					Stude					
	1MA0 Higher Tier – Practice Paper 1H (Set D)									
Q	(\mathbf{b})	Working	Answer	Mark	Notes					
1	(c)		Position of <i>B</i> marked	2	B1 for a point marked on a bearing of $40^{\circ} (\pm 2^{\circ})$ from <i>H</i> or for a line on a bearing of $40^{\circ} (\pm 2^{\circ})$ (use straight line guidelines on overlay)					
					B1 for a point 4 cm (\pm 0.2cm) from <i>H</i> or for a line of length 4 cm (\pm 0.2cm) from <i>H</i> (use circular guidelines on overlay)					
					NB. No label needed for point					
2	(a)		m^{-10}	1	B1 for m^{-10} or $\frac{1}{m^{10}}$					
3		15x + 6y = 338x - 6y = 3623x = 695 × 3 + 2y = 11	x = 3 y = -2	4	M1 for coefficients of <i>x</i> or <i>y</i> the same followed by correct operation (condone one arithmetic error) A1 cao for first solution M1 (dep on M1) for correct substitution of found value into one of the equations or appropriate method after starting again (condone one arithmetic error) A1 cao for second solution					
		OR $x = \frac{11 - 2y}{5}$ $4 \times \left(\frac{11 - 2y}{5}\right) - 3y = 18$ $44 - 8y - 15y = 90$ $-46 = 23y$ $y = -2$			OR M1 for full method to rearrange and substitute to eliminate <i>x</i> or <i>y</i> , (condone one arithmetical error) A1 cao for first solution M1 (dep on M1) for correct substitution of found value into one of the equations or appropriate method after starting again (condone one arithmetic error) A1 cao for second solution Trial and improvement 0 marks unless both <i>x</i> and <i>y</i> correct values found					

	1MA0 Higher Tier – Practice Paper 1H (Set D)							
Q)n	Working	Answer	Mark	Notes			
4	(c)		Region shaded	3	 B1 for circle arc of radius 3cm (± 2mm) centre Burford B1 for circle arc of radius 5 cm (± 2mm) centre Hightown B1 for overlapping regions of circle arcs shaded M1 for indication of taking a reading from 90 or ft from their cf 			
					graph A1 for 18 – 24			
6	(c)		Two correct comparisons	2	 B1 ft from (b) for a correct comparison of range or inter-quartile range eg. the range / iqr is smaller for group B than group A B1 ft from (b) for a correct comparison of median or upper quartile or lower quartile or minimum or maximum eg. the median in group A is greater than the median in group B 			
7		$6 \times 10 \times 8 = 480$ $480 \div (6 \times 20) =$	4	3	M1 for $6 \times 10 \times 8$ or 480 seen M1 (dep) for '480' ÷ (6 × 20) oe A1 cao OR M1 for $20 \div 10$ (=2) or $10 \div 20$ (= $\frac{1}{2}$) or $\frac{8}{20}$ oe or $\frac{20}{8}$ oe $\frac{1}{2}$ $\frac{8}{20} \times 10$ oe or $\frac{20}{10 \div 8}$ A1 cao SC : B2 for answer of 16 coming from $\frac{20 \times 8 \times 6}{10 \times 6}$ oe			

	1MA0 Higher Tier – Practice Paper 1H (Set D)								
Q	n	Working	Answer	Mark	Notes				
8			84	4	M1 for $x - 1 + 3x + 1 + 3x$ (= 56) or $7x = 56+1-1$ or $3x(x - 1)$ oe 2 M1 for $7x = 56$ or 8 seen M1 for $0.5 \times (`8' - 1) \times (3 \times `8')$ A1 cao Ignore any statement of units. SC B2 for 8 as the answer or 7 identified as the height and 24 identified as the base of the triangle.				
9	(a)		Type of film Tally Frequency	2	 B2 for a table with all 3 aspects: Column/row heading 'type of film' or list of at least 3 film types Column/row heading 'tally' or tally marks (or key) Column/row heading 'frequency' or totals oe (B1 for a table with 2 of the 3 aspects) 				
10		$12x+8y=16$ $12x+15y=51$ $7y=35$ $3x+2\times5=6$ Alternative method $x=\frac{4-2y}{3}$ $4\left(\frac{4-2y}{3}\right)+5y=17$ $16-8y+15y=51$ $7y=35$ $x=\frac{4-2\times5}{3}$	$\begin{array}{l} x = -2 \\ y = 5 \end{array}$	4	 M1 for a correct process to eliminate either x or y or leading to substitution (condone one arithmetic error) A1 for either x = -2 or y = 5 M1 (dep) for correct substitution of their found value A1 cao SC If M0 scored B1 for y = -2 and x = 5 				

1MA0 Higher Tier – Practice Paper 1H (Set D)						
Q	n	Working	Answer	Mark	Notes	
Q 11	<u>n</u>	Working $180 - (360 \div 6) = 120$ $180 - (360 \div 8) = 135$ $360 - 120 - 135 =$ OR $360 \div 6 = 60$ $360 \div 8 = 45$ $60 + 45 =$	1MA0 Higher ' Answer 105	Tier – Pra Mark 4	ctice Paper 1H (Set D)NotesNB. Do remember to look at the diagram when marking this question.Looking at the complete method should confirm if interior or exteriorangles are being calculatedM1 for a correct method to work out the interior angle of a regularhexagon eg. $180 - (360 \div 6)$ oe or $(6 - 2) \times 180 \div 6$ oe or 120 as interior angle of the hexagonM1 for a correct method to work out the interior angle of a regularoctagon $180 - (360 \div 8)$ oe or $(8 - 2) \times 180 \div 8$ oe or 135 as interior angle of the octagonM1 (dep on at least M1) for a complete methodeg. $360 - "120" - "135"$ A1 caoORM1 for a correct method to work out an exterior angle of a regularhexagon eg. $360 \div 6$ or60 as exterior angle of the hexagon	
					hexagon eg. $360 \div 6$ or 60 as exterior angle of the hexagon M1 for a correct method to work out an exterior angle of a regular hexagon $360 \div 8$ or 45 as exterior angle of the octagon M1 (den en et levet M1) for a complete method	
					eg. "60" + "45" A1 cao	
			1			

		1MA0 Higher	Tier – Pra	actice Paper 1H (Set D)		
Qn	Working	Answer	Mark	Notes		
12 ((b) $v_{40}^{0} \sqrt{10^{-0} + 10^{-0$	Ed is cheaper up to 20 miles, Bill is cheaper for more than 20 miles	3	M1 for correct line for Ed intersecting at $(20,30) \pm 1$ sq tolerance or $10 + x = 1.5x$ oe C2 (dep on M1) for a correct full statement ft from graph eg. Ed cheaper up to 20 miles and Bill cheaper for more than 20 miles (C1 (dep on M1) for a correct conclusion ft from graph eg. cheaper at 10 miles with Ed; eg. cheaper at 50 miles with Bill eg. same cost at 20 miles; eg for £5 go further with Bill OR A general statement covering short and long distances eg. Ed is cheaper for shorter distances and Bill is cheaper for long distances) OR M1 for correct method to work out Ed's delivery cost for at least 2 values of n miles where $0 < n \le 50$ OR for correct method to work out Ed and Bill's delivery cost for n miles where $0 < n \le 50$ C2 (dep on M1) for 20 miles linked with £30 for Ed and Bill with correct full statement eg. Ed cheaper up to 20 miles and Bill cheaper for more than 20 miles (C1 (dep on M1) for a correct conclusion eg. cheaper at 10 miles with Ed; eg. cheaper at 50 miles with Bill eg. same cost at 20 miles; eg for £5 go further with Bill OR A general statement covering short and long distances eg. Ed is cheaper for shorter distances and Bill is cheaper for long distances) SC : B1 for correct full statement seen with no working eg. Ed cheaper up to 20 miles and Bill cheaper for more than 20 miles (SC : Decision and justification should be clear with working clearly presented and attributable		

	1MA0 Higher Tier – Practice Paper 1H (Set D)								
Q	n	Working	Answer	Mark	Notes				
13	<u>,11</u>	$\frac{\frac{1}{2} \times 4 \times 3 = 6}{\left(\frac{1}{2}\right)^2 \times 6 =}$	1.5	3	M1 for $\frac{1}{2} \times 4 \times 3$ oe M1 for $\left(\frac{1}{2}\right)^2 \times "6"$ A1 cao OR M2 for $\frac{1}{2} \times 2 \times 1.5$ oe (M1 for triangle with all lengths $\frac{1}{2}$ corresponding lengths of triangle ABC seen in any position or vertices seen at (1, 1) (3,1) and (2.5, 2.5) or stated) A1 cao				
14	(a)	F 15 25 36 24 Fd 3 5 3.6 1.2	Correct histogram	3	 B3 for fully correct histogram (overlay) (B2 for 3 correct blocks) (B1 for 2 correct blocks of different widths) SC : B1 for correct key, eg. 1 cm2 = 5 (cars) or correct values for (freq ÷ class interval) for at least 3 frequencies (3, 5, 3.6, 1.2) NB: The overlay shows one possible histogram, there are other correct solutions. 				
	(b)	0.75 × 24	18	2	M1 for 0.75×24 (=18) oe or 0.25×24 (=6) oe A1 cao OR M1 ft histogram for $15 \times "1.2"$ or $5 \times "1.2"$ A1 ft				

	1MA0 Higher Tier – Practice Paper 1H (Set D)							
Q	n	Working	Answer	Mark	Notes			
15			36 – 9π	3	M1 for $\pi \times 6 \times 6$ or 36π seen value 113.03-113.2 M1 for $(12 \times 12 - \pi \times 6 \times 6^{\circ}) \div 4$ or value 7.7-7.8 A1 for $36 - 9\pi$ oe OR M1 for $\pi \times 6 \times 6 \div 4$ or 9π seen or value 28.2-28.3 M1 for $6 \times 6 - \pi \times 6 \times 6 \div 4^{\circ}$ or value 7.7-7.8 A1 for $36 - 9\pi$ oe NB: for M marks π may be given numerically.			
16			12	4	B1 for 60 seen M1 for $(360 - 60) \div 2 (=150)$ M1 for $360 \div (180 - 150)$ or $150 \times n = 180(n-2)$ oe A1 cao OR B1 for 60 seen M1 for $60 \div 2 (=30)$ M1 for $360 \div (60 \div 2)$ A1 cao OR M2 for 30 seen M1 for $360 \div 30$ A1 cao			

7

			1MA0 Higher	Tier – Pra	ctice Paper 1H (Set D)
Q	n	Working	Answer	Mark	Notes
17*		ABO = ADO = 90° (Angle between tangent and radius is 90°) DOB = $360 - 90 - 90 - 50$ (Angles in a quadrilateral add up to $360°$) BCD = $130 \div 2$ (Angle at centre is twice angle at circumference) OR ABD = $(180 - 50) \div 2$ (Base angles of an isosceles triangle) BCD = 65 (Alternate segment theorem)	650	4	B1 for ABO = 90 or ADO = 90 (may be on diagram) B1 for BCD = 65 (may be on diagram) C2 for BCD = 650 stated or DCB = 650 stated or angle C = 650 stated with all reasons: angle between tangent and radius is 900; angles in a quadrilateral sum to 3600; angle at centre is twice angle at circumference $\frac{1}{2}$ (accept angle at circumference is half (or ²) the angle at the centre) (C1 for one correct and appropriate circle theorem reason) QWC: Working clearly laid out and reasons given using correct language OR B1 for ABD = 65 or ADB = 65 (may be on diagram) B1 for BCD = 650 stated or DCB = 650 stated or angle C = 650 stated with all reasons: base angles of an isosceles triangle are equal; angles in a triangle sum to 1800; tangents from an external point are equal; alternate segment theorem (C1 for one correct and appropriate circle theorem reason) QWC: Working clearly laid out and reasons given using correct language

8

	1MA0 Higher Tier – Practice Paper 1H (Set D)							
Q	n	Working	Answer	Mark	Notes			
18	(a)		Parabola through (4, -1), (2, 3), (6, 3) (3, 0) (5, 0)	2	B2 for a parabola with min $(4, -1)$, through $(2, 3)$, (6, 3),(3, 0), (5, 0) (B1 for a parabola with min $(4, -1)$ or a parabola through $(2, 3)$ and $(6, 3)$ or a parabola through $(3, 0)$ and $(5, 0)$ or a translation of the given parabola along the x-axis by any value other than +3 with the points $(-1, 3)$ $(0, 0)$ (1, -1) $(2, 0)$ $(3, 3)$ all translated by the same amount)			
	(b)		Parabola through (1, -2), (0, 0), (2, 0)	2	B2 parabola with min $(1, -2)$, through $(0, 0)$ and $(2, 0)$ (B1 parabola with min $(1, -2)$ or parabola through $(0, 0)$, $(2, 0)$ (-1, 6) and $(3, 6)$)			
19	(a)	$\frac{(x+4)(x-1)}{(2x-3)(x-1)}$	$\frac{x+4}{2x-3}$	3	M1 for $(x + 4)(x - 1)$ M1 for $(2x - 3)(x - 1)$ A1 cao			
	(b)	$\frac{4(x-2)}{(x+2)(x-2)} + \frac{3(x+2)}{(x+2)(x-2)}$	$\frac{7x-2}{(x+2)(x-2)}$	3	M1 for denominator $(x + 2)(x - 2)$ oe or $x2 - 4$ $\frac{4(x-2)}{(x+2)(x-2)} \xrightarrow[\text{oe or}]{3(x+2)} \xrightarrow[\text{oe or}]{0} (x+2)(x-2) \xrightarrow[\text{oe}]{0} = (NB. \text{ The denominator must be } (x + 2)(x - 2) \text{ or } x2 - 4 \text{ or another suitable common denominator})$ A1 for $\frac{7x-2}{(x+2)(x-2)} \xrightarrow[\text{or } x^2 - 4]{0} = \frac{4(x-2)}{x^2-2} + \frac{3(x+2)}{x^2-2}$			
					SC: If no marks awarded then award B1 for $x^2 - 2$ $x^2 - 2$ oe			

	1MA0 Higher Tier – Practice Paper 1H (Set D)								
Q	n	Working	Answer	Mark	Notes				
20	(a)		$\frac{5\sqrt{2}}{2}$	2	M1 for $\frac{5}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ oe A1 for $\frac{5\sqrt{2}}{2}$ oe				
	(b)		8√3	2	M1 for $2 \times 2 + 2\sqrt{3} + 2\sqrt{3} + \sqrt{3} \times \sqrt{3}$ or $(4+4\sqrt{3}+3)-(4-4\sqrt{3}+3)$ or $2 \times 2 - 2\sqrt{3} - 2\sqrt{3} + \sqrt{3} \times \sqrt{3}$ at least three terms in either correct; could be in a grid. A1 cao OR Difference of two squares M1 for $((2+\sqrt{3})-(2-\sqrt{3}))((2+\sqrt{3})+(2-\sqrt{3}))$				
					A1 cao				
21			230	2	M1 for $180 + 50$ A1 cao OR M1 for $360 - (180 - 50)$ or $360 - 130$ A1 cao OR M1 for $50 + (90 - 50) + 90 + 50$ or $50 + 40 + 90 + 50$ A1 cao				

	1MA0 Higher Tier – Practice Paper 1H (Set D)								
Q	<u>)</u> n	Working	Answer	Mark	Notes				
					 M1 for a suitable diagram (sketch) with bearing of lighthouse from ship indicated and 50° marked at lighthouse; diagram only intended to indicate position of 50°; ignore other labels and markings unless they create ambiguity. A1 cao 				
22		eg. x = 0.28181 100x = 28.181 99x = 27.9	$\frac{31}{110}$	3	M1 for 0.28181() or 0.2 + 0.08181() or evidence of correct recurring decimal eg. 281.81() M1 for two correct recurring decimals that, when subtracted, would result in a terminating decimal, and attempting the subtraction eg. $100x = 28.1818, x = 0.28181$ and subtracting eg. $1000x = 281.8181, 10x = 2.8181$ and subtracting $\frac{27.9}{99}$ or $\frac{279}{990}$ oe A1 cao				
23		Vol cylinder = $\pi \times (2x)2 \times$ 9x = $36\pi x^3$ $36\pi x^3 = \frac{4}{3}\pi r^3$ r3 = $27x3$	3x	3	M1 for sub. into π r2h eg. $\pi \times (2x)^2 \times 9x$ oe $\pi \times (2x)^2 \times 9x = \frac{4}{3}\pi r^3$ oe $\sqrt[3]{\frac{36x^3}{\frac{4}{3}}}$ A1 oe eg. $\sqrt[3]{\frac{36x^3}{\frac{4}{3}}}$ NB : For both method marks condone missing brackets around the 2x				

	1MA0 Higher Tier – Practice Paper 1H (Set D)							
Q	n	Working	Answer	Mark	Notes			
24			(4,3), (4,4), (4,5), (5.4) marked	3	 M2 for identifying the correct region or at least 3 correct points with no more than 3 incorrect points (M1 for drawing x = 3 (solid or dashed line) or at least 1 correct point with no more than 3 incorrect points) A1 cao 			
25			$t = \frac{3 - 4p}{p + 2}$	4	M1 for intention to multiply both sides by 4+t eg $p \times 4 + t = 3 - 2t$ M1 for intention to correctly move their t terms to one side, and correctly move their other terms to the other side eg $p \times 4 + t - 4p + 2t = 3 - 2t + 2t - 4p$ M1 for intention to factorise eg $t(p \pm 2)$ $t = \frac{3 - 4p}{p + 2}$ oe			
26	(a)		640	2	$80 \times \left(\frac{8}{4}\right)^3 \text{ or } 80 \div \left(\frac{4}{8}\right)^3$ $A1 \text{ cao}$			
	(b)		40	2	$\begin{array}{c} 160 \div \left(\frac{8}{4}\right)^2 \text{ or } 160 \times \left(\frac{4}{8}\right)^2 \text{ or ft their scale factor from (a)} \\ 160 \times \left(\frac{4}{8}\right)^2 \text{ or ft their scale factor from (a)} \end{array}$			
27	(a)		Circle, centre O, radius 2	2	B2 cao (B1 for a circle radius 2 any centre or for a circle or part of a circle centre (0, 0) any radius)			

	1MA0 Higher Tier – Practice Paper 1H (Set D)							
Qn Working		Answer	Mark	Notes				
	(b)		Cosine curve crossing at (0, 1), (90, 0), (270, 0) and (360, 1)	2	B2 cao (ignore if sketch outside region) (B1 for a curve with correct intercepts but incorrect amplitude OR for a curve starting at (0,1) with correct amplitude but incorrect intercepts; curves must have a shape that approximates to a cosine curve)			
28			7.5	4	B1 for identifying A at 3 or D at 6 or A(3, 0) or D(0, 6) oe eg may be seen as labels on the diagram M1 for $0 = \frac{-1}{-2} \times 3 + c$ M1 (dep on previous M1) for 6 + '1.5' A1 cao OR B1 for identifying A at 3 or D at 6 or A(3, 0) or D(0, 6) oe eg may be seen as labels on the diagram M1 for 3/6 = OP/3 or 1.5 oe seen (from similar triangles) M1 for 6 + '1.5' A1 cao OR B1 for identifying A at 3 or D at 6 or A(3, 0) or D(0, 6) oe eg may be seen as labels on the diagram M1 for (6+OP)2 = (62+32) + (32+OP2) oe (from Pythagoras) M1 for 6 + '1.5' A1 cao			

1MA0 Higher Tier – Practice Paper 1H (Set D)								
Qn		Working	Answer	Mark	Notes			
29	(a)		a – 3b	1	B1 for $a - 3b$ oe			
	(b)			4	M1 for (NC =) $2\mathbf{a} - 2\mathbf{b}$ oe			
					M1 for (NM =) $\mathbf{b} + \frac{1}{2}$ "(a -3 b)"			
					A1 for $\frac{1}{2}(\mathbf{a}-\mathbf{b})$ A1 for NC is a multiple of NM (+ common point)			
					OR			
					M1 for (NC =) $2\mathbf{a} - 2\mathbf{b}_{oe}$			
					M1 for (MC =) $\frac{1}{2}$ "(a -3 b)"+ a			
					A1 for $\frac{3}{2}(\mathbf{a}-\mathbf{b})$ oe and $2\mathbf{a}-2\mathbf{b}$ oe C1 for NC is a multiple of MC (+ common point)			
					OR 1			
					M1 for (NM =) $\frac{\mathbf{b} + \frac{1}{2}"(\mathbf{a} - 3\mathbf{b})"}{1}$			
					M1 for (MC =) $\frac{1}{2}$ "(a -3 b)"+ a			
					A1 for $\frac{1}{2}(\mathbf{a}-\mathbf{b})$ oe and $\frac{3}{2}(\mathbf{a}-\mathbf{b})$ oe C1 for NM is a multiple to MC (+ common point)			

New Qn	Question Number	Paper Date	Skill tested	Maximum score	Mean Score	Mean Percentage	Percentage scoring full marks
1a	Q14b	1H 1206	Measure or draw a bearing between the points on a map or scaled plan	1	0.30	30	30.1
1b	Q14c	1H 1206	Mark on a diagram the position of point B given its bearing from the point A	2	0.96	48	31.4
2	Q16a	1H 1206	Use instances of index laws, including use of fractional, zero and negative powers, and powers raised to a power	1	0.46	46	46.0
3	Q20	1H 1206	Use elimination or substitution to solve simultaneous equations	4	1.59	40	33.4
4	Q10	1H 1211	Construct regions which may be defined by "nearer to" or "greater than"	3	1.18	39	35.5
5	Q21c	1H 1211	From cumulative frequency graphs estimate frequency greater/less than a given value	2	0.78	39	21.3
6	Q15c	1H 1206	Interpret box plots	2	0.75	38	12.8
7	Q12	1H 1206	Calculate volumes of right prisms, including the triangular prism, and shapes made from cubes and cuboids	3	1.11	37	34.9
8	Q16	1H 1211	Set up simple equations	4	1.42	36	23.8
9	Q01a	1H 1206	Design and use data-collection sheets for grouped, discrete and continuous data	2	0.69	35	14.0
10	Q22	1H 1211	Use elimination or substitution to solve simultaneous equations	4	1.38	35	28.0
11	Q13	1H 1206	Calculate and use the sums of the interior and exterior angles of polygons - (GM.c)	4	1.37	34	14.0
12	Q03b	1H 1206	Discuss, plot and interpret graphs (which may be non-linear) modelling real situations - (As)	3	0.97	32	28.0
13	Q18	1H 1206	Enlarge shapes using (0, 0) as the centre of enlargement	3	0.80	27	23.7
14a	Q22a	1H 1206	Produce histograms from class intervals with unequal width	3	0.82	27	11.7
14b	Q22b	1H 1206	Use and understand frequency density	2	0.52	26	17.1
15	Q12	1H 1211	Find the perimeters and areas of semicircles and quarter circles	3	0.69	23	8.6
16	Q18	1H 1211	Calculate and use the sums of the interior and exterior angles of polygon	4	0.92	23	21.6
17	Q21	1H 1206	Find missing angles on diagrams	4	0.89	22	4.7
18a	Q26a	1H 1206	Apply to the graph of $y = f(x)$ the transformations $y = f(x) + a$, y = f(ax), $y = f(x+a)$, $y = af(x)$ for linear, quadratic, sine and cosine functions $f(x)$	2	0.41	21	12.9
18b	Q26b	1H 1206	Apply to the graph of $y = f(x)$ the transformations $y = f(x) + a$, y = f(ax), $y = f(x+a)$, $y = af(x)$ for linear, quadratic, sine and cosine functions $f(x)$	2	0.16	8	5.3

New Qn	Question Number	Paper Date	Skill tested	Maximum score	Mean Score	Mean Percentage	Percentage scoring full marks	
19a	Q23a	1H 1206	Simplify rational expressions by cancelling, adding, subtracting, and multiplying	3	0.50	17	6.2	
19b	Q23b	1H 1206	Simplify rational expressions by cancelling, adding, subtracting, and multiplying	3	0.53	18	0.3	
20a	Q26a	1H 1211	Rationalise a denominator	2	0.30	15	2.0	
20b	Q26b	1H 1211	Rationalise surds	2	0.19	10	2.0	
21	Q14	1H 1211	Given the bearing of point A from point B, work out the bearing of B from A	2	0.26	13	11.6	
22	Q24	1H 1206	Convert between recurring decimals and fractions	3	0.37	12	4.3	
23	Q25	1H 1206	Find the surface area and volumes of compound solids constructed from cubes, cuboids, cones, pyramids, spheres, hemispheres, cylinders	3	0.26	9	2.4	
24	Q17	1H 1211	Show the solution set of several inequalities in two variables on a graph	3	0.28	9	6.1	
25	Q24	1H 1211	Change the subject of a formula including cases where the subject is on both sides of the original formula, or where a power of the subject appears	4	0.32	8	4.1	
26a	Q25a	1H 1211	Know the relationships between linear, area and volume scale factors of mathematically similar shapes and solids	2	0.14	7	4.5	
26b	Q25b	1H 1211	Know the relationships between linear, area and volume scale factors of mathematically similar shapes and solids	2	0.22	11	4.5	
27a	Q27a	1H 1211	Construct the graphs of simple loci	2	0.13	7		
27b	Q27b	1H 1211	Plot graphs of the circular functions $y = \sin x$ and $y = \cos x$, within the range -360 degrees to +360 degrees	2	0.11	6	1.9	
28	Q23	1H 1211	Understand the gradients of parallel lines	4	0.20	5	1.8	
29a	Q28a	1H 1211	Understand and use vector notation	1	0.19	19	1 5	
29b	Q28b	1H 1211	Solve geometrical problems in 2-D using vector methods	4	0.14	4	1.5	
				100	22.31	22.31		