

Question	Working	Answer	Mark	Notes
3(a) 3(b)	$\begin{array}{\|l\|} \hline 90 \div 2 \\ 45 \div 3 \\ 15 \div 3 \\ 5 \\ 90=2 \times 3 \times 3 \times 5 \\ 108=2 \times 2 \times 3 \times 3 \times 3 \\ \text { LCM }=2 \times 2 \times 3 \times 3 \times 3 \times 5 \end{array}$	$2 \times 3 \times 3 \times 5$ 540	3	M1 for a complete method of at least 2 correct divisions, condone one arithmetic error A1 for $2,3,3,5$ seen (maybe in a factor tree) A1 for $2 \times 3 \times 3 \times 5$ oe M1 for $90=2 \times 3 \times 3 \times 5$ and $108=2 \times 2 \times 3 \times 3 \times 3$ A1 cao
$\begin{aligned} & \text { 4(a) } \\ & \text { 4(b) } \\ & \text { 4(c) } \end{aligned}$		$\begin{gathered} \hline 2 \\ \text { Negative } \\ 2.6 \text { to } 2.9 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 cao B1 cao B2 for answer in the range 2.6 to 2.9 [B1 for a line of best fit drawn if answer outside this range]
5(a) 5(b)		Triangle at $(0,-2)$, $(3,-2),(0,-4)$ Enlargement, scale factor 3 about (0,0)	2 3	B2 for a correct rotation [B1 for correct orientation or correct rotation 90° anticlockwise B1 for enlargement B1 for scale factor of 3 B1 for centre $(0,0)$ oe

Question	Working	Answer	Mark	Notes
6(a)	$180 \times 2=360$	Proof	2	M1 for splitting the quad into two triangles C1 for stating $180 \times 2=360$
$6(\mathrm{~b})$	$(180-120) / 2$	30	2	M1 for ($180-120$)/2 A1 cao
6(c)	$360-54-108-(180-30)$	48	2	M1 for $360-54-108-(180-‘ 30$ ') A1 cao
7(a)		Biased sample	1	B1 for 'biased sample" oe
7(b)		Eg: stopping the $1^{\text {st }} 100$ people in the town centre OR knock on 100 doors in the local area	1	B1 for an acceptable method
7(c)		How many times in a month would you use the swimming pool? $\begin{array}{llll} 0 & 1-3 & 4-5 & 6+ \end{array}$	2	B1 for including a time period in an appropriate question B1 for at least 3 non-everlapping response boxes.
8		Correct region shaded	3	B1 for $y=2$ draw B1 for a circle, radius 3 cm , centre C drawn B1 for correct region

Question	Working	Answer	Mark	Notes
9	$\begin{aligned} & 240 \div 8=30 \\ & \text { Ann }=30 \times 3=90 \\ & \mathrm{Bob}=30 \times 5=150 \\ & 90 \div 2+150 \div 10=60 \\ & \text { OR } \\ & \text { Ann }=3 / 8 \\ & \text { Bob }=5 / 8 \\ & 3 / 8 \times 1 / 2+5 / 8 \times 1 / 10 \\ & 3 / 16+5 / 80=15 / 80+5 / 80 \end{aligned}$	60/240 (= 1/4)	4	M1 for $240 \div 8=30$ M1 for $30 \times 3(=90)$ or $30 \times 5(=150)$ M1 for ' 90 ' $\div 2+{ }^{\prime} 150$ ' $\div 10$ A1 cao OR M1 for $3 / 8$ or $5 / 8$ M1 for $3 / 8 \times 1 / 2+5 / 8 \times 1 / 10$ M1 for $3 / 16+5 / 80$ A1 cao
$\begin{aligned} & \text { 10(a) } \\ & 10(\mathrm{~b}) \end{aligned}$		330 Line drawn		B1 for $330 \pm 2^{\circ}$ B1 for line drawn $\pm 2^{\circ}$
$\begin{aligned} & \text { 11(a) } \\ & \text { 11(b) } \end{aligned}$	$\begin{aligned} & 4+15 / 24+16 / 24 \\ & =4+31 / 24 \\ & 7 / 2 \div 14 / 5 \\ & =7 / 2 \times 5 / 14 \end{aligned}$	$\begin{aligned} & 5 \frac{7}{24} \\ & 1 \frac{1}{4} \end{aligned}$	2	M1 for $4+15 / 24+16 / 24$ oe A1 cao M1 for $7 / 2$ or $14 / 5$ seen A1 cao
$\begin{aligned} & \text { 12(a) } \\ & \text { 12(b) } \end{aligned}$	$\begin{aligned} & 11-x \leq 2 x+6 \\ & 5 \leq 3 x \end{aligned}$	$-2,-1,0,1,2,3$ $x \geq 1 \frac{2}{3}$		B2 for all 6 correct integers and no extras [-1 for each error or omission] M1 for $11-6 \leq 2 x+x$ A1 cao

Question	Working	Answer	Mark	Notes
13(a)		$12 x+18$	1	B1 cao
13(b)		$3 y+2 z$	2	$\begin{aligned} & \text { B2 cao } \\ & \text { [B1 for } 3 y \text { or } 2 z \end{aligned}$
13(c)	$p^{2}+6 p-3 p-18$	$p^{2}+3 p-18$	2	M1 for 3 out of 4 correct terms or 4 terms correct ignoring signs
13(d)	$2\left(4 m^{2}-1\right)$	$2(2 m-1)(2 m+1)$	2	M1 for $2\left(4 m^{2}-1\right)$ or $(2 m \pm 1)(2 m \pm 1)$ A1 cao
14(a)		Cf graph	3	B3 for a cf graph drawn through (10,3), (20,13), $(30,30),(40,60),(50,81),(60,88)$ and $(70,90)$ [B 2 for points plotted consistently within the intervals and joined, condone one plotting error. B1 for a correct cf table]
14(b)		35 to 38	1	B1 for an answer in the range 35 to 38 inc.
14(c)	90-26	64	2	M1 for a reading taken at $x=28$ A1 for an answer in the range 61 to 67
15(a)(i) (ii)	$86 \div 2$	43 Angle at centre $=2 x$ angle at circumference	2	$\begin{array}{\|l\|} \text { B1 cao } \\ \text { B1 for a correct reason } \end{array}$
$\begin{aligned} & \text { 15(b)(i) } \\ & \text { (ii) } \end{aligned}$	180-43	137 Sum of the opposite angles of a cyclic quad $=$ 180°	2	B1 cao B1 for a correct reason

Ques	Working	Answer	Mark	Notes
16	$\begin{aligned} & \begin{array}{l} 8 x-6 y=22 \\ 30 x+6 y=-3 \\ \hline 38 x \quad=19 ; x=0.5 \\ 4 x 0.5-3 y=11 \\ 3 y=-9 \end{array} \\ & \hline \end{aligned}$	0.5. -3	4	M1 for a correct method of eliminating one unknown, condone one error. A1 for one correct unknown M1 for substituting found value into one of the equations A1 for 0.5 and -3
17	$\begin{aligned} & 2 \times 340.5+2 \times 117.5 \\ & =681+235 \end{aligned}$	916	2	M1 for either 340.5 or 117.5 seen A1 cao
18(a) 18(b)	$\begin{aligned} & \mathrm{x}=0.292929 \ldots \\ & 100 x=29.292929 \ldots \\ & 99 x=29 \\ & y=0.0 \times 0 \times 0 \mathrm{x} \ldots \\ & 100 y=x .0 \times 0 \mathrm{x} 0 \mathrm{x} \ldots \\ & 99 y=x \text { so } y=\mathrm{x} / 9 \end{aligned}$	$29 / 99$ Proof	2 2	M1 for 0.292929... A1 for 29/99 oe M1 for for sight of two recurring decimals whose difference is a rational number A1 for completion of proof
19(a) 19(b)	0.2×0.6	0.8 on Julie branch $0.4,0.6,0.4$ on Pat branch 0.12	2 2	B1 for 0.8 B1 for 0.4, 0.6, 0.4 M1 for 0.2×0.6 A1 cao

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
20(a) \\
20(b)
\end{tabular} \& \[
\begin{aligned}
\& 147 / 454 \approx 1 / 3 \\
\& 90 \div 3
\end{aligned}
\] \& A sample selected taking into account the population of different groups (strata) \& 1

2 \& | B1 for an acceptable reason |
| :--- |
| M1 for $90 \times 147 / 454$ |
| A1 for 30 | \\

\hline 21 \& \[
$$
\begin{aligned}
& \frac{1}{3} \pi \times 9^{2} \times 6-\frac{1}{3} \pi \times 3^{2} \times 2 \\
& \text { OR } \\
& \left.\frac{1}{3} \pi \times 9^{2} \times 6\right) \times \frac{26}{27}
\end{aligned}
$$

\] \& 156π \& 4 \& | M1 for $\frac{\mathbf{1}}{\mathbf{3}} \pi \times 9^{2} \times 6$ or $\frac{\mathbf{1}}{\mathbf{3}} \pi \times 3^{2} \times 2$ |
| :--- |
| A1 for 162π or 6π |
| M1 for $162 \pi-6 \pi$ |
| A1 cao | \\

\hline 22(a) \& \[
$$
\begin{aligned}
& 1 / 2(x+2+x+6)(x-5) \\
& =(x+4))(x-5)=36 \\
& x^{2}+4 x-5 x-20=36
\end{aligned}
$$

\] \& Proof \& 4 \& | M1 for $1 / 2(x+2+x+6)(x-5)$ oe |
| :--- |
| M1 for $1 / 2(x+2+x+6)(x-5)=36$ |
| M1 for $x^{2}+4 x-5 x-20=36$ |
| A1 for completion of proof | \\

\hline | 22(b)(i) |
| :--- |
| (ii) | \& \[

$$
\begin{aligned}
& (x+7))(x-8)=0 \\
& 8+2=10,8-5=3,8+6=14
\end{aligned}
$$

\] \& \[

x=8, x=-7
\]

\[
3

\] \& 4 \& | M1 for $(x+7))(x-8)(=0)$ |
| :--- |
| A1 for $x=8$ |
| A1 for $x=-7$ |
| B1 ft for 3 | \\

\hline
\end{tabular}

