

## Mathematics A

Paper 2 (Calculator) Practice Papers Set D

|  | Paper Reference |
| :--- | :--- |
| Time: 1 hour 45 minutes | $1380 / 2381$ |

You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name,
- centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Calculators must not be used.


## Information

- The total mark for this paper is 100
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed.


## Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.


## GCSE Mathematics (Linear) 1MA0

Formulae: Higher Tier
You must not write on this formulae page.
Anything you write on this formulae page will gain NO credit.

Volume of prism $=$ area of cross section $\times$ length


Volume of sphere $\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$


In any triangle ABC


Sine Rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine Rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Area of trapezium $=\frac{1}{2}(a+b) h$


Volume of cone $\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$


The Quadratic Equation
The solutions of $a \times 2+b x+c=0$ where $a \neq 0$, are given by

$$
x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}
$$

Answer ALL TWENTY SEVEN questions.
Write your answers in the spaces provided.
You must write down all stages in your working.

1. Factorise $6 y^{2}-y-12$
(Total 2 marks)
2. The diagram below shows a large rectangle of length $(2 x+6) \mathrm{cm}$ and width $x \mathrm{~cm}$.

A smaller rectangle of length $x \mathrm{~cm}$ and width 3 cm is cut out and removed.


The area of the shape that is left is $100 \mathrm{~cm}^{2}$.
Given that $2 x^{2}+3 x-100=0$, calculate the length of the smaller rectangle.
Give your answer correct to 3 significant figures.
3. Here is a triangle $A B C$.

## Diagram NOT

 accurately drawn$A C=90 \mathrm{~m}$.
$B C=60 \mathrm{~m}$.
Angle $A C B=130^{\circ}$.
Calculate the perimeter of the triangle.
Give your answer correct to one decimal place.
$\qquad$
4. The average fuel consumption (c) of a car, in kilometres per litre, is given by the formula

$$
c=\frac{d}{f}
$$

where $d$ is the distance travelled, in kilometres, and $f$ is the fuel used, in litres.

$$
\begin{aligned}
& d=163 \text { correct to } 3 \text { significant figures. } \\
& f=45.3 \text { correct to } 3 \text { significant figures. }
\end{aligned}
$$

By considering bounds, work out the value of $c$ to a suitable degree of accuracy. You must show all of your working and give a reason for your final answer.

## $c=$

5. 

Diagram NOT
 accurately drawn
$A B C$ is an arc of a circle centre $O$ with radius 80 m .
$A C$ is a chord of the circle.
Angle $A O C=35^{\circ}$.
Calculate the area of the shaded region.
Give your answer correct to 3 significant figures.
$\mathrm{m}^{2}$
6. Solve $\frac{4}{x+3}+\frac{3}{2 x-1}=1$
7.

$P Q R S$ is a trapezium.
$P Q$ is parallel to $S R$.
Angle $P S R=90^{\circ}$.
Angle $P R S=62^{\circ}$.
$P Q=14 \mathrm{~cm}$.
$P S=8 \mathrm{~cm}$.
Work out the length of $Q R$.
Give your answer correct to 3 significant figures.
$\qquad$
8. Steve measured the length and the width of a rectangle.

He measured the length to be 645 mm correct to the nearest 5 mm .
He measured the width to be 400 mm correct to the nearest 5 mm .
Calculate the lower bound for the area of this rectangle.
Give your answer correct to 3 significant figures.
$\qquad$ $\mathrm{mm}^{2}$
9.

$O A B$ is a triangle.
$\overrightarrow{O A}=\mathbf{a}$
$\overrightarrow{O B}=\mathbf{b}$
$P$ is the point on $A B$ such that $A P: P B=3: 2$
Show that $\overrightarrow{O P}=\frac{1}{5}(2 \mathbf{a}+3 \mathbf{b})$
10. $v=\sqrt{\frac{a}{b}}$
$a=6.43$ correct to 2 decimal places.
$b=5.514$ correct to 3 decimal places.
By considering bounds, work out the value of $v$ to a suitable degree of accuracy.
You must show all your working and give a reason for your final answer.
$\qquad$
11.

$A$ and $B$ are points on a circle, centre $O$.
$B C$ is a tangent to the circle.
$A O C$ is a straight line.
Angle $B A O=x^{\circ}$.
Find the size of angle $A C B$, in terms of $x$.
$\qquad$
12. For all values of $x, \quad x^{2}+6 x-2=(x+p)^{2}+q$

Find the value of $p$ and the value of $q$.

$$
p=. . . . . . . . . . . . . . q=. . . . . . . . . . . . . . ~
$$

(Total 2 marks)
13. (a) Simplify $\frac{4 x^{2} y}{6 x}$
(b) Simplify

$$
\frac{2 x^{2}+3 x y+y^{2}}{x^{2}-y^{2}}
$$

14. 



The diagram shows a rectangular field.
The area of the field is $2000 \mathrm{~m}^{2}$, correct to 1 significant figure.
The length of the field is 64.5 m , correct to the nearest 10 cm .
Calculate the upper bound for the width of the field.
Give your answer correct to 3 significant figures.
15. Solve $\frac{5(2 x+1)^{2}}{4 x+5}=5 x-1$
16. Prove that $(3 n+1)^{2}-(3 n-1)^{2}$ is a multiple of 4 , for all positive integer values of $n$.
17. The equation of a straight line is $y=2 x+1$

Write down the equation of a straight line that is perpendicular to $y=2 x+1$
(Total 2 marks)
18.


The diagram shows a triangle $A B C$.
$L M N B$ is a parallelogram where
$L$ is the midpoint of $A B$,
$M$ is the midpoint of $A C$,
and $N$ is the midpoint of $B C$.
Prove that triangle $A L M$ and triangle $M N C$ are congruent.
You must give reasons for each stage of your proof.
19. There are 17 girls and 14 boys in Mr. Taylor's class.

Mr. Taylor is going to choose at random 3 children from his class.
Work out the probability that he will choose exactly 2 girls and 1 boy.
20. Make $n$ the subject of the formula

$$
a=\frac{6 a-n}{3+n}
$$

$$
n=
$$

21. 



The diagram shows a triangle $A B C$.
$L M N B$ is a parallelogram where
$L$ is the midpoint of $A B$,
$M$ is the midpoint of $A C$,
and $N$ is the midpoint of $B C$.
Prove that triangle $A L M$ and triangle $M N C$ are congruent.
You must give reasons for each stage of your proof.
22. (a) Write as a single fraction in its simplest form $\frac{2}{x-4}-\frac{1}{x+3}$
(b) Write $\frac{3}{x+1}-\frac{2}{x}$ as a single fraction in its simplest form.
(c) Write $\frac{2 x}{2 x-3}-\frac{7}{x(2 x-3)}$ as a single fraction in its simplest form.
$\qquad$
23. Use algebra to prove that the sum of three consecutive whole numbers is always divisible by 3 .
24. Explain what is meant by a random sample.
$\qquad$
$\qquad$
25. A and B are two solid shapes which are mathematically similar. The shapes are made from the same material.


Diagram NOT<br>accurately drawn



The surface area of $\mathbf{A}$ is $50 \mathrm{~cm}^{2}$. The surface area of $\mathbf{B}$ is $18 \mathrm{~cm}^{2}$.

The mass of $\mathbf{A}$ is 500 grams.
Calculate the mass of $\mathbf{B}$.
$\qquad$
26. (a) Find the gradient of the straight line with equation $2 x-3 y=12$
$\qquad$
(b) Prove that the straight line with equation $2 y=10-3 x$ is perpendicular to the straight line with equation $2 x-3 y=12$

27 Find the exact solutions of $x+\frac{3}{x}=7$

## BLANK PAGE

| New Question | Qn | Paper | Skill tested | Mean score | Maximum score | Mean Percentage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Q07c | 120310 H | Factorise trinomials (non-unitary $\mathrm{x}^{2}$ ) | 0.30 | 2 | 15 |
| 2 | Q15b | 1106 14H | Solve quadratic equations by using the quadratic formula | 0.57 | 4 | 14 |
| 3 | Q20 | 1203 2H | Use sine, cosine and area of a triangle rules to solve a scalene triangle problem | 0.55 | 4 | 14 |
| 4 | Q22 | 1203 2H | Use bounds in calculations | 0.70 | 5 | 14 |
| 5 | Q23 | 1203 2H | Find the area of a segment | 0.70 | 5 | 14 |
| 6 | Q18 | 0911 14H | Solve fractional equations | 0.63 | 5 | 13 |
| 7 | Q20b | 1111 2H | Use trigonometry in complex problems | 0.50 | 4 | 13 |
| 8 | Q25 | 1111 2H | Write down the lower and upper bound of a quantity given its degree of accuracy | 0.39 | 3 | 13 |
| 9 | Q23b | 0906 4H | Use vectors to solve geometric configurations | 0.35 | 3 | 12 |
| 10 | Q28 | 0911 4H | Write down the lower and upper bound of a quantity given its degree of accuracy | 0.58 | 5 | 12 |
| 11 | Q09b | 0911 10H | Solve geometric configurations using circle theorems of chord and tangents | 0.23 | 2 | 12 |
| 12 | Q25d | 1011 2H | Simplify algebra (including completing the square) | 0.24 | 2 | 12 |
| 13a | Q08b | 1111 10H | Simplify simple algebraic fractions | 0.23 | 2 | 12 |
| 13 b | Q10 | 1111 10H | Simplify harder algebraic fractions | 0.36 | 3 | 12 |
| 14 | Q17 | 1111 14H | Use bounds in calculations | 0.45 | 4 | 11 |
| 15 | Q24 | 1203 2H | Solve fractional equations | 0.54 | 5 | 11 |
| 16 | Q22 | 0906 4H | Use algebra to perform proofs | 0.31 | 3 | 10 |
| 17 | Q10 | 1111 14H | Find the equations of straight lines perpendicular to a given line | 0.19 | 2 | 10 |
| 18 | Q16 | 1111 14H | Find the conditions in order to prove that two triangles are congruent | 0.30 | 3 | 10 |
| 19 | Q04 | 1203 6A | Solve conditional probability problems | 0.40 | 4 | 10 |
| 20 | Q18 | 1011 14H | Change the subject of the formula | 0.37 | 4 | 9 |
| 21 | Q22 | 1111 2H | Find the conditions in order to prove that two triangles are congruent | 0.28 | 3 | 9 |
| 22a | Q23c | 1111 2H | Simplify harder algebraic fractions | 0.28 | 3 | 9 |
| 22 b | Q09 | 1203 10H | Add and subtract algebraic fractions | 0.27 | 3 | 9 |
| 22c | Q07 | 0911 10H | Simplify harder algebraic fractions | 0.15 | 2 | 8 |
| 23 | Q10 | 1006 10H | Algebraic Proof | 0.23 | 3 | 8 |
| 24 | Q24a | 1006 2H | Use practical sampling | 0.06 | 1 | 6 |
| 25 | Q23 | 1006 2H | Find lengths using mathematically similar shapes | 0.21 | 4 | 5 |
| 26a | Q12a | 1106 14H | Find the gradient and y intercept of a straight line using $\mathrm{x}=\mathrm{mx}+\mathrm{c}$ | 0.20 | 2 | 10 |
| 26b | Q12b | 1106 14H | Find the equations of straight lines perpendicular to a given line | 0.09 | 2 | 5 |
| 27 | Q19 | 1111 2H | Solve fractional equations | 0.16 | 3 | 5 |
|  |  |  | TOTAL | 10.82 | 100 |  |

