)$
$(x-5)\left(x^{2}-x+4\right)$
(c) Tests ' $b^{2}-4 a c$ ' for the quadratic

Shows ' $b^{2}-4 a c$ ' $=-15(\mathrm{or}<0)$ and states no more linear factors

M1 Sight of x^{2} and 4 in a quadratic factor

A1
M1 ft Their quadratic or attempts to solve their quadratic $=0$

A1 States 'no solutions' to their quadratic $=0$

Question 8

Solve $x^{3}-6 x^{2}-25 x-18=0$
(5 marks)

Mark Scheme

Substitutes a value of x into the

M1

expression and tests for ' $=0$ '
Works out first linear factor
A1
$(x+1),(x+2)$ or $(x-9)$
$x^{3}-6 x^{2}-25 x-18 \equiv(x+1)\left(x^{2}+k x-18\right)$
or $(x+2)\left(x^{2}+k x-9\right)$
or $(x-9)\left(x^{2}+k x+2\right)$

2nd and 3rd linear factors
A1
$-1,-2$ and 9
A1
Alt 1 Substitutes a value of x into the M1
expression and tests for ' $=0$ '
Works out first linear factor A1
$(x+1),(x+2)$ or $(x-9)$
Substitutes another value into the M1 expression and tests for ' $=0$ '

2nd and 3rd linear factors A1
$-1,-2$ and 9A1

Alt 2 Substitutes a value of x into the M1 expression and tests for ' $=0$ '

Works out first linear factor A1
$(x+1),(x+2)$ or $(x-9)$
Long division of polynomials getting as far M1 as $x^{2}-7 x$
or $x^{2}-8 x$
or $x^{2}+3 x$
2nd and 3rd linear factors A1
$-1,-2$ and 9A1

11 Sequences

Question 1

A linear sequence starts
$250 \quad 246 \quad 242 \quad 238$

Which term is the first to have a negative value?

Mark Scheme

For the nth terms of quadratic sequences two methods are shown (see example 2).
Other valid methods may be used.

$-4 n$	M1	
$254-4 n$	A1	
$254-4 n<0$	M1	oe
64th	A1	

Question 2

Work out the nth term of this quadratic sequence.
$8 \quad 9 \quad 14$
4
23
36
(4 marks)

Mark Scheme

2 Method A

8		9		14		23	36
	1		5		9		13

Subtract $2 n^{2}$ from sequence A1
$6 \quad 1 \quad-4 \quad \ldots .$.
nth term of this sequence is
M1
$11-5 n$
Giving $\quad 2 n^{2}-5 n+11$
A1
Alt Method B
M1
Using $a n^{2}+b n+c$
$a+b+c=8$
$4 a+2 b+c=9$
$9 a+3 b+c=14$
$3 a+b=1$
$5 a+b=5$
$a=2$ and $b=-5$
A1
Giving $\quad 2 n^{2}-5 n+11$
A1

Question 3

(a) Show that the nth term of the quadratic sequence
$4 \quad 10 \quad 18 \quad 28 \quad \ldots \ldots$ is $n^{2}+3 n$
(3 marks)
(b) Hence, write down the nth term of these quadratic sequences.
$\begin{array}{lllll}\text { (b) (i) } & 5 & 11 & 19 & 29\end{array}$
(b) (ii)

512
21
32

Mark Scheme

(a) Use Method A or B from Q2
(b)(i) $n^{2}+3 n+1$
(b)(ii) $n^{2}+4 n$

3 marks or any other valid method
B1
B1

Question 4 (non calculator)

(a) Write down the nth term of the linear sequence
47
10
13
(b) Hence, write down the nth term of the quadratic sequence.
$16 \quad 49 \quad 100 \quad 169$
(c) For the sequence in part 4(b), show that the 30th term is equal to the product of the 2nd and 4th terms

Mark Scheme

(a) $3 n+1$ B1
(b) $(3 n+1)^{2}$

B1 oe
(c) $49 \times 169=7^{2} \times 13^{2}$

B1 oe 8281
30th is 91^{2}
M1
$=(7 \times 13)^{2}$
A1 oe 8281

Question 5

This pattern of rectangles continues.
Show that the sequence of numbers formed by the areas of these rectangles has nth term

$$
n^{2}+5 n+6
$$

Mark Scheme

nth term of lengths is $n+3 \quad$ M1
nth term of widths is $n+2 \quad$ M1
Area is $(n+3)(n+2) \quad$ M1
$n^{2}+3 n+2 n+6 \quad$ A1
$=n^{2}+5 n+6$
Alt nth term of
$12 \quad 2030$
by Method A or Method B

4 marks or any other valid method

Question 6

A linear sequence starts

$$
a+b \quad a+3 b \quad a+5 b \quad a+7 b
$$

The 5th and 8th terms have values 35 and 59 .
(a) Work out a and b.
(b) Work out the nth term of the sequence.

Mark Scheme

(a) $a+9 b=35$

M1
$a+15 b=59$
$6 b=24 \quad$ M1
oe
$b=4$
A1
$a=-1$
A1 ft
(b) $3 \quad 11 \quad 19 \quad \ldots \ldots$

B1 ft
$8 n-5$
B1 ft

Question 7

A sequence has nth term $\quad \frac{3 n+1}{n}$
(a) Show that the difference between the nth and $(n+1)$ th terms is $\frac{1}{n(n+1)}$
(b) Which are the first two consecutive terms with a difference less than 0.01 ?
(c) Write down the limiting value of the sequence as $n \rightarrow \infty$

Mark Scheme

$$
\text { (a) } \begin{aligned}
& \frac{3 n+1}{n}-\frac{3(n+1)+1}{n+1} \\
& \frac{(3 n+1)(n+1)-n(3 n+4)}{n(n+1)} \\
& \frac{3 n^{2}+n+3 n+1-3 n^{2}-4 n}{n(n+1)} \\
& =\frac{1}{n(n+1)}
\end{aligned}
$$

M1 oe
eg subtracts in different order
M1 oe
(a) $\quad \frac{3 n+1}{n}=3+\frac{1}{n}$
$\left(3+\frac{1}{n}\right)-\left(3+\frac{1}{n+1}\right)$
M1 oe
eg subtracts in different order
M1 oe
$\frac{n+1-n}{n(n+1)}$
A1
$=\frac{1}{n(n+1)}$
(b) Any substitution and evaluation for
$1 \leqslant n \leqslant 10$
M1
oe
eg $1<0.01 n^{2}+0.01 n$ and attempt to solve
eg $\frac{1}{9 \times 10}=\frac{1}{90}$
or $\frac{1}{10 \times 11}=\frac{1}{110}$
10th and 11th
A1
(c) 3

B1

Question 8

A sequence has nth term $\frac{5 n+2}{2 n}$

Show that the limiting value of the sequence, S, as $n \rightarrow \infty$ is 2.5
(2 marks)

Mark Scheme

$\frac{5 n+2}{2 n}=\frac{5 n}{2 n}+\frac{2}{2 n}$	M1 oe
$\left(\frac{5}{2}+\frac{1}{n}\right)$	A1

Question 9

Here is the sequence of odd numbers

1	3	5	7	9

A quadratic sequence is formed by multiplying consecutive odd numbers in successive pairs.

$$
\begin{array}{lllll}
3 & 15 & 35 & 63 & \ldots \ldots .
\end{array}
$$

Work out the nth term of this sequence.

Mark Scheme

Odd number is $2 n+1$ or $2 n-1$
$2 n-1$ and $2 n+1$ M1

Sequence is $(2 n-1)(2 n+1)$ $\left(=4 n^{2}-1\right)$

Alt Using Method A or Method B giving $4 n^{2}-1$

3 marks or any other valid method eg

1	4	9	16	\rightarrow	n^{2}
4	16	36	64	\rightarrow	$4 n^{2}$
3	15	35	63	\rightarrow	$4 n^{2}-1$

Question 10

The nth term of a sequence is $\frac{2 n^{2}-1}{3 n^{2}+2}$
(a) Show that the difference between the first two terms is $\frac{3}{10}$
(3 marks)
(b) Write down the limiting value of the sequence as $n \rightarrow \infty$

Mark Scheme
(a) $\mathrm{T}_{1}=\frac{1}{5}$
$\mathrm{T}_{2}=\frac{7}{14}$
B1 oe
($=\frac{1}{2}$)
$\frac{5}{10}-\frac{2}{10}=\frac{3}{10}$
B1 oe
(b) $\frac{2}{3}$
B1

12
 Algebraic problems - including ratio

Note

- If $x: y=4: 7$, then $\frac{x}{y}=\frac{4}{7}$
- If, in a problem, two numbers are in the ratio $4: 7$, use $4 x$ and $7 x$ as the numbers (usually leading to a linear equation); otherwise, use x and y as the numbers (which will lead to simultaneous equations).
- If $x: y=4: 7$, what is $x+2 y: 3 x$?

Think in terms of 'parts', ie 4 parts and 7 parts, so $x+2 y: 3 x=4+14: 12$

$$
\begin{aligned}
& =\quad 18: 12 \\
& =\quad 3: 2
\end{aligned}
$$

Question 1

Work out the possible values of $\quad \frac{2 n-1}{3 n+2} \quad$ if $n^{2}=16$
Give your answers as fractions in their simplest form.

Mark Scheme

$n=4$	M1
$\frac{1}{2}$	A1
$n=-4$	M1
$\frac{9}{10}$	A1

Question 2

$x: y=6: 5$
(a) Express x in terms of y.
(2 marks)
(b) Show that $x+3 y: 2 x-y=3: 1$

Mark Scheme

(a) $\frac{x}{y}=\frac{6}{5}$

$$
x=\frac{6 y}{5}
$$

A1 oe
(b) $\frac{6 y}{5}+\frac{15 y}{5}: \frac{12 y}{5}-\frac{5 y}{5}$

M1 oe $6+3 \times 5: 2 \times 6-5$
$\frac{21(y)}{(5)}: \frac{7(y)}{(5)}$

Question 3

A point P divides $X Y$ in the ratio $3: 7$

Not drawn
accurately

Work out the coordinates of P, in terms of a and b.

Mark Scheme

$\frac{3}{10}$ of $(6 a-a)$ or $\frac{3}{10}$ of $(11 b-b)$
(2.5a, 4b)

M1 oe

A2
oe A1 For each coordinate
SC2 (1.5a, 3b)

Question 4

Here is a linear sequence

$$
a+b \quad a+3 b \quad a+5 b \quad a+7 b
$$

Given that

- 2nd term : 4th term $=2: 5$
- 1 st term $=-4$

Work out a and b.

Mark Scheme

$\frac{a+3 b}{a+7 b}=\frac{2}{5}$	M1	
$5 a+15 b=2 a+14 b$	M1	Allow one error
$3 a+b=0$	$\mathrm{~A} 1 \quad$ oe	
$a+b=-4$ $2 a$ A1 ft		
$a=2$ and $b=-6$		

Question 5

You are given that $\quad a b+a=5 \quad$ and $\quad a: b=4: 3$
Work out the possible pairs of values of a and b.

Mark Scheme

$\frac{a}{b}=\frac{4}{3}$
$b=\frac{3 a}{4}$
A1 $a=\frac{4 b}{3}$
A1 $a=\frac{4 b}{3}$
$a \times \frac{3 a}{4}+a=5$
M1 $\quad \frac{4 b}{3} \times b+\frac{4 b}{3}=5$
M1 $\quad \frac{4 b}{3} \times b+\frac{4 b}{3}=5$
$3 a^{2}+4 a-20=0$
$(3 a+10)(a-2)=0$
$a=-\frac{10}{3} \quad a=2$
$\mathrm{A} 1 \mathrm{ft} \quad b=-\frac{5}{2} \quad b=\frac{3}{2}$
$b=-\frac{5}{2} \quad b=\frac{3}{2}$
M1 oe
A1 $4 b^{2}+4 b-15=0$
M1 $(2 b+5)(2 b-3)$
$\mathrm{A} 1 \mathrm{ft} \quad a=-\frac{10}{3} \quad a=2$

Question 6

The sum of the ages of two people is 90 years.
Six years ago, their ages were in the ratio $8: 5$
How old are they now?
Do not use trial and improvement.
You must show your working.

Mark Scheme

Let their ages 6 years ago be $8 x$ and $5 x$
$8 x+5 x=90-12$
M1
$13 x=78$
A1
$(x=6)$

Allow 90-6 for M1

Their 6×8 and their 6×5
(48)
(30)

54 and 36

A1
Alt $x+y=90 \quad$ M1
$\frac{x-6}{y-6}=\frac{8}{5}$
$18=8 y-5 x$
A1
Eliminates a letter M1
$(x=) 54$ and $(y=) 36$
A1

Question 7

O is the centre of the circle.

Given that

$$
x: y=4: 5
$$

Work out the value of y.
Do not use trial and improvement.

Not drawn accurately

You must show your working.

Mark Scheme

x, x and $180-2 x$
M1
seen or on diagram
$\frac{x}{y}=\frac{4}{5}$
M1
$x=\frac{4 y}{5}$
A1 oe
$2 y=180-2 x$
M1 oe
(or $y=90-x$)
$y=90-\frac{4 y}{5}$
M1 oe
$\frac{9 y}{5}=90$
M1
oe
$y=50$
A1

Question 8

A rectangular picture is surrounded by a frame of constant width.
All measurements are in centimetres.

Not drawn
accurately

Given that $\quad a: b=3: 2$
Work out x.

Mark Scheme

$a=7 x+18$ or $b=3 x+18$
$\frac{\text { their }(7 x+18)}{\text { their }(3 x+18)}=\frac{3}{2}$
$14 x+36=9 x+54$
$5 x=18$
$x=3.6$

B1 oe
M1

M1 Rearranging
M1 Solving
A1

Question 9

If $x: y=3: 5$ and $y: z=10: 9$
Find, in its simplest form
(a) $x: z$
(3 marks)
(b) $10 x: 7 y$
(2 marks)
(c) $x+y: y$
(2 marks)

Mark Scheme

(a) $x: y=6: 10$
$x: y: z=6: 10: 9$
$x: z=2: 3$
(b) $3 \times 10: 7 \times 5$

6:7
(c) $3+5: 5$
$8: 5$

M1 oe
M1
A1
M1 oe
A1
M1 $\frac{x+y}{y}=\frac{x}{y}+1$ or $\frac{3}{5}+1$
A1

Question 10

A cuboid has dimensions $2 n, n$ and $n-1 \mathrm{~cm}$.
A diagonal has length $2 n+1 \mathrm{~cm}$.
Not drawn

Work out n.

Mark Scheme

$(2 n)^{2}+n^{2}$
$4 n^{2}+n^{2}+n^{2}-n-n+1$
$=4 n^{2}+2 n+2 n+1$
$2 n^{2}-6 n=0$
$2 n(n-3)=0$
$n=3$

M1
M1

M1
oe

M1 Allow one error

M1
(allow \div by n) $\quad 2 n=6$
A1

AQA Level 2 Certificate in Further Mathematics from 2011 onwards

Qualification Accreditation Number: 600/2123/8

For updates and further information on any of our specifications, to find answers or ask us a question, register with Ask AQA at:

aga.org.uk/askaga

Free launch meetings are available in 2011 followed by further support meetings through the life of the specification. Further information is available at:

http://events.aga.org.uk/ebooking

[^0]
[^0]: Copyright © 2012 AQA and its licensors. All rights reserved.
 The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales company number 3644723) and a registered charity (registered charity number 1073334).
 Registered address: AQA, Devas Street, Manchester M1 5 6EX.

