1. Matchboxes

The diagram shows a matchbox.
Its length is 5.3 cm . Its width is 3.6 cm . Its height is 1.5 cm .

Not drawn accurately
(a) I join two matchboxes in different ways.

Fill in the missing values.

(b) I start joining matchboxes like this:

How many matchboxes will be in the pile when its height is $\mathbf{1 2} \mathbf{~ c m}$?
\qquad

2. Lengths

(a) This triangle is accurately drawn One side is 17.5 cm long.

Glyn says:

How can you tell that he is wrong without measuring the other two sides?

(b) Measure each of the other two sides of the triangle.

Write their lengths to the nearest 0.1 of a centimetre.

\qquad cm and
cm and 17.5 cm
2 marks
(c) Add up the lengths of the three sides of the triangle to find the perimeter of the triangle.

Remember to write down enough working to show you have not used a calculator.
Working

\qquad cm

3. Thinking shapes

The diagram shows a rectangle, drawn on a square grid.

(a) Draw a square that has the same area as the rectangle.

(b) Draw a square that has the same perimeter as the rectangle.

4. Grid shapes

The diagram shows some shapes on a 10 by 6 square grid.

(a) Which two shapes have the same area as shape A?
\qquad
(b) Which two shapes have the same perimeter as shape A?
\qquad
(c) How many of shape \mathbf{C} would you need to cover a 10 by 6 square grid?
\qquad
5. Areas
(a) What is the area of this rectangle?

\qquad cm^{2}
(b) I use the rectangle to make four triangles.

Each triangle is the same size.
What is the area of one of the triangles?

(c) I use the four triangles to make a trapezium.

What is the area of the trapezium?

\qquad cm^{2}

