

Paper - III

Note: This paper contains seventy-five (75) objective type questions. Each question carries two (2) marks. All questions are compulsory.

1. What does a high resistance reading in both forward and reverse bias directions indicate ?
(A) A good diode
(B) An open diode
(C) A shorted diode
(D) A defective ohmmeter
2. Electron mobility and life time in a semiconductor at room temperature are $0.36 \mathrm{~m}^{2} /(\mathrm{Vs})$ and $340 \mu \mathrm{~s}$. The diffusion length is
(A) 3.13 mm
(B) 1.77 mm
(C) 3.55 mm
(D) 3.13 cm
3. For BJT, early voltage V_{A} is 100 V . In common emitter configuration, quiescent $V_{C E}$ is 10 V . What percentage change in quiescent I_{C} would occur, if early voltage is made ∞ ?
(A) 10%
(B) 20%
(C) 5%
(D) 0%
4. A network function has zeros only in the left half of the S-plane, then it is said to be
(A) a stable function
(B) a non-minimum phase function
(C) a minimum phase function
(D) an all pass function
5. Consider the following circuit

What is the current I in the above circuit?
(A) 0 A
(B) 2 A
(C) 5 A
(D) 6 A
6. A reciprocal network is described by
$Z_{21}=\frac{S^{2}}{3 S^{2}+2}$ and $Z_{22}=\frac{S^{2}+4 S}{3 S^{2}+2}$.
Its transmission zeros are located at
(A) $\mathrm{S}=0$
(B) $\mathrm{S}= \pm \mathrm{j} 2$
(C) $\mathrm{S}=0$ and at $\mathrm{S}= \pm \mathrm{j} 2$
(D) $\mathrm{S}=0$ and at $\mathrm{S}=\infty$

Paper III

7. The percentage voltage regulation of voltage supply providing 100 V unloaded and 95 at full load is
(A) 5.0%
(B) 0.53%
(C) 5.3%
(D) 50%
8. What starts a free running multivibrator?
(A) a trigger
(B) an input signal
(C) an external circuit
(D) nothing
9. An IC operational amplifier has a typical open loop gain of 1200 and the common mode rejection of 55 dB . What is the Common Mode Rejection Ratio (CMRR) ?
(A) 550
(B) 560
(C) 570
(D) 580
10. Assuming that only X and Y logic inputs are available and their complements \bar{X} and \bar{Y} are not available, what is the minimum number of two input NAND gates require to implement $X \oplus Y$?
(A) 2
(B) 3
(C) 4
(D) 5
11. Output of the following circuit is
x

(A) 0
(B) 1
(C) X
(D) \bar{X}
12. A ring counter closely resembles
(A) up-down counter
(B) parallel-counter
(C) shift register
(D) ripple carry counter
13. In 8086 , if the content of the code segment register is $1 F A B$ and the contents of the IP register is 10AI, then the effective memory address is
(A) 1 FBCO
(B) 304 C
(C) FDB5
(D) 20B51

||1111111111111111

14. Consider the following instructions
executed in 8086
PUSH AX ; AX has 20 H in it
PUSH BX ; BX has 34 in it
POP AX ;
ADD AX, BX ;
POP G ;
The value stored in G would be
(A) 20 H
(B) 34 H
(C) 54 H
(D) 68 H
15. Consider the following
1) Sign flag
2) Zero flag
3) Carry flag
4) Parity flag

Which of the above flags of 8085 gets affected by execution of the instruction SUB B ?
(A) 1 and 2
(B) 1 and 3
(C) 3 and 4
(D) 1, 2, 3 and 4

Paper III

19. In Gunn oscillator where the diode is operated in a tunable resonant circuit, most of the sample length of the Gunn device is maintained in the negative conductance state during most of the R.F. cycle for
(A) delayed domain mode
(B) quenched domain mode
(C) LSA mode
(D) hybrid mode
20. In a rectangular waveguide with broader dimension a and narrow dimension b, the dominant mode of microwave propagation would be
(A) TE_{10}
(B) TM_{10}
(C) TE_{01}
(D) TM_{01}
21. In a reflex Klystron, the velocity modulation
(A) occurs near the reflector
(B) occurs in the resonator gap
(C) occurs near the accelerating grid
(D) does not occur at all
22. One of the following devices can be used as a relaxation oscillator
(A) SCR
(B) TRIAC
(C) BJT
(D) UJT

|||||||||||||||||||||||||||||

26. In an SCR circuit, the anode is grounded. The voltages at the gate and cathode at a particular working condition are measured to be -50 V and -55 V , respectively. Based on this observation, it could be inferred that
(A) The SCR is in forward blocking mode
(B) The SCR is in conducting mode
(C) The SCR is in reverse blocking mode
(D) The SCR is damaged
27. In optical fiber communication systems, FBG is used for
(A) Fiber optic local area network
(B) Non-linearity management
(C) Source
(D) Dispersion compensation
28. In wire wound strain gauges, the change in resistance is due to
(A) Change in diameter of the wire
(B) Change in length of the wire
(C) Change in both length and diameter
(D) Change in resistivity

Paper III

29. A set of independent measurements current was taken by six observers and recorded as $12.8 \mathrm{~mA}, 12.2 \mathrm{~mA}, 12.5 \mathrm{~mA}$, $13.1 \mathrm{~mA}, 12.9 \mathrm{~mA}$ and 12.4 mA .
The arithmetic mean of the measurement is
(A) 12.85 mA
(B) 12.65 mA
(C) 12.75 mA
(D) 12.80 mA
30. In a control system integral error compensation \qquad steady state error.
(A) increases
(B) minimizes
(C) does not have any effect on
(D) saturates
31. Which of the following is/are valid statement(s) ?
I) Carbon is used as it does not belong to IV group of periodic table.
II) GaAs is used as semiconductor and does not belong to IV group of periodic table.
III) Si is used as widely used semiconductor as it is cheaper than Ge.
IV) Ge is still used in low voltage devices.
(A) II, IV
(B) I, II, III, IV
(C) II, III
(D) II, III, IV

K-3113
32. Which of the following is/are valid statements?
I) Max power transfer theorem yields voltage equivalent circuit.
II) Thevenin's theorem yield voltage equivalent circuit.
III) Super position theorem gives current equivalent circuit.
IV) Norton's theorem yield current equivalent circuit.
(A) I, III
(B) II, IV
(C) I, II, IV
(D) II, III, IV
33. Identify the following configurations with voltage gain.
I) Common emitter
II) Common base
III) Common collector
IV) Emitter follower
(A) I, IV
(B) I, II
(C) II, III
(D) I, II, IV
34. Which of the following is/are valid statement(s) ?
I) JK flip-flop is an example of a synchronous sequential circuit.
II) Decoder requires clock for its operation.
III) NAND gate can be used as universal gate.
IV) Multiplexer can be used as universal gate.
(A) III
(B) II, III
(C) III, IV
(D) III, I
35. Which of the following is/are valid statement(s) ?
I) 8086 has direction flag
II) 8255 can be used as a counter
III) 8086 has FIFO queue
IV) 8086 has built in counter
(A) I, IV
(B) III
(C) I, III
(D) II, III

36. Which of the following is/are valid statement(s) ?
I) Dowhile statement is a entry-controlled loop statement.
II) While (1) implies a finite loop.
III) External variables are alive and active in the entire program.
IV) Compound relational expression are used to test more than one condition in logical expression with operators.
(A) III, IV
(B) II, III, IV
(C) I, III, IV
(D) I
37. Which of the following is/are valid statement(s) ?
I) Gunn diode is not a TED.
II) Gunn diode is bulk semiconductor device.
III) Gunn diode exhibits negative resistance under certain conditions.
IV) Gunn diode is used for rectification.
(A) II, III
(B) I, II
(C) I, II, III
(D) III

Paper III

Q No. 41 to 50 :

Assertion - Reason type questions :
The following items consists of two statements, one labelled the 'Assertion (A)' and the other labelled the 'Reason (R)'. You are to examine these two statements and decide if the Assertion (A) and the Reason (R) are individually true and if so, whether the Reason is a correct explanation of the Assertion. Select your answers to these items using the codes given below and mark your answer sheet accordingly.

Codes:

(A) Both (A) and (R) are true and (R) is the correct explanation of (A).
(B) Both (A) and (R) are true but (R) is not the correct explanation of (A).
(C) (A) is true and (R) is false.
(D) (A) is false and (R) is true.
41. Assertion (A): In a semiconductor at high temperature the avalance breakdown voltage is higher.
Reason (R) : At high temperature mean free path of electrons and holes are shorter therefore a larger field is required to cause ionisation.
42. Assertion (A) : Laplace transformation is a transformation of time domain to a frequency domain for continuous time signals.
Reason (R) : Z-transformation is a transformation of time domain to a frequency domain for discrete time signals.
43. Assertion (A): Virtual ground exists only for Op-Amps with infinite open loop gain.
Reason (R) : Virtual ground is a ground for voltage but not for the current.
44. Assertion (A) : CMOS logic famm consumes least power amongst all logi families.
Reason (R) : Construction of CMOS it self permits power consumption only during transition.
45. Assertion (A) : 8085 can handle 16 bit data.
Reason (R) : 8085 has 16-bit AZU.
46. Assertion (A) : Branch instructions are most powerful instructions as they allow the microprocessor to change sequence of program.
Reason (R) : Interrupts also change the sequence of program. Interrupts are also branching statements.
47. Assertion (A) : In a microwave communication links, rain causes fading and this is a great concern in communication systems.
Reason (R) : Water droplets in the path of an electromagnetic wave will scatter the energy in the waves and this collective scattering will weaken the incident wave in the forward direction.
48. Assertion (A) : In PCM, the dynamic signal range and the quantisation noise are always design trade offs.
Reason (R) : In PCM system, reduction in step size leads to increase in the quantisation noise.
49. Assertion (A) : LCD is a high speed display device.
Reason (R) : LCD consumes low power.
50. Assertion (A): Spectro photometers are used for microwave frequency analysis.
Reason (R) : Spectro photometers use monochromators.

Paper III
51. Following are the steps involved in IC fabrication.
I) Crystal growth
II) Epitaxial growth
III) Photo etching
IV) Diffusion
(A) IV, III, II, I
(B) I, III, II, IV
(C) I, II, III, IV
(D) I, II, IV, III
52. The correct sequence of the time constants of the circuits shown below in the increasing order is

II)

III)

IV)

6
(A) I, II, III, IV
(B) IV, II, I, III
(C) IV, III, I, II
(D) III, IV, II, I

Paper III

57. Following are the microwave components in receiver system.
I) Parabolic Antenna
II) Receiver
III) Low noise block converter
IV) Feed horn
(A) IV, I, III, II
(B) I, II, III, IV
(C) I, III, IV, II
(D) I, IV, III, II
58. The following are the 4 different blocks used in super heterodyne receiver.
I) Mixer
II) I. F. Amplifier
III) Envelop detector
IV) RF stage
(A) IV, III, II, I
(B) IV, I, II, III
(C) IV, II, III, I
(D) I, IV, II, III
59. Following are the four detectors :
I) Photo transistors
II) Avalanche photodiode
III) LDR
IV) PN diode

Arrange them in the increasing order of response speed.
(A) III, I, IV, II
(B) III, II, IV, I
(C) III, IV, II, I
(D) I, III, IV, II
60. Following are the transducers :
I) Thermistor
II) RTD
III) Semiconductor strain gauze
IV) Potentiometer

Arrange them in the increasing order of linearity:
(A) I, II, III, IV
(B) I, IV, II, III
(C) I, III, II, IV
(D) III, IV, II, I
61. List - I
a) BJT
b) FET
c) Zener diode
d) Tunnel diode

Codes:

	a	b	c	d
(A)	iv	i	ii	iii
(B)	iv	ii	iii	i
(C)	iv	iii	ii	i
(D)	i	ii	iii	iv

List - II

i) Pinch off effect
ii) Avalanche breakdown
iii) Negative resistance characteristics
iv) Punch through effect
62.

List-I
a) Norton's theorem mem
theorem
b) Super position theorem
c) Thevenin's theorem
d) Kirchoff's current law

Codes:

	a	b	c	d
(A)	iii	i	iv	ii
(B)	iii	ii	iv	i
(C)	iii	iv	ii	i
(D)	i	ii	iii	iv

63.

List - I
List - II
a)

i)

b)

ii)

c)

iii)

d)

$\frac{\uparrow_{0}^{v \delta(t)}}{\prod_{1}^{2}}$

Match the above for differentiator circuit : Codes:

	a	b	c	d
(A)	iv	iii	i	ii
(B)	i	ii	iii	iv
(C)	ii	iv	i	iii
(D)	ii	iii	iv	i

64.

List - I

a) Shift register

List - II

b) Four bit counter
i) Clock generator
c) Ring counter
iii) Stepper motor
d) Multivibrator
iv) Decimal counter

Match the device in List - I to applications in List - II.

Codes:

	a	b	c	d
(A)	iii	iv	ii	i
(B)	i	ii	iii	iv
(C)	iv	iii	i	ii
(D)	iii	i	ii	iv

65. List - I
a) Register B
b) Register HL
c) Register PC
d) Stack pointer

List - II

i) Memory pointer
ii) General purpose register
iii) Next memory location pointer
iv) LIFO memory point

Match the above list with regard to 8085 :
Codes:

	a	b	c	d
(A)	ii	iii	iv	i
(B)	ii	i	iii	iv
(C)	i	ii	iii	iv
(D)	iv	iii	ii	i

66.

d) ungetc $\left(c, f_{p}\right)$; // where declarations are
iv) returning either character or EOF int c and

FILE $^{*}{ }_{p}$

In context with ' C ' language match the statements in List - I with their intended functionality in List - II.
Codes:

	a	b	c	d
(A)	i	ii	iv	iii
(B)	iv	ii	i	iii
(C)	iii	i	ii	iv
(D)	ii	iv	iii	i

Paper III

67. List - I
a) PIN diode
b) GaAs MOSFET
c) Klustron
d) Varactor diode
iv) Microwave source

Codes:

	a	b	c	d
(A)	iii	i	iv	ii
(B)	iii	ii	iv	i
(C)	i	ii	iv	iii
(D)	i	iii	iv	ii

68. List - I
a) Compounding
b) Aliasing
c) Pre-emphasis
d) Down conversion

Codes:

	a	b	c	d
(A)	iv	iii	ii	i
(B)	i	ii	iii	iv
(C)	iv	ii	iii	i
(D)	i	iii	ii	iv

Total Number of Pa

Transmission line is a medium through which electromagnetic energy is transmitted from one place to another with minimum loss. A transmission line is a distributed parameter circuit having resistance per unit length, inductance per unit length, conductance per unit length and capacitance per unit length. In a transmission line the velocity of propagation depends merely on the inductance per unit length and capacitance per unit length. The transmission line can be analysed by the method of distributed circuit theory. Here the analysis involves only one space co-ordinate in addition to the time variable. The transmission line equations are similar to Helmholtz equation and provide two travelling waves propagating in opposite directions. These two travelling waves will generate a standing wave inside the transmission line. From the amplitude of these two travelling waves one can calculate the reflection coefficient and voltage standing wave ratio. In a loss less transmission line one can neglect the series resistance per unit length and shunt conductance per unit length. The important parameter of a transmission line is its characteristic impedance Z_{0}. It is independent of the length of the transmission line and depends only on the distributed parameters. If a transmission line is terminated on a load impedance Z_{L} the input impedance can be calculated. The input impedance of a loss less transmission line is
$Z_{i n}=Z_{0}\left[\frac{Z_{L} \cos r l+\partial Z_{0} \operatorname{sinrl}}{Z_{0} \cos r l+\partial Z_{L} \sin r l}\right]$.
71. When an electromagnetic wave propaga through a open circuited transmissio line when it reaches the open circuit end then,
(A) Voltage at the open end is zero
(B) Voltage at the open end is maximum
(C) Current at the open end is maximum
(D) Both voltage and current are zero
72. The input impedance of a $\lambda / 4$ short circuited transmission line of characteristic impedance 100Ω is
(A) 100Ω
(B) 50Ω
(C) ∞
(D) Zero
73. The voltage reflection coefficient of a transmission line terminated with the characteristic impedance is
(A) ∞
(B) 1
(C) Zero
(D) Between 1 and ∞
74. The primary constants of a transmission line are
(A) R and L
(B) R and C
(C) R, L and C
(D) R, L, C and G
75. In a loss less transmission line one can neglect
(A) Series inductance and shunt capacitance
(B) Series resistance and shunt conductance
(C) Series resistance and inductance
(D) Series resistance and shunt conductance

