YEAR 5
MATHEMATICS WRITTEN PAPER

Name: \qquad Class: \qquad

TOTAL MARKS

READ CAREFULLY:

- WORK OUT ALL THE QUESTIONS.
- SHOW ALL YOUR WORKING.
- WRITE YOUR ANSWER CLEARLY.

Marks' Scheme		
Nos. 1a-j	$\mathbf{1 0 \times 2}=$	20
$2-7$	$6 \times 4=$	24
$8-13$	$6 \times 6=$	36
	TOTAL	$\mathbf{8 0}$

1. Fill in:

a)	$45+\square=100$
b)	$800-422=$
c)	$64 \div 4=$
d)	$9 \times \square=27$
e)	$2.5 \mathrm{~km}=$ \square m
f)	Round 678 to the nearest $\mathbf{1 0}=$
g)	What is the value of 4 in $6 \underline{4} 73=$
h)	Write an equivalent fraction $\frac{2}{3}=\frac{\square}{\square}$
i)	$1 / 2 l+1 / 4 l+3 / 4 l=\square \mathrm{ml}$
j)	$\text { Double } \square=\quad \text { Half } 32$

2. Tom walks on all the numbers from the smallest to the largest. Draw arrows (\rightarrow) to show the path he takes.

1088

3(a) These shapes have been sorted. One shape is in the wrong place. Draw a cross (X) on it.

Octagons	Not Octagons

3(b) Here are some shaded shapes on a grid. Which three shapes are symmetrical.

Shapes \qquad , \qquad and \qquad are symmetrical.
4. Each card on the left matches one on the right. Draw lines to match the cards which are equal in value. One has been done for you.

5(a) Write the missing numbers in this sequence:

5(b) Choose 3 of these cards to make an even number that is greater than 400.
(3) 891

6. Jason bought 3 books during the sale for $€ 14.50$.

How much money did he save altogether?

He saved € \qquad . \qquad
7. Here are a pencil sharpener, a key and a rubber.

Actual size

(a) What is the length of all the three things together. Give answer in millimetres.
\qquad mm
(b) What is the length of the key. Give answer in centimetres.
\qquad cm
8. There are 60 sweets in a packet. $\frac{\mathbf{2}}{\mathbf{3}}$ of the sweets are red, $\frac{\mathbf{1}}{\mathbf{5}}$ of them are yellow and the rest are green.
(a) How many red sweets are there?
\qquad red sweets

(b) How many yellow sweets are there?
\qquad yellow sweets
(c) How many green sweets are there?
\qquad green sweets
9. Kim needs 37 balloons. The shop sells balloons in packs of 5 .
(a) How many packs does she need to buy?
 packs.
(b) How many balloons will she have left?
\qquad balloons.
(c) Each pack of balloons costs $€ 0.85$. How much will she pay for all the packs?
$€$ \qquad . \qquad
10. Jake has some rectangular tiles. Each one is 4 centimetres by 9 centimetres.

He makes the design below with them.

(a) The width of the design is \qquad cm long.
(b) The height of the design is \qquad cm long.
(c) The perimeter of the design is \qquad cm .
(d) The area of the design is \qquad cm^{2}.

11(a) The table shows the weight of some fruit and vegetables. Complete the tab

	Grams	Kilograms
apples	1200	1.2
grapes	250	
ginger		0.03
potatoes	3500	

11. Mrs. Black makes a blackcurrant drink for a party. She pours blackcurrant squash into a jug.

(b) How much water must she add to make $1 / 2 \ell$ of drink?

(c) Mrs. Black pours the drink equally in $\mathbf{4}$ glasses. How many $\boldsymbol{u l} \boldsymbol{l}$ does each glass contain?
12. Some children in a school talk about the fruit they like best.

The fruit me like best

(a apple	$\because \because($
(*) orange	$\because \because \because$
banana	
 pear	$\because \because \because \because \because \because$

a) The most popular fruit is \qquad .
b) The least popular fruit is \qquad .
c) How many students liked banana more than orange?
\qquad students
d) How many students liked apple and pear?
\qquad students
e) The number of students who liked pears and apples is equal to the number of students who liked bananas. Is this statement true or false?
f) How many students in all took part in the study?
\qquad
\qquad

13(a) Circle all the numbers that are greater than $\mathbf{0 . 6}$
0.5
0.8
0.23
0.09
0.67

13 (b) Here are four digit cards:

Use each digit card once to make the decimal number nearest to 20.

13 (c) In the diagram below the rule is:
Double the number in the square and add the number in the triangle to make the number in the circle.

Use the same rule to write in the missing numbers below.

END OF PAPER

