1MA0 Foundation Tier - Practice Paper 1F (Set D)					
Qn		Working	Answer	Mark	Notes
1		$\begin{aligned} & 2+8+2+8=20 \\ & 20 \div 4= \end{aligned}$	5	4	M2 for $2+8+2+8$ oe or 20 seen or $(2+8) \div 2$ oe (M1 for the sum of 3 sides of the rectangle) M1 (dep) for the sum of 3 or 4 sides of the rectangle $\div 4$ or an attempt to evaluate $(2+8) \div 2$ oe to get the length of one side A1 cao
2	(c)*	e.g. HL to SC: 1102-1141 Visit (at least 3 hours) SC to HL: 15 16-1549 [Note : there are 9 possible solutions]	A fully correct plan showing departure times and arrival times of the two bus journeys	4	B1 for a departure time of 0802 or 0904 or 1012 or 1102 from HL M1 (indep) for a correct arrival time at SC and a correct departure time from SC (or Cartbridge St) which allows for a stay of at least 3 hours in SC (the differencing does not have to be seen) OR for correctly adding 3 hours to a their arrival time at SC B1 for a departure time from SC of 1320 (13 11 from CS) or 1424 (14 14 from CS) or 1516 (15 07 from CS) C1 (dep on M1) for a complete correct plan which includes the departure and arrival times of the two bus journeys [Note: bus departure times may be identified by their starting times. Eg the 1507 from Cartbridge Street would be acceptable for the identification of the bus which arrives a HL at 15 49]
3		$\begin{aligned} & 9.5-4.75= \\ & \text { OR } \\ & 9.5 \div 2= \end{aligned}$	4.75	2	M1 for $9.5-4.75$ or $9.5 \div 2$ or A1 $4.75-9.5$ cao
4		$\begin{aligned} & 180 \times 1.5 \\ & 40 \times 1.5 \\ & 110 \times 1.5 \\ & 30 \times 1.5 \end{aligned}$	$\begin{gathered} \text { Flour }=270 \\ \text { Ginger }=60 \\ \text { Butter }=165 \\ \text { Sugar }=45 \end{gathered}$	3	M1 for $\times 24 \div 16$ oe or $24 / 16$ or 1.5 seen or $180+90(=270)$ or $40+20$ $(=60)$ or $110+55(=165)$ or $30+15(=45)$ or sight of any one of the correct answers A2 for all 4 correct answers (A1 for 2 or 3 correct answers)
5	(a)		3 f	1	B1 for 3 f or f 3 or $3 \times \mathrm{f}$ or $\mathrm{f} \times 3$

1MA0 Foundation Tier - Practice Paper 1F (Set D)						
Qn	Working					Notes
6	e.g. $41-21$ $49-10$ $16+1$ OR $(100-$ $(=14)$ $14+1$ $100-$ Boys Girls	$9)-($ $\begin{aligned} & =24) \\ & 1+2 \end{aligned}$ w 16 $\mathbf{1 9}$ $\mathbf{3 5}$	9) $+21$ $=35$ b 21 20 41	35		M1 for 41-21 (=20) or M1 for 49-10-'20' (= 19) M1 for $16+{ }^{\prime} 19$ ' A1 cao OR M1 for 100-49 (=51) M1 for ' 51 ' - $21-16(=14)$ and ' 14 ' $+10(=24)$ M1 for 100 - ($41+$ ' 24 ') A1 cao NB working may appear in table or diagram
7				Eg. How many hours do you read each day? 0 to 1 h over 1 h to 2 h over 2 h		B1 for an appropriate question with reference to a time frame, with a unit of time, or a question with a time frame, with a unit of time, implied by responses B1 for at least 3 non-overlapping boxes (ignore if not exhaustive) or for at least 3 exhaustive boxes (ignore if any overlapping) [Note: labels on response boxes must not be inequalities] Do not accept frequency tables or data collection sheets for award of the second B mark
8				44	1	B1 cao

1MA0 Foundation Tier - Practice Paper 1F (Set D)					
		Working	Answer	Mark	Notes
10	(a) (b)		trapezium	2	B1 for trapezium or isosceles trapezium B2 for correct tessellation (at least 5 more shapes) (B1 for at least 4 shapes (including initial shape) correctly tessellating)
11			33	2	M1 for 5×5 or 25 seen in the working or $2 \times 2 \times 2$ or 8 seen in the working A1 cao
12*		S: $35 \div 100 \times 40=14$ W: $40 \div 8 \times 3=15$ OR D: $16 \div 40(\times 100)$ $=0.4 \quad(40 \%)$ $\mathrm{W}: 3 \div 8 \quad(\times 100)$ $=0.375 \quad(37.5 \%)$	Debbie and correct calculations	4	Compares Marks out of 40 or fractions with denominator of 40 M1 for $35 \div 100 \times 40$ oe or 14 seen (or $14 / 40$ seen) M1 for $40 \div 8 \times 3$ or 15 seen (or $15 / 40$ seen) A1 for 14 and 15 or $\frac{14}{40}$ and $\frac{15}{40}$ C1 (dep on M1) for correct conclusion for their working QWC with 3 comparable marks: Decision and justification should be clear with working clearly presented and attributable. OR Decimals (or Percentages) M1 for $16 \div 40(\times 100)$ oe or 0.4 (or 40$)$ seen M1 for $3 \div 8 \quad(\times 100)$ oe or $0.375 \quad$ (or 37.5) seen A1 for 0.4 and 0.375 (or 40 and 37.5) C1 (dep on M1) for correct conclusion for their working QWC: with 3 comparable decimals (or percentages: Decision and justification should be clear with working clearly presented and attributable.

1MA0 Foundation Tier - Practice Paper 1F (Set D)				
	Working	Answer	Mark	Notes
16	Acton after 24, 48, 72, 96, .. Barton after 20, 40, 60, 80,.. LCM of 20 and 24 is 120 9: $00 \mathrm{am}+120$ minutes OR Acton after 24, 48, 1h 12 min... Barton after 20, 40, 1 h LCM is 2 hours 9:00 am +2 hours	11:00 am	3	M1 for listing multiples of 20 and 24 with at least 3 numbers in each list ; multiples could be given in minutes or in hours and minutes (condone one addition error in total in first 3 numbers in lists) A1 identify 120 (mins) or 2 (hours) as LCM A1 for 11:00(am) or 11(am) or 11 o'clock OR M1 for listing times after 9am when each bus leaves the bus station, with at least 3 times in each list (condone one addition error in total in first 3 times after 9 am in lists) A1 for correct times in each list up to and including 11: 00 A1 for 11:00(am) or 11(am) or 11 o'clock
17	$\begin{aligned} & \text { e.g. } \\ & \$ 20=£ 12.50 \\ & \$ 100=5 \times £ 12.50= \\ & £ 62.50 \\ & £ 62.50-60=£ 2.50 \end{aligned}$	£2.50 OR \$4	3	M1 for a correct method to convert $\$ 100$ to $£$, e.g. $5 \times$ ' 12.50 ’ ($=62.50$) (' 12.50 ' is their reading from the graph at $\$ 20$) M1 (dep) for ' 62.50 ' - 60 A1 for $£ 2.5(0)$ (units must be stated) OR M1 for correct method to convert $£ 60$ to $\$$, e.g. 3×32 (=96) or ft their answer to part (a) M1 (dep) for 100 - ' 96 ' A1 for $\$ 4$ (units must be stated)
18*	$\begin{aligned} & 360-200-90(=70) \\ & \left(180-{ }^{\prime} 70 \text {) } \div 2\right. \end{aligned}$ angles at a point add to 360 o , angles in a triangle add to 180 o, base angles of an isosceles triangle are equal	$y=55$ reasons	4	M1 for 360-200-90 oe M1 for $\left(180-{ }^{\prime} 70^{\prime}\right) \div 2$ Reasons: angles at a point add up to 360° angles in a triangle add up to 180° base angles of an isosceles triangle are equal C2 for $\mathrm{y}=55^{\circ}$ and all correct reasons Note: An answer of 550 alone, is not enough; $\mathrm{y}=55^{\circ}$ must be explicitly stated or clearly shown on the diagram

1MA0 Foundation Tier - Practice Paper 1F (Set D)					
Qn		Working	Answer	Mark	Notes
19		$1,96 \times 2.25=4.41$ OR $\begin{aligned} & 4.23 \div 9=0.47 \\ & 1.96 \div 4=0.49 \end{aligned}$	Pack of 9	3	M2 for a fully correct method to enable a conclusion eg $1.96 \times 21 / 4$ OR M1 for $4.23 \div 9$ or $423 \div 9$ or 0.47 seen M1 or 47 seen for $1.96 \div 4$ or $196 \div 4$ or 0.49 seen or 49 seen
20		$\begin{aligned} & 5 w=10+6 \\ & w=16 \div 5 \\ & \text { or } w-\frac{6}{5}=\frac{10}{5} \text { oe } \end{aligned}$	16/5 oe	2	M1 for $5 w-6+6=10+6$ oe or $w-\frac{6}{5}=\frac{10}{5}$ oe A1 for $\frac{16}{5}, 3 \frac{1}{5}, 3.2$, oe
21*		$\begin{aligned} & 180 \div 9 \times 1: 180 \div 9 \times 3: 180 \div \\ & 9 \times 5 \\ & =20: 60: 100 \\ & \text { Not enough cement } \\ & \text { (but enough sand and } \\ & \text { enough gravel) } \\ & \text { OR } \\ & 1 \times 15: 3 \times 15: 5 \times 15 \\ & =15: 45: 75 \\ & 15+45+75=135(<180) \\ & \text { Not enough cement }(\text { to } \\ & \text { make } 180 \mathrm{~kg} \text { of concrete) } \end{aligned}$	No + reason	4	M1 for $180 \div(1+3+5)(=20)$ or 3 multiples of 1:3:5 M1 for $1 \times{ }^{\prime} 20^{\prime}$ or $3 \times ' 20^{\prime}$ or $5 \times{ }^{\prime} 20^{\prime}$ or 20 seen or 60 seen or 100 seen A1 for (Cement=) 20, (Sand=) 60, (Gravel=) 100 C1 ft (provided both Ms awarded) for not enough cement oe OR M1 for (1×15 and) 3×15 and 5×15 or 9×15 or sight of the numbers 15, 45, 75 together. M1 for ' 15 ' + ' 45 ' + ' 75 ' A1 for 135 (<180) C1 ft (provided both Ms awarded) for not enough cement oe
22			20	2	M1 $3 \times 3 \times 3$ oe seen or drawn or 27 seen or use of 3 layers A1 cao
23	(a) (b)	$3+10$	13 $7.1-7.9$ inc.	1 1	B1 cao B1 for answer in the range $7.1-7.9 \mathrm{inc}$

1MA0 Foundation Tier - Practice Paper 1F (Set D)					
Qn		Working	Answer	Mark	Notes
24		Area of cross section $4 \times 7+5 \times 2$ or $9 \times 2+$ 5×4 OR $9 \times 7-5 \times 5(=38)$	380	3	M1 for $4 \times 7+5 \times 2(=38)$ or $9 \times 2+5 \times 4(=38)$ or $7 \times 9-5 \times 5(=38)$ or $4 \times 7 \times 10$ or $5 \times 2 \times 10(=100)$ or $9 \times 2 \times 10(=180)$ or $5 \times 4 \times 10(=200)$ or $9 \times 7 \times 10(=630)$ or $5 \times 5 \times 10(=250)$ M1 (dep) for ' 38 ' $\times 10$ or 380 or $4 \times 7 \times 10+5 \times 2 \times 10$ or $9 \times 2 \times 10+5 \times 4 \times 10$ or $(7 \times 9-5 \times 5) \times 10$ A1 cao
25	(a) (b)	$3 \times 3 \times 3 \times 3$	$\begin{gathered} 81 \\ 4 \end{gathered}$	1 1	B1 cao B1 cao
26		$\begin{aligned} & \frac{9}{2} \times(12+18)=135 \\ & 135 \div 20=6.75(=7 \\ & \text { bags }) \\ & 7 \times 4.99 \\ & \text { OR } \\ & 18 \times 9-\frac{1}{2}(6 \times 9)=135 \\ & 135 \div 20=6.75(=7 \\ & \text { bags }=7 \\ & 7 \times 4.99 \end{aligned}$	34.93	4	M1 for $\frac{9}{2} \times(12+18)$ or $18 \times 9-\frac{1}{2}(6 \times 9)$ or $9 \times 12+\frac{1}{2} \times(18-12) \times 9$ or 135 seen M1 (dep) for ' 135 ' $\div 20$ or 6 or 7 seen M1 (dep on previous M1) for ' 6 ' $\times 4.99$ or ' 7 ' $\times 4.99$ A1 cao [SC: M1 for $(12 \times 9+6 \times 9) \div 20(=162 \div 20)$ or 8 or 9 seen M1 (dep) for ' 8 ' $\times 4.99$ or ' 9 ' $\times 4.99$ OR M1 for $(18 \times 9-6 \times 9) \div 20(=108 \div 20)$ or 5 or 6 seen M1 (dep) for ' 5 ' $\times 4.99$ or ' 6 ' $\times 4.99$]

1MA0 Foundation Tier - Practice Paper 1F (Set D)				
	Working	Answer	Mark	Notes
27*	Angle DBC $=(180-50)$ $\div 2$ Base angles of isosceles triangle are equal Angle ABD $=180-65$ Angles on a straight line add up to 180 $x=180-20-115$ Angles in a triangle add up to 180	45 with reasons	4	M1 for $(180-50) \div 2$ oe or 65 seen M1 for 180-20-(180-" 65 ") or " 65 " -20 or 180-50-20-‘65' oe C2 for x identified as 45 with full reasons QWC: Reasons clearly laid out with correct geometrical language used (C1 (dep on M1) for one reason QWC: Reasons clearly laid out with correct geometrical language used) NOTE: $x=45$ with no working or without any correct angles marked on the diagram cannot score.
28		4×6 rectangle	2	B2 for a single 4×6 rectangle drawn anywhere on the grid (B1 for a single $4 \times n$ rectangle or a single $m \times 6$ rectangle drawn anywhere on the grid) Note: All nets and 3-D sketches get NO marks
29		Region shaded	3	B1 for circle arc of radius $3 \mathrm{~cm}(\pm 2 \mathrm{~mm})$ centre Burford B1 for circle arc of radius $5 \mathrm{~cm}(\pm 2 \mathrm{~mm})$ centre Hightown B1 for overlapping regions of circle arcs shaded

1MA0 Foundation Tier - Practice Paper 1F (Set D)					
Qn		Working	Answer	Mark	Notes
	(c)	$\begin{aligned} & 10 t=g h \\ & h=\frac{10 t}{g} \end{aligned}$	$\frac{10 t}{g}$	2	M1 for clear intention to multiply both sides of the equation by 10 (eg. $\times 10$ seen on both sides of equation) or clear intention to divide both sides of the equation by g (e.g. $\div \mathrm{g}$ seen on both sides of equation) $\begin{aligned} \text { or } \quad 10 t & =g h \\ \text { or } \quad \frac{t}{g} & =\frac{h}{10} \end{aligned}$ or fully correct reverse flow diagram $\text { eg. } \leftarrow \times 10 \leftarrow \div \mathrm{g} \leftarrow$ A1 for $\frac{10 t}{g}$ oe
32		$\begin{aligned} & 3 x-15=2 x+24 \\ & x=39 \end{aligned}$ OR $\begin{aligned} & 2 \mathrm{x}+3 \mathrm{x}-15+2 \mathrm{x}+2 \mathrm{x}+24 \\ & =360 \\ & 9 \mathrm{x}+9=360 \\ & 9 \mathrm{x}=351 \\ & \mathrm{x}=39 \end{aligned}$ OR $\begin{aligned} & 2 x+2 x+24=180 \\ & 4 x+24=180 \\ & 4 x=156 \\ & x=39 \end{aligned}$	39	3	

New Qn	Question Number	Paper Date	Skill tested	Maximum score	Mean Score	Mean Percentage	Percentage scoring full marks
1	Q14	1F 1206	Find the perimeter of rectangles and triangles	4	2.02	51	47.1
2	Q14c	1F 1211	Work out time intervals	4	1.92	48	32.9
3	Q15b	1F 1206	Extract data from lists and tables	2	0.89	45	32.0
4	Q23	1F 1211	Solve a ratio problem in context	3	1.34	45	37.5
5	Q13a	1F 1211	Manipulate algebraic expressions by collecting like terms	1	0.42	42	41.8
6	Q21	1F 1211	Design and use two-way tables for discrete and grouped data	4	1.67	42	30.9
7	Q26	1F 1211	Design a question for a questionnaire	2	0.82	41	27.5
8	Q20b	1F 1206	Calculate median	1	0.40	40	39.6
9	Q20	1F 1211	Find a fraction of a quantity	4	1.51	38	19.8
10a	Q16a	1F 1206	Recall the properties and definitions of special types of quadrilaterals	1	0.36	36	35.8
10b	Q16b	1F 1206	Understand tessellations of regular and irregular polygons	2	0.66	33	32.0
11	Q11b	1F 1206	Find the value of calculations using indices	2	0.70	35	28.4
12	Q17	1F 1206	Interpret fractions, decimals and percentages as operators	4	1.41	35	24.2
13a	Q26a	1F 1206	Add, subtract, multiply and divide any number	3	1.05	35	17.3
13b	Q26b	1F 1206	Substitute numbers into a formula	2	0.32	16	3.0
14	Q23b	1F 1206	Solve a ratio problem in context	2	0.67	34	14.1
15a	Q22a	1F 1206	Calculate perimeters and areas of shapes made from triangles and rectangles	3	0.39	13	16.7
15b	Q22b	1F 1206	Add, subtract, multiply and divide any number	3	0.94	31	2.1
16	Q24	1F 1206	Find the Lowest common multiple (LCM) and Highest common factor (HCF) of two numbers	3	0.93	31	23.4
17	Q15b	1F 1211	Interpret straight-line graphs for real-life situations ready reckoner graphs	3	0.89	30	19.8
18	Q19	1F 1211	Use the side/angle properties of isosceles and equilateral triangles	4	1.14	28	1.9
19	Q19	1F 1206	Add, subtract, multiply and divide any number	3	0.81	27	14.1
20	Q17c	1F 1211	Solve linear equations, with integer coefficients, in which the unknown appears on either side or on both sides of the equation	2	0.50	25	18.6
21	Q29	1F 1211	Solve a ratio problem in context	4	0.74	19	8.7
22	Q12a	1F 1206	Use 2-D representations of 3-D shapes	2	0.33	17	46.0
23a	Q03b	1F 1211	Use brackets and the hierarchy of operations	1	0.36	36	36.2
23b	Q03c	1F 1211	Find square roots and cube roots	1	0.17	17	16.7
24	Q27	1F 1211	Find the volume of a prism, including a triangular prism, cube and cuboid	3	0.51	17	12.4
25a	Q16a	1F 1211	Find the value of calculations using indices	1	0.43	43	43.0
25b	Q16b	1F 1211	Find square roots and cube roots	1	0.16	16	16.5

$\left.\begin{array}{|l|l|l|l|c|c|c|}\hline \begin{array}{l}\text { New } \\ \text { Qn }\end{array} & \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \begin{array}{l}\text { Paper } \\ \text { Date }\end{array} & \text { Skill tested } & \begin{array}{c}\text { Maximum } \\ \text { score }\end{array} & \begin{array}{c}\text { Mean } \\ \text { Score }\end{array} & \begin{array}{c}\text { Mean } \\ \text { Percentage }\end{array} \\ \hline \text { Percentage } \\ \text { scoring full } \\ \text { marks }\end{array}\right\}$

