MARKING SCHEME 2005 PAPER 1 233/1

Student Bounty.com

- Used Health salts/laxatives / bee sting/ fire extinguisher/ in soft drinks.
- (a) Cao is a basic while HCL is acidic ⇒ They will therefore react.
 They will react to form salt and water.
 - (b) Fused ealgium chloride / concentrated sulphuric acid/ silice gel.
- 3. (a) Carbon dioxide or C0, carbon (iv) oxide
 - (b) The water is temporarily burnt containing hydrogen carbonate. The hydrogen carbonate decomposes on heating to produce substance A.

 $Mg(HCO_1)_2 \rightarrow Mg + 2CL_2 H_20$

(a)

(b)

5. (a) (i)
$$ZnO_{(s)} + H_2SO_{4} \rightarrow ZnSO_{4_{pq}} HxO_{-s}$$

44377

Accept i.e.
$$Zn0_{(s)} + 2H_{am}^+ \rightarrow Zn_{aq}^{2+} + H_{2(t)}0$$

(ii)
$$Zn0_{(s)1} + 2Na0H_{(eq)} H_20_1 \rightarrow Na_2Zn(0H)_{4(eq)}$$

$$Zn0_{(s)} + 20H_{(aq)} + H_20_{(l)} \rightarrow Zn(0H)^{2-}_{4(aq)}$$

OI

$$Zn0_{(s)} + 20H_{(aq)}^{-} \rightarrow Zn0_{2(aq)}^{2-} + H_20_{(1)}$$

or

$$Zn0_{(s)} + 2Na0H_{(aq)} \rightarrow Na0_{2(aq)} + H_20_{(1)}$$

- 6. (a) C and E
 - they have same atomic number/protons or they are isotopes

(b)
$$(7,3) = 4$$

- dichloro ethane

$$C^1$$
, H
 $C = C^1$

$$C = C_1$$
 C_1
 C_1

8. (a)
$$H_2S + 5 = 0$$
 $S = -2$

(b)
$$+2+2s + -6 = 0$$
 +2
 $2s = 4$ $s = +2$

9. Mole of Hcl
$$\frac{20}{1000}$$
 0.02

Moles of
$$GCO_3 = \frac{0.02}{2} = 0.01$$

Molar mass of
$$GCO_s = \frac{1}{0.01} 100$$

RMM of
$$GC0_3 = 60 + G$$

$$G + 60 = 100$$

 $G = 40$

(a) Equilibrium has been established or backward Rxn = Rxn

11. (a)
$$6\text{Na0H}_{(aq)} + 3\text{cl}_{2g} \rightarrow \text{Nacl}_{(aq)}0_3 + 5\text{Nacl}_{(aq)} + 3\text{H}_20_{(i)}$$

- (b) Weed killos, antiseptic for throat infectionm bleochigagant. Making heads of safety matches.
- 12. (a) To reduce Pb0 to Pb
 - (b) To remove silica as slag
 - (c) To reduce unreacted Pbs to Pb

Moles of methane
$$\frac{111.25}{890}$$
0.125

Volume of methane
$$0.125 \times 24$$

= 3 litres

14.
$$100t_{\chi} = 30$$
 $t_{\chi} = 25$ $t_{\chi} = 12.5$

$$t_{\chi} = \frac{15.6}{3} = 15.2 \text{ years}$$

- Each atom in bonded to other carbon atom joining fused hexogenial layers. The layers are held together by weak vander weak faces / weak intermolecular. The layers can slick over each other easily.
- 16. First ionisation energy decreases with increase in atomic radius. When the atomic radius increases the outermost electron gets further from the nucleus less energy is thus required to remove it.
- (a) Rxn must be carried out in a closed vessel/system.
 - (b) Equilibrium shifts to the right or forward Rxn because C0, is removed from the system by KOH.
- (a) No heating
 - (b) The solid melted the ions become mobile/ freed delocolized.
- (a) Latent heat of fussion / molar heat of fusion.
 - (b) Negative particles are losing energy / ***
- Acid M is stronger than acid L PRM ionises. Only while u realise pandles partially.
 - It produces more H⁺ ions which react with the Mg turning.
- (a) Nitric acid is more volable than concentrated H₂SO₄. Or Nitric acid has lower boiling point than concentrated H,SO,
 - (b) NaNO,
 - (c) Making ammonia fertilizer/nitrogenous
 - Making dye, making explosive, making synthetic fibres
 - Purification of metals (Gold)
- (a) N Sodium ethanate (CH, COONa)/sodium accetate)
- P Methane (CH₄)
 - (b) Substitution

23.
$$\operatorname{Fe}_{2}0_{(s)} \operatorname{3C0}_{(g)} \to 2\operatorname{F}_{(g)}\operatorname{3Co}_{(g)_{2}}$$

or $2\operatorname{C}_{(2)} + 0_{2(g)} \to 2\operatorname{CO}_{(g)}$
or $\operatorname{C} + 0_{2} \to \operatorname{CO2}(g)$
or $2\operatorname{CO}_{g} + 0_{2_{g}} \operatorname{2CO}_{g}$

24. (a) A yellow deposit

H₂S was oxidised to sulphate while S₀2 was reduced to sulphur.

- (b) Experiment should be done in fume cupboard or open air.
- 25. (a) CI9(OH)2 or copper (ii) hydroxide)

 or (Tekeaine copper II ions)

 or CU(NH₃)₄ (OH)₂

Q it
=
$$0.82 \times 5 \times 60 \times 60$$

= 14760 coloumbs
No of Faradays = $\frac{14760}{96}$
= 0.15

Mole of $Z = \frac{265}{52}$
= 0.05

Cloringen $Z = \frac{0.15}{0.05}$

- 27. (a) Reduction
 - (b) Oxidation state of loaed in Pbo is reduced from +2 to zero (c)
 - Decrease in oxidation no of Pbo
 - Removal of oxygen from Pbo
 - (c) Ammonio gas / hydrogen/ ethanol/methanol/butane/gas/ lab gas/ ethanol vapour/Bio gas.

28. Mass due to
$$C = \frac{12}{44} \times 4.2$$

= 1.145

Mass due to H =
$$\frac{2}{18} \times 71$$

= 0.1899

Moles of C =
$$\frac{1.145}{12}$$
 = 0.1899

Moles of H
$$\frac{0.1899}{1}$$
 0.1899

Mole ratio C:H =
$$\frac{0.1899}{0.095}$$
 = 2

Empirical formula CH,

Or

$$\frac{4.2}{44} = 0.095 : \frac{1.71}{18} \ 0.095$$

$$\frac{0.095}{0.095} : \frac{0.095}{0.095}$$
CH₂