Question	Working	Answer	Mark	Notes
l(a)	(400 - 308)/2 + 1	47	2	M1 for $(400 - 308)/2$ or 46 seen
				Al cao
l(c)		2n - 1	2	B2 cao
				[B1 for $2n \pm k$ where $k \neq -1$]
(a)		45678	2	B2 for a fully correct table
		56789		[B1 at least 5 correct entries]
		678910		
b)	P(7 or 8) = 7/24	A loss of £15	5	M1 for P(7 or 8) $\{=7/24\}$ or P(9 or 10) $\{=3/24\}$ oe
·	P(9 or 10) = 3/24			M1 for '7/24' x 360 x 1(= 105) or '3/24' x 360 x 2
	7/24 x 360 x 1 = 105			(= 90)
	$3/24 \ge 360 \ge 2 = 90$			M1 for 360 x 0.5 (= 180)
	Takings = $360 \ge 0.5 = 180$			A1 for 180 and 195 seen
				C1 for 'a loss of £15' oe
a)	√(48/3)	± 4	2	M1 for $\sqrt{(48/3)}$
1 \		2.5		A1 for 4 or -4 or ± 4
(D)	2x + 4 = 6(x - 1)	2.5	2	$\mathbf{M} = \{ f_{\alpha \alpha}, f_{\alpha \beta}, f_{\alpha \beta}, f_{\alpha \beta} \}$
	2x + 4 = 6x - 6		3	M1 for 4 + 6 = 6x - 2x
	10 = 4x			M1 1074 + 0 = 0x - 2x
				Al cao
	9 x 8 + ½ x 5 x 12	102	4	M1 for splitting
				M1 for either 9 x 8 or $\frac{1}{2}$ x 5 x 12 oe
				M1 for 9 x 8 + $\frac{1}{2}$ x 5 x 12
				A1 cao

Question	Working	Answer	Mark	Notes
5(a)		Vague response boxes	2	B1 for a correct criticism of the question
		Question does not include a		B1 for a correct criticism of the response boxes
		time period		
		II		
5(b)		How many times a month	2	B1 for a relevant question inc. time period
		$0 \ 1 = 3 \ 4 = 5 \ 6+$		B1 for at least 3 non-overlapping response boxes
		0 1 - 5 4 - 5 0+		
				B1 for a 'leading/biased' question oe
5(c)		A leading question	2	B1 for 'small/biased' sample oe
		Restricted/biased sample		
			-	
6(a)	19.5 + 19.5/5	23.40	3	M1 for 19.5/5
				M1 for $19.5 + 19.5/5$ oe
				A1 cao
	70 (12	24	2	
6(b)	$72 \div 6 = 12$	24	3	M1 for $72 \div 6$
	12 x 2			M1 for $12^{\circ} \times 2$
				A1 cao
7	$(1 0 3 0 2)/2 \times 200$	50	1	M1 for 1 0 2 0 2
/	$(1 - 0.3 - 0.2)/2 \times 200$	50	4	M1 for $(1 - 0.3 - 0.2)/2$ or 0.25 seen
				M1 for $(1 - 0.3 - 0.2)/2$ of 0.25 seen M1 for $(0.25^{\circ} \times 200)$
				$\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$
8	$\frac{1}{2} \times 6 \times 8 \times 2 + (8+6+10) \times 9$	264 cm^2	4	M1 for $\frac{1}{2}$ x 6 x 8 or 8x9 or 6x9 or 10x9
			•	M1 for $\frac{1}{2}$ x 6 x 8 x 2 + (8+6+10) x 9 oe
				A1 for 264
				B1 ft for cm^2

Question	Working	Answer	Mark	Notes
9(a)		9 , 3, -1, -3, -3 , -1 , 3	2	B2 for fully correct table
9(b)		Graph	2	[B1 for 1 or 2 correct entries] B2 ft for a fully 'correct' graph through their points
(0)		Graph	2	[B1 at least 6 of their correctly plotted points]
9(c)		-3.25	1	B1 for an answer in the range -3.1 to -3.5
10(a)	6/12	1/2	2	M1 for 6/12 oe
		_		A1 cao
10(b)	$3 + \frac{8}{12} + \frac{9}{12} = 3\frac{17}{12}$	$4\frac{5}{12}$	3	M1 for $\frac{8}{12} + \frac{9}{12}$ oe
				M1 for $3 + \overline{12}$
				A1 cao
11(a)	$44800 \div 5$	8960	2	M1 for 44800 ÷ 5
				A1 cao
11(b)	7130 x 5	35650	2	M1 for 7130 x 5
				A1 cao
12(a)	3x > 2 - 12	x > -10/3 oe	2	M1 for $3x > 2 - 12$
				A1 for $x > -10/3$ or better
12(b)	$x^2 - 7x + 3x - 21$	$x^2 - 4x - 21$	2	M1 for 3 correct out of 4 terms or 4 correct terms
				ignoring_signs
				A1 for $x^2 - 4x - 21$ oe

Question	Working	Answer	Mark	Notes
13	$165 \div 82 > 2$	Since 165 ÷ 82 > 2	3	M1 for considering $165 \div 82$ or $133 \div 82$ oe
	$133 \div 82 < 2$	and $133 \div 82 < 2$, the		A1 for correct estimated answers
		scale factors are		C1 for a correct conclusion based upon their answers
		different; so not similar		
14		Triangle with coordinates	3	B3 for a correct triangle
		(-3,-1.5), (-4.5,-1.5) and		[B2 for an enlargement of 1.5 about (0,0) or for an
		(-3,-4.5)		enlargement of -1 about (0,0)
				B1 for an enlargement of 1.5 about any point]
15(a)	x = 5 - 3x - 6	3/8	4	M1 for $3x - 6$
	$\frac{1}{3} = 3 = 3x = 0$			M1 for $x - 15 = 9x - 18$
				M1 for rearranging so that numbers and <i>x</i> -terms or
				on opposite sides of the equation
				A1 for 3/8 oe
15(b)	(x-6)(x+3)	x = 6 and $x = -3$	3	M1 for $(x \pm 6)(x \pm 3)$
				A1 for $x = 6$ and
				A1 for $x = -3$
16(a)	26	64	1	B1 cao
16(b)		3	1	B1 cao
				2
16(c)	$\sqrt{(2^4 x 3^2)} = 2^2 x 3$	12	2	M1 for $2^2 \times 3$ oe
				A1 cao
16(d)	1/4-	1/16	1	B1 cao

Notes
M1 for $F = k/x^2$
M1 for $4 = k/3^2$
M1 for $(36)/2^2$
A1 cao
M1 for $64 = 36/x^2$
A1 cao
$\frac{4}{11} \text{ for } \frac{4}{14} \circ r \frac{6}{14} \circ r \frac{3}{14} \circ r \frac{4}{14}$ We have the set of
M1 for $\sqrt{8}(\sqrt{5} + \sqrt{20}) - \sqrt{5} \times \sqrt{2}$ oe M1 for $2\sqrt{2}(\sqrt{5} + 2\sqrt{5}) - \sqrt{10}$ M1 for $5\sqrt{10} / 6\sqrt{10} \times 100$ A1 for 83.33
M1 for $QP = q - p$ M1 for $QS = q + 16 QP$
A1 for $\frac{1}{2}$ (n+a)
M1 for RS = $\frac{1}{2}$ (n+a) - $\frac{1}{2}$ n
Γ_1 for conclusion of proof: is $RS = \frac{1}{2} \alpha$ and relating
~ 101 conclusion of proof, to $100 - 72$ q and relating

Question	Working	Answer	Mark	Notes
21(a)		$\frac{\pi x^2/3}{2\pi x/3}$	2	B1 for $\pi x^2/3$ oe B1 for $2\pi x/3$ oe
21(b)	A = $2\pi x/3 = 2\pi r$ r = $x/3$ V = $1/3 \ge \pi \ge (x/3)^2 \ge h = 3 \ge \pi x^2/3$ $1/3 (1/3)^2 \ge h = 1$	27	3	M1 for $2\pi x/3 = 2\pi r$ M1 for $1/3 \ge \pi \ge (x/3)^2 \ge h = 3 \ge \pi x^2/3$ A1 cao