Mark Scheme (Results)

Summer 2012

GCSE Mathematics (Linear) 1MA0 Higher (Calculator) Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UG032626
All the material in this publication is copyright
© Pearson Education Ltd 2012

NOTES ON MARKING PRINCIPLES

All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

Comprehension and meaning is clear by using correct notation and labelling conventions.
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Range of answers

Unless otherwise stated, when an answer is given as a range (e.g $3.5-4.2$) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

```
Guidance on the use of codes within this mark scheme
M1 - method mark
A1 - accuracy mark
B1 - Working mark
C1 - communication mark
QWC - quality of written communication
oe - or equivalent
cao - correct answer only
ft - follow through
sc - special case
dep - dependent (on a previous mark or conclusion)
indep - independent
isw - ignore subsequent working
```

1MA0_2H					
Question		Working	Answer	Mark	Notes
1		180-47	133	3	M1 for 180-47 A1 for 133 C 1 (dep on M1) for full reasons e.g. angles on a straight line add up to 180° and alternate angles are equal OR corresponding angles are equal and angles on a straight line add up to $\underline{180^{\circ}}$ OR vertically opposite angles (or vertically opposite angles) are equal and allied angles (or co-interior angles) add up to 180°
2	(a) (b)	$\frac{546.7}{12.5}=$	43.736 40	2	B2 for 43.736 (B1 for 546.7 or $\frac{5467}{10}$ or $\frac{5467}{125}$ or 12.5 or $\frac{25}{2}$ or 43.7 or 43.8 or 43.73 or 43.74 or 40 or 44) B1 for 40 or ft from their answer to (a) provided (a) is written to 2 or more significant figures

1MA0_2H					
Question		Working	Answer	Mark	Notes
3	(a)		reasons	2	${ }^{1{ }^{\text {st }} \text { aspect } \text { : time frame }}$ $2^{\text {nd }}$ aspect : overlapping boxes $3^{\text {rd }}$ aspect : not exhaustive (eg. no box for more than 4) B2 any two aspects (B1 any one aspect)
	(b)		How much time do you spend playing sport each week/month None 1 hr to 2 hrs 3 hrs to 5 hrs More than 5 hrs	2	B1 for a suitable question which includes a time frame and unit (the time frame and unit could appear with the response boxes) B1 for at least 3 non-overlapping response boxes (need not be exhaustive) or at least 3 response boxes exhaustive for all integer values of their time unit (could be overlapping). [Do not allow inequalities in response boxes]

1MA0_2H					
Question		Working	Answer	Mark	Notes
5		$\begin{aligned} & (17-2.8) \times 9.5=134.9 \\ & \pi \times(3.8 \div 2)^{2}=11.34 \ldots \\ & 134.9-2 \times 11.34 \ldots=112.21 \\ & 112.21 \div 25=4.488 \end{aligned}$	5	5	M1 for $(17-2.8) \times 9.5(=134.9)$ or $17 \times 9.5-2.8 \times 9.5(=161.5-26.6=134.9)$ M1 for $\pi \times(3.8 \div 2)^{2}(=11.33-11.35)$ M1 (dep on M1) for ' 134.9 ' $-2 \times$ ' 11.34 ' A1 for 112-113 C1(dep on at least M1) for 'He needs 5 boxes' ft from candidate's calculation rounded up to the next integer
6			Farm shop	4	M1 for $12.5 \div 2.5(=5)$ M1 for ' 5 ' $\times 1.83$ or ' 5 ' $\times 183$ A1 for (£) 9.15 or $915(p)$ C 1 (dep on at least M1) for decision ft working shown OR M1 for $12.5 \div 2.5(=5)$ M1 for $9 \div$ ' 5 ' or $900 \div$ ' 5 ' A1 for (£)1.8(0) or $180(p)$ C 1 (dep on at least M1) for decision ft working shown OR M1 for $9 \div 12.5(=0.72)$ or $1.83 \div 2.5(=0.732)$ M1 for $9 \div 12.5(=0.72)$ and $1.83 \div 2.5(=0.732)$ A1 for $72(\mathrm{p})$ and $73 .(2)(\mathrm{p})$ or $(£) 0.72$ and (£)0.73(2) C 1 (dep on at least M1) for decision ft working shown OR M1 for $12.5 \div 9(=1.388 \ldots)$ M1 for $2.5 \div 1.83(=1.366 \ldots)$ A1 for $1.38 \ldots$ and $1.36 \ldots$ truncated or rounded C 1 (dep on at least M1) for decision ft working shown

1MA0_2H					
Question		Working	Answer	Mark	Notes
7	(a)		negative	1	B1 for negative
	(b)		10.3-11.7	2	M1 for a single straight line segment with negative gradient that could be used as a line of best fit or an indication on the diagram from 2.5 on the x axis A1 for an answer in the range $10.3-11.7$ inclusive
8	(a)		Triangle with vertices $(2,-1)(4,-1)(4,-4)$	2	B2 for triangle with vertices $(2,-1)(4,-1)(4,-4)$ (B1 for triangle in correct orientation or rotated 90° anticlockwise centre O
	(b)		Triangle with vertices $(7,2)(13,2)(7,11)$	3	B3 for triangle with vertices $(7,2)(13,2)(7,11)$ (B2 for 2 vertices correct or enlargement scale factor 3 in wrong position or enlargement, centre $(1,2)$, with different scale factor) (B1 for 1 vertex correct or enlargement, not from (1,2), different scale factor)
9			51	3	M1 $200 \times 25.82(=5164)$ A1 for 5164 or 5160 or 5100 or 5200 or 51.64 or 51.6(0) or 52 A1 for 51 cao OR M1 for $100 \div 25.82(=3.87 \ldots)$ and $200 \div ‘ 3.87 \ldots$, $(=51.64)$ A1 for 5164 or 5160 or 5100 or 5200 or 51.64 or 51.6(0) or 52 A1 for 51 cao

1MA0_2H					
Question		Working	Answer	Mark	Notes
10	(a)		$-1,0,1,2,3$	2	B2 for all 5 correct values; ignore repeats, any order. (-1 for each omission or additional value)
	(b)	$\begin{aligned} & 7 x-3 x<4+9 \\ & 4 x<13 \end{aligned}$	$x<3.25$	2	M1 for a clear intention to use a correct operation to collect x terms or non- x terms in an (in)equality A1 for $x<3.25$ oe (SC: B1 for 3.25 oe seen if M0 scored)
11		$\begin{aligned} & x=4 \text { gives } 40 \\ & x=5 \text { gives } 95 \\ & x=4.1 \text { gives } 44 .(321) \\ & x=4.2 \text { gives } 48 .(888) \\ & x=4.3 \text { gives } 53 .(707) \\ & x=4.4 \text { gives } 58 .(784) \\ & x=4.5 \text { gives } 64 .(125) \\ & x=4.6 \text { gives } 69 .(736) \\ & x=4.7 \text { gives } 75 .(623) \\ & x=4.8 \text { gives } 81 .(792) \\ & x=4.9 \text { gives } 88 .(249) \\ & x=4.61 \text { gives } 70.3(12 . .) \\ & x=4.62 \text { gives } 70.8(91 . .) \\ & x=4.63 \text { gives } 71.4(72 . .) \\ & x=4.64 \text { gives } 72.0(57 . .) \\ & x=4.65 \text { gives } 72.6(44 . .) \end{aligned}$	4.6	4	B2 for a trial $4.6 \leq x \leq 4.7$ evaluated (B1 for a trial $4 \leq x \leq 5$ evaluated) B1 for a different trial $4.6<x \leq 4.65$ evaluated B1 (dep on at least one previous B1) for 4.6 Accept trials correct to the nearest whole number (rounded or truncated) if the value of x is to 1 dp but correct to 1 dp (rounded or truncated) if the value of x is to 2 dp . (Accept 72 for $x=4.64$) NB : no working scores no marks even if the answer is correct.

1MA0_2H	Working	Answer	Mark	Notes	
Question		0.3×400	120	M1 for 0.3×400 oe A1 cao	
12		$5 \times 3+15 \times 8+25 \times 11+35 \times 9+45 \times 9$ 11130 $1130 \div 40$	28.25	4	M1 for finding $f x$ with x consistent within intervals (including the end points) allow 1 error M1 (dep) for use of all correct mid-interval values M1 (dep on first M1) for $\Sigma f x \div 40$ or $\Sigma f x \div \Sigma f$ A1 for 28.25 or $28 \frac{1}{4}$
13					

1MA0_2H					
Question		Working	Answer	Mark	Notes
14	(a)	$p^{2}-4 p+9 p-36$	$p^{2}+5 p-36$	2	M1 for all 4 terms correct (condone incorrect signs) or 3 out of 4 terms correct with correct signs A1 cao
	(b)	$\begin{aligned} & 5 w-8=3(4 w+2) \\ & 5 w-8=12 w+6 \\ & -8-6=12 w-5 w \\ & -14=7 w \end{aligned}$	-2	3	M1 for attempting to multiply both sides by 3 as a first step (this can be implied by equations of the form $5 w-8=12 w+?$ or $5 w-8=? w+6$ i.e. the LHS must be correct M1 for isolating terms in w and the number terms correctly from $a w+b=c w+d$ A1 cao OR M1 for $\frac{5 w}{3}-\frac{8}{3}=4 w+2$ M1 for isolating terms in w and the number terms correctly A1 cao
	(c)		$(x+7)(x-7)$	1	B1 cao
	(d)		$3 x^{4} y^{\frac{3}{2}}$	2	B2 for $3 x^{4} y^{\frac{3}{2}}$ or $3 x^{4} y^{1.5}$ or $3 x^{4} y^{y^{\frac{1}{2}}}$ (B1 for any two terms correct in a product eg. $3 x^{4} y^{n}$)

1MA0_2H					
Question		Working	Answer	Mark	Notes
16		$\begin{aligned} & \cos x=\frac{6.4}{9.6} \\ & x=\cos ^{-1} \frac{6.4}{9.6}= \end{aligned}$	48.2	3	M1 for $\cos x=\frac{6.4}{9.6}$ or $\cos x=0.66(6 \ldots)$ or $\cos x=0.67$ M1 for $\cos ^{-1} \frac{6.4}{9.6}$ or $\cos ^{-1} 0.66(6 \ldots)$ or $\cos ^{-1} 0.67$ A1 for 48.1-48.2 OR Correct use of Pythagoras and then trigonometry, no marks until M1 for $\sin x=\frac{{ }^{\prime} 7.155 '}{9.6}$ or $\tan x=\frac{' 7.155 '^{\prime}}{6.4}$ or $\sin x=\frac{{ }^{\prime} 7.155^{\prime}}{9.6} \times \sin 90$ or $\cos x=\frac{6.4^{2}+9.6^{2}-7.155^{\prime 2}}{2 \times 6.4 \times 9.6}$ M1 for $\sin ^{-1} \frac{\text { ' } 7.155 \text { ' }}{9.6}$ or $\tan ^{-1} \frac{' 7.155 '^{\prime}}{6.4}$ or $\sin ^{-1}\left(\frac{7.155 '}{9.6} \times \sin 90\right)$ or $\cos ^{-1}\left(\frac{6.4^{2}+9.6^{2}-7.155^{\prime 2}}{2 \times 6.4 \times 9.6}\right)$ A1 for 48.1 - 48.2 SC B2 for $0.841 \ldots$ (using rad) or $53.5 \ldots$ (using grad)

1MA0_2H					
Question		Working	Answer	Mark	Notes
18		$\begin{aligned} & B D^{2}+12^{2}=16^{2} \text { oe } \\ & B D=\sqrt{256-144} \\ & (=10.58 \ldots) \\ & \sin 40=\frac{' 10.58^{\prime}}{C D} \\ & C D=\frac{10.58^{\prime}}{\sin 40} \end{aligned}$	16.5	5	M1 for $B D^{2}+12^{2}=16^{2}$ oe or $16^{2}-12^{2}$ or 112 seen M1 for $\sqrt{256-144}$ or $\sqrt{112}(=10.58 \ldots)$ M1 for $\sin 40=\frac{' 10.58^{\prime}}{C D}$ or $\cos 50=\frac{' 10.58^{\prime}}{C D}$ M1 for $(C D=) \frac{' 10.58^{\prime}}{\sin 40}$ or $\frac{' 10.58^{\prime}}{\cos 50}$ A1 for 16.4-16.5 OR M1 for $B D^{2}+12^{2}=16^{2}$ oe or $16^{2}-12^{2}$ or 112 seen M1 for $\sqrt{256-144}$ or $\sqrt{112}(=10.58 .$. M1 for $(B C=)^{\prime} 10.58^{\prime} \times \tan 50$ or $\frac{' 10.58^{\prime}}{\tan 40}(=12.6 \ldots)$ M1 for $\sqrt{12.6^{\prime 2}+10.58 \ldots . .{ }^{\prime 2}}$ A1 for $16.4-16.5$

1MA0_2H					
Question		Working	Answer	Mark	Notes
19		$\begin{aligned} & \sqrt{\frac{8.5 \times 10^{9}-4 \times 10^{8}}{8.5 \times 10^{9} \times 4 \times 10^{8}}} \\ & =\sqrt{\frac{8.1 \times 10^{9}}{3.4 \times 10^{18}}} \\ & =\sqrt{2.3823529 \ldots \times 10^{-9}} \end{aligned}$ OR $\begin{aligned} & \sqrt{\frac{1}{4 \times 10^{8}}-\frac{1}{8.5 \times 10^{9}}} \\ = & \sqrt{2.5 \times 10^{-9}-1.17647 \times 10^{-10}} \\ = & \sqrt{2.3823529 \ldots \times 10^{-9}} \end{aligned}$	4.9×10^{-5}	3	B3 for 4.88×10^{-5} to 4.9×10^{-5} (B2 for digits 238(23529) or 24 or 488(09353) or 49) (B1 for digits 81 or 34) OR B3 for 4.88×10^{-5} to 4.9×10^{-5} (B2 for digits 238(23529) or 24 or 488(09353) or 49) (B1 for digits 25 or 117(647))
20		$\begin{aligned} & 2 d-2 t=4 t+7 \\ & 2 d-7=4 t+2 t \\ & 2 d-7=6 t \\ & \frac{2 d-7}{6} \end{aligned}$	$\frac{2 d-7}{6}$	3	B1 for $2 d-2 t$ or $2 t+\frac{7}{2}$ oe M1 for rearranging 4 terms correctly to isolate terms in t e.g. ' $2 d$ ' $-7=4 t+' 2 t$ ' or $2 d-7=6 t$ or $-6 t=7-2 d$ seen A1 for $\frac{2 d-7}{6}$ oe
21		$\begin{aligned} & 4 n^{2}+12 n+3^{2}-\left(4 n^{2}-12 n+3^{2}\right) \\ & =4 n^{2}+12 n+9-4 n^{2}+12 n-9 \\ & =24 n \\ & =8 \times 3 n \end{aligned}$	Proof	3	M1 for 3 out of 4 terms correct in expansion of either $(2 n+3)^{2}$ or $(2 n-3)^{2}$ or $((2 n+3)-(2 n-3))((2 n+3)+(2 n-3))$ A1 for $24 n$ from correct expansion of both brackets A1 (dep on A1) for $24 n$ is a multiple of 8 or $24 n=8 \times 3 n$ or $24 n \div 8=3 n$

1MA0_2H					
Question		Working	Answer	Mark	Notes
22		$\begin{aligned} & a=3, b=-4, c=-2 \\ & x=\frac{--4 \pm \sqrt{(-4)^{2}-4 \times 3 \times-2}}{2 \times 3} \\ & =\frac{4 \pm \sqrt{16+24}}{6}=\frac{4 \pm \sqrt{40}}{6} \\ & =1.72075922 \\ & \text { or } \\ & =-0.3874258867 \end{aligned}$ OR $\begin{aligned} & x^{2}-\frac{4}{3} x-\frac{2}{3}=0 \\ & \left(x-\frac{2}{3}\right)^{2}-\left(\frac{2}{3}\right)^{2}-\frac{2}{3}=0 \\ & x-\frac{2}{3}=\sqrt{\left(\frac{2}{3}\right)^{2}+\frac{2}{3}} \\ & x=\frac{2}{3} \pm \sqrt{\frac{10}{9}} \end{aligned}$	1.72, -0.387	3	M1 for $\frac{--4 \pm \sqrt{(-4)^{2}-4 \times 3 \times-2}}{2 \times 3}$ (condone incorrect signs for -4 and -2) M1 for $\frac{4 \pm \sqrt{40}}{6}$ or $\frac{2 \pm \sqrt{10}}{3}$ A1 for one answer in the range 1.72 to 1.721 and one answer in the range -0.387 to -0.38743 OR M1 for $\left(x-\frac{2}{3}\right)^{2}$ oe M1 for method leading to $\frac{2}{3} \pm \sqrt{\frac{10}{9}}$ oe A1 for one answer in the range 1.72 to 1.721 and one answer in the range -0.387 to -0.38743

1MA0_2H					
Question		Working	Answer	Mark	Notes
23	(a)(i)	Explanation : Each member of the population has an equal chance of selection	Each member of the population has an equal chance of selection	2	B1 for explanation
	(ii)	Description: Eg. number each student and use random select on a calculator	Valid method		B1 for an acceptable description
	(b)	$\begin{aligned} & 239+257+248+190+206=1140 \\ & \frac{239}{1140} \times 100 \end{aligned}$	21	2	$\begin{aligned} & \text { M1 for } \frac{239}{' 1140 '} \times 100 \text { oe or } 20.96 \ldots \\ & \text { A1 cao } \end{aligned}$

1MA0_2H					
Question		Working	Answer	Mark	Notes
24		$\begin{aligned} & \frac{A C}{\sin 49}=\frac{8.7}{\sin 64} \\ & A C=\frac{8.7}{\sin 64} \times \sin 49 \\ & (=7.305 \ldots) \\ & \frac{1}{2} \times 8.7 \times 7.305 \ldots \times \sin (180-64-49) \end{aligned}$	29.3	5	M1 for $\frac{A C}{\sin 49}=\frac{8.7}{\sin 64}$ oe M1 for $(A C=) \frac{8.7}{\sin 64} \times \sin 49$ A1 for 7.3(05...) M1 for $\frac{1}{2} \times 8.7 \times{ }^{\prime} 7.305^{\prime} \times \sin (180-64-49)$ A1 for 29.19-29.3 OR M1 for $\frac{B C}{\sin (180-64-49)}=\frac{8.7}{\sin 64}$ oe M1 for $(B C=) \frac{8.7}{\sin 64} \times \sin ^{\prime} 67^{\prime}$ A1 for 8.9(10...) M1 for $\frac{1}{2} \times 8.7 \times{ }^{\prime} 8.910^{\prime} \times \sin 49$ A1 for 29.19-29.3 OR (X is point such that $A X$ is perpendicular to $B C$) M1 for $A X=8.7 \times \sin 49(=6.565 \ldots)$ or $X B=8.7 \times \cos 49(=5.707 \ldots)$ M1 for $X B=8.7 \times \cos 49(=5.707 \ldots)$ and $C X=$ ' 6.565 ' $\div \tan 64$ oe $(=3.202 \ldots)$ A1 for $8.9(10 \ldots$... or $5.7(07 \ldots)$ and $3.2(02 \ldots)$ M1 for $1 / 2 \times$ ‘ $6.565 \ldots$... $\times\left({ }^{\prime} 5.707\right.$ ' + ' 3.202 ') oe A1 for 29.19-29.3

1MA0_2H					
Question		Working	Answer	Mark	Notes
25		$\begin{aligned} & \frac{12}{20} \times \frac{11}{19}+\frac{5}{20} \times \frac{4}{19}+\frac{3}{20} \times \frac{2}{19} \\ & 1-\left(\frac{12}{20} \times \frac{11}{19}+\frac{5}{20} \times \frac{4}{19}+\frac{3}{20} \times \frac{2}{19}\right) \end{aligned}$	$\frac{222}{380}$	4	B1 for $\frac{12}{19}$ or $\frac{5}{19}$ or $\frac{3}{19}$ (could be seen in working or on a tree diagram) M1 for $\frac{12}{20} \times \frac{5}{19}$ or $\frac{12}{20} \times \frac{3}{19}$ or $\frac{5}{20} \times \frac{12}{19}$ or $\frac{5}{20} \times \frac{3}{19}$ or $\frac{3}{20} \times-\frac{12}{19}$ or $\frac{3}{20} \times \frac{5}{15}$ M1 for $\frac{12}{20} \times \frac{5}{19}+\frac{12}{20} \times \frac{3}{19}+\frac{5}{20} \times \frac{12}{19}+\frac{5}{20} \times \frac{3}{19}+\frac{3}{20} \times \frac{12}{19}+\frac{3}{20} \times \frac{5}{19}$ A1 for $\frac{222}{380}$ oe or $0.58(421 \ldots)$ OR B1 for $\frac{8}{19}$ or $\frac{15}{19}$ or $\frac{17}{19}$ M1 for $\frac{12}{20} \times \frac{8}{19}$ or $\frac{5}{20} \times \frac{15}{19}$ or $\frac{3}{20} \times \frac{17}{19}$ M1 for $\frac{12}{20} \times \frac{8}{19}+\frac{5}{20} \times \frac{15}{19}+\frac{3}{20} \times \frac{17}{19}$ A1 for $\frac{222}{380}$ oe or $0.58(421 \ldots)$

1MA0_2H					
Question		Working	Answer	Mark	Notes
$\begin{gathered} 25 \\ \text { contd } \end{gathered}$					B1 for $\frac{11}{19}$ or $\frac{4}{19}$ or $\frac{2}{19}$ M1 for $\frac{12}{20} \times \frac{11}{19}$ or $\frac{5}{20} \times \frac{4}{19}$ or $\frac{3}{20} \times \frac{2}{19}$ M1 for $1-\left(\frac{12}{20} \times \frac{11}{19}+\frac{5}{20} \times \frac{4}{19}+\frac{3}{20} \times \frac{2}{19}\right)$ A1 for $\frac{222}{380}$ oe or $0.58(421 \ldots)$ NB if decimals used they must be correct to at least 2 decimal places SC: with replacement B2 for $\frac{111}{200}$ oe OR e.g. B0 M1 for $\frac{12}{20} \times \frac{8}{20}$ or $\frac{5}{20} \times \frac{15}{20}$ or $\frac{3}{20} \times \frac{17}{20}$ M1 for $\frac{12}{20} \times \frac{8}{20}+\frac{5}{20} \times \frac{15}{20}+\frac{3}{20} \times \frac{17}{20}$ A0

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG032626 Summer 2012

For more information on Edexcel qualifications, please visit our website www.edexcel.com

