Science test

Paper 2

TIER

Please read this page, but do not open the booklet until your teacher tells you to start. Write your name and the name of your school in the spaces below.

First name

\qquad

Last name

\qquad
School

Remember

- The test is 1 hour long.
- You will need: pen, pencil, rubber, ruler, protractor and calculator.
- The test starts with easier questions.
- Try to answer all of the questions.
- The number of marks available for each question is given below the mark boxes in the margin. You should not write in this margin.
- Do not use any rough paper.
- Check your work carefully.
- Ask your teacher if you are not sure what to do.

Total marks	
Borderline check	

1. (a) Nicola is trying out her new roller blades. Robert is pulling her along with a rope.
Arrows A, B, C and D show the directions of four forces acting on Nicola.

(i) Which arrow shows the direction of the force of gravity on Nicola? Give the letter.
(ii) Which arrow shows the direction of the force of the rope on Nicola? Give the letter.
(b) Robert pulls Nicola at a steady speed of 2 metres per second.

How far will Nicola travel in 10 seconds?
\qquad metres
(c) Nicola lets go of the rope and she slows down. Gravity still acts on Nicola.

Give the name of one other force still acting on Nicola after she lets go of the rope.
\qquad

2. (a) Ahmed bought two sets of lights to put on a tree in his garden. Circuit diagrams for the two sets of lights are shown below.
to mains plug

circuit A
to mains plug

circuit B

Choose words from the list below to fill the gaps in the sentences.
all none some parallel series short
(i) Circuit A is a \qquad circuit. If one of the bulbs breaks in circuit A \qquad of the other bulbs will go out.
(ii) Circuit B is a \qquad circuit.

If one of the bulbs breaks in circuit B \qquad of the other bulbs will go out.
(b) Light rays from the bulbs hit the mirror of Ahmed's car.

What happened to the light rays when they hit the mirror?
(c) The tree has root hairs.

What are the functions of root hairs?
Tick the two correct boxes.

They absorb water from the soil.

They absorb sunlight.

They produce seeds. \square They absorb minerals from the soil.

1 mark

3. On 7th September 2001, at 11.00 am, over a million pupils took part in a national investigation.
They all jumped up and down at exactly the same time.
Sensors were used to measure the vibrations caused by the jump.
Before they jumped, four pupils described some effects they might notice.

(a) What type of statement did the pupils make?

(b) Sensors at different places recorded the vibrations of the ground.

Why was it important that all the pupils jumped together?
\qquad
\qquad
(c) The sensor recordings below show the amount of vibration of the ground at three different places during the jump.

Sensor A was near where pupils jumped

Sensor B was at another place near where pupils jumped

Sensor \mathbf{C} was at a place far away from where pupils jumped

Carol said, 'When pupils jump, only the ground nearby will vibrate'.
(i) Describe how the evidence in the recordings supports Carol's idea.
\qquad
\qquad
(ii) Suggest one reason for the difference between the readings of sensor A and sensor B.
\qquad
\qquad

4. (a) Reshma had a mixture of iron filings and sand.

What could she use to separate the iron filings from the mixture?
(b) Reshma put $10 \mathrm{~cm}^{3}$ of water and 2 g of a different solid into each of four test-tubes. She shook each test-tube.
The drawings show the test-tubes after 10 minutes.

A
salt

B
sand

C
sugar

D limestone

Why can the salt and sugar no longer be seen in test-tubes A and C ?
\qquad
\qquad
(c) Reshma added hydrochloric acid to some pieces of limestone as shown below.

(i) Look at the diagram above.

How can you tell that a gas is given off in this experiment?
\qquad
\qquad
(ii) Reshma passed the gas through limewater. This showed that the gas was carbon dioxide.

What happened to the limewater?
Tick the correct box.

It stayed clear. \square

It turned blue. \square

It turned cloudy. \square

It turned red. \square
5. (a) The drawings below show that different elements are used for different objects.
Draw a line from each element to the reason for using that element. Draw only four lines.
element used

reason for using the element

It is lighter than air.

It is a good conductor of heat.

It is a good conductor of electricity.

It stays shiny because it does not react with oxygen.

It is a liquid at room temperature.
(b) Which of the four elements is not a metal? Tick the correct box.

6. (a) Jenny put a bottle of fizzy drink on a balance.

She removed the bottle-top, and the drink began to fizz.
She left the open bottle of drink and the bottle-top on the balance for five days in a warm room.

five days later

Five days later the drink was no longer fizzy. Its mass had decreased and the level of the liquid had gone down.
(i) Look at the drawings of the balance.

Work out the decrease in mass after five days.
\qquad
(ii) The fizzy drink contained sugar, colouring, a gas and water. The mass decreased because two of these substances were lost into the air.

Which two substances were lost into the air?

1. \qquad
2. \qquad
(b) The sugar, colouring and the gas were all dissolved in the water. Which word describes the water?
Tick the correct box.

3. Some pupils carried out an investigation to find out whether more sugar or more salt dissolved in water at $60^{\circ} \mathrm{C}$.

Here are some of the steps in their investigation.
They are not in the correct order.

They added salt to one beaker of water at $60^{\circ} \mathrm{C}$ and sugar to the other beaker of water at $60^{\circ} \mathrm{C}$.

They stirred the mixtures.

They recorded their results.

They put $20 \mathrm{~cm}^{3}$ of water at $60^{\circ} \mathrm{C}$ into two beakers.

They collected this equipment.
(a) Put the letters $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ and \mathbf{E} in the boxes below to show the correct order of the steps in their investigation.

5th \square
(b) Why did they use a measuring cylinder?
\qquad
(c) They used water at $60^{\circ} \mathrm{C}$ in both beakers.

What else did they do to make their investigation fair?
\qquad
\qquad
(d) They counted the number of spatulas of sugar or salt added to the water until no more would dissolve.

(i) Why was this not an accurate method of measuring how much sugar or salt they added?
\qquad
\qquad
(ii) Suggest a more accurate method of measuring how much sugar or salt they added.
\qquad
\qquad
(e) Jane predicted that more sugar than salt would dissolve.

Complete the table to show a result which would support Jane's prediction.

	sugar	salt
number of spatulas	32	

8. The drawings show five different mammals. They are not drawn to scale.

(a) Which fact is only true about mammals but not true about other animals? Tick the correct box.

They can swim.	\square	They have four legs. They lay eggs.\square	\square
	They produce milk to feed their young.	\square	

(b) Look at the drawing of the bat.

In what way are bats unusual mammals?
\qquad
\qquad
(c) Give one way the seal is suited for moving through water.
\qquad
\qquad
(d) The porcupine has spines.

How do the spines help a porcupine to survive?
\qquad
\qquad
(e) In winter, the fur of the Arctic hare and the Arctic fox becomes thicker and turns white.
(i) How does thick fur help an Arctic hare and an Arctic fox to survive during the winter?
\qquad
\qquad
(ii) The Arctic fox hunts and eats Arctic hares.

How does white fur help Arctic hares to survive in the snow?
\qquad
\qquad
9. The drawing below shows part of a farmland food web.

(a) (i) Which living thing in the food web is an insect?
(ii) Farmers spray their plants with insecticide to kill insects.

Suggest how insecticide on the plants gets into the insects.
\qquad
\qquad
(b) From the food web above, give the names of one predator and its prey. predator \qquad
prey of this predator \qquad
(c) Why are the plants in the food web called producers?

Tick the correct box.

They lose their leaves in the autumn.

They have very long roots.

They have very small flowers.

(d) The drawing below shows how partridges sit close together and all face outwards.

Give one reason why sitting close together like this helps the partridges to survive.
\qquad
\qquad
(e) Partridges lay their eggs in nests on the ground.
(i) The eggs are the same colour as the ground.

Why can this help partridges to survive?
\qquad
\qquad

(ii) Why could laying eggs on the ground result in fewer partridge chicks?
\qquad
\qquad
10. (a) A teacher shines a laser beam onto a classroom window. It reflects off the window and onto a screen.
screen

1 mark

window

On the diagram above, continue the laser beam to show its path as it reflects off the window and onto the screen. Use a ruler.
Add arrows to show the direction of the laser beam.
(b) (i) When a pupil plays her flute in the classroom the window vibrates. Give the reason for this.
\qquad
\qquad
(ii) When the window vibrates, what happens to the laser beam that is reflected off the window?
\qquad
\qquad
(c) The teacher places a microphone near the pupil as she plays her flute. The diagram below shows the pattern on an oscilloscope screen.

The pupil then plays her flute at a higher pitch and more quietly. Which diagram below shows the pattern that would be seen on the oscilloscope?
Tick the correct box.

B

C

D

11. (a) Debbie put a paper cup into a glass beaker.

She glued a magnet in the bottom of the paper cup.
She glued another magnet in the bottom of the beaker.
The magnets repelled.

What two forces act on the paper cup and its contents to keep it in this position?

1. \qquad
2. \qquad
(b) Debbie put 5 g of aluminium rivets into the paper cup.

It moved down a little as shown in diagram B.

Debbie plotted a graph to show how the mass of aluminium rivets affected the distance the cup moved down.

(i) Use the graph to find the mass that made the cup move down 4 mm .
\qquad g
(ii) Why did the graph stay flat with masses greater than 40 g ?
(c) Debbie removed the 5 g of aluminium rivets and put 5 g of iron nails into the cup.

diagram C
The paper cup moved down more with 5 g of iron nails than with 5 g of aluminium rivets as shown in diagram C .
Give the reason for this.
\qquad
\qquad
12. Some pupils predicted that water will evaporate faster if the surrounding air temperature is higher.

To investigate their prediction they placed some water in containers in two different rooms.
(a) Give two factors they should keep the same to make their investigation fair.

1. \qquad
2. \qquad
(b) They recorded the mass of the water and the container in room 1 and room 2 every day for 5 days.

The table below shows their results.

time (days)	mass of water and container (g)	
	room 1	room 2
0	100	100
1	92	85
2	80	72
3	72	54
4	60	45
5	46	30

The data shown in their table is not sufficient to test their prediction. Explain why.
\qquad
\qquad

They plotted their data for room 2 and attempted to draw a line of best fit.

(c) Describe the mistake they made in drawing the line of best fit.
\qquad
\qquad
(d) Using the data in the table plot the points for room 1.
(e) Draw a line of best fit of the points you have drawn.
(f) In which room did the water evaporate more quickly? Tick one box.
room 1 \square room 2 \square
Use their data to explain your answer.
\qquad
\qquad
13. Hydrochloric acid is a strong acid.
(a) Winston used universal indicator solution to find the pH of some hydrochloric acid.
(i) Suggest the colour of the mixture of universal indicator solution and the hydrochloric acid.
(ii) Suggest the $\mathbf{p H}$ of the hydrochloric acid.
(b) Indigestion can be caused when too much hydrochloric acid is produced in the stomach.
Magnesium carbonate can be used to treat indigestion.
Winston crushed some indigestion tablets containing magnesium carbonate. He added them to hydrochloric acid in a test-tube. The mixture fizzed.

The word equation for the reaction is shown below.

$$
\underset{\text { carbonate }}{\underset{\text { magnesium }}{\text { acid }} \text { hydrochloric }} \rightarrow \underset{\text { chloride }}{\text { magnesium }}+\underset{\text { dioxide }}{\text { marbon }}+\text { water }
$$

(i) Use the word equation to explain why the mixture fizzed when the reaction took place.
\qquad
\qquad
(ii) Winston continued to add crushed tablets to the acid until the mixture stopped fizzing.
Why did the fizzing stop?
\qquad
\qquad
(c) When magnesium carbonate reacts with hydrochloric acid, magnesium chloride is formed.

Which two words describe magnesium chloride?
Tick the two correct boxes.

(d) It is important that the hydrochloric acid in the stomach is not completely neutralised by indigestion tablets.

Why is hydrochloric acid needed in the stomach?
\qquad
\qquad
14. (a) The animals drawn below all have backbones.

amphibian

mammal

fish
not to scale
(i) What word describes animals with a backbone?
(ii) There are five groups of animals with a backbone. Only four groups are shown above.
Give the name of the missing group.
\qquad
(b) The drawing below shows the human backbone. It is made up of a number of small bones.

Why is it an advantage that the backbone is made of a number of small bones rather than one long bone?
\qquad
\qquad
(c) The drawing below shows two small bones from the backbone.

Between the small bones there is a material called cartilage.
Cartilage is softer than bone.
Give one advantage of having a softer material between the bones.
\qquad
\qquad
(d) The diagram below shows the bones and two muscles of an arm.

The biceps and triceps are muscles which raise and lower the forearm.
What happens to the biceps and triceps to raise the forearm?
the biceps \qquad
the triceps \qquad
15. In January 2002, thousands of pupils recorded the numbers of different birds seen in their gardens in one hour. They sent their results to the Royal Society for the Protection of Birds who have kept data for many years.
(a) Why are the results from this survey more reliable than one person's observation?
\qquad
\qquad

1 mark

Jack says:

Jack thinks that the results collected in 2002 cannot test his grandad's idea that sparrows are less common than they used to be.
(i) What additional survey data would Jack need to test his grandad's idea?
\qquad
\qquad
(ii) What pattern in the survey results would give Jack the evidence that his grandad was correct?
\qquad
\qquad
16. The diagrams below show six cells.

(a) (i) Give the letters of the two plant cells in the diagrams opposite.
\qquad and \qquad

(iii) Give the function of chloroplasts.
\qquad
\qquad
(b) (i) Give the letter of the ciliated cell.
\qquad
(ii) In which part of the body are ciliated cells found?
\qquad
(iii) What is the function of ciliated cells in this part of the body?
\qquad
\qquad
(c) Give the letter of the cell which transfers genetic information from father to offspring.
\qquad
17. Until 1781 scientists thought there were only six planets in the solar system. Then a scientist called Herschel looked through a very large telescope that could turn to follow objects in space.
He watched a bright object in the night sky for a few months and made drawings of what he saw. He concluded it was a planet.

(a) What method did Herschel use to discover the new planet? Tick the correct box.

He carried out practical tests in the laboratory. \square
He observed the environment. \square
He asked scientists' opinions.

He gathered data from books. \square
(b) Scientists today use satellites as well as telescopes to observe the universe.

Suggest one way that developments in equipment have changed the information scientists collect about planets.
\qquad
\qquad
(c) Before 1781, scientists believed there were 6 planets in our solar system. Now scientists believe there are 10 planets.

What do these ideas suggest about our knowledge of our solar system?
\qquad
\qquad
(d) What causes scientists to reject an idea and replace it with a new one?
\qquad
\qquad

