Ma

KEY STAGE 3

ALL TIERS
2004

Mathematics tests

Mark scheme for Paper 2

Tiers 3-5, 4-6, 5-7 and 6-8
department for
education and skills

Introduction

The test papers will be marked by external markers. The markers will follow the mark scheme in this booklet, which is provided here to inform teachers.

This booklet contains the mark scheme for paper 2 at all tiers. The paper 1 mark scheme is printed in a separate booklet. Questions have been given names so that each one has a unique identifier irrespective of tier.

The structure of the mark schemes

The marking information for questions is set out in the form of tables, which start on page 10 of this booklet. The columns on the left-hand side of each table provide a quick reference to the tier, question number, question part, and the total number of marks available for that question part.

The Correct response column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative;
- examples of some different types of correct response, including the most common.

The Additional guidance column indicates alternative acceptable responses, and provides details of specific types of response that are unacceptable. Other guidance, such as when 'follow through' is allowed, is provided as necessary.

Questions with a $U A M$ element are identified in the mark scheme by an encircled U with a number that indicates the significance of using and applying mathematics in answering the question. The U number can be any whole number from 1 to the number of marks in the question.

The 2004 key stage 3 mathematics tests and mark schemes were developed by the Mathematics Test Development Team at QCA.

General guidance

Using the mark schemes

Answers that are numerically equivalent or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed on the following two pages with the prescribed correct action. This is followed by further guidance, relating to marking of questions that involve money, time, coordinates, algebra or probability. Unless otherwise specified in the mark scheme, markers should apply the following guidelines in all cases.

What if ...
$\left.\begin{array}{|r|l|}\hline \begin{array}{r}\text { The pupil's response } \\ \text { does not match } \\ \text { closely any of the } \\ \text { examples given. }\end{array} & \begin{array}{l}\text { Markers should use their judgement in deciding whether the response } \\ \text { corresponds with the statement of requirements given in the Correct response } \\ \text { column. Refer also to the Additional guidance. }\end{array} \\ \hline \begin{array}{r}\text { The pupil has } \\ \text { responded in a }\end{array} & \begin{array}{l}\text { Calculations, formulae and written responses do not have to be set out in any } \\ \text { particular format. Pupils may provide evidence in any form as long as its } \\ \text { meaning can be understood. Diagrams, symbols or words are acceptable for } \\ \text { explanations or for indicating a response. Any correct method of setting out } \\ \text { working, however idiosyncratic, is acceptable. Provided there is no ambiguity, } \\ \text { condone the continental practice of using a comma for a decimal point. }\end{array} \\ \hline \text { The pupil has made a } \\ \text { conceptual error. }\end{array} \begin{array}{l}\text { In some questions, a method mark is available provided the pupil has made } \\ \text { a computational, rather than conceptual, error. A computational error is } \\ \text { a slip such as writing } 4 \times 6=18 \text { in an otherwise correct long multiplication. } \\ \text { A conceptual error is a more serious misunderstanding of the relevant } \\ \text { mathematics; when such an error is seen no method marks may be awarded. } \\ \text { Examples of conceptual errors are: misunderstanding of place value, such as } \\ \text { multiplying by } 2 \text { rather than } 20 \text { when calculating 35 } \times 27 \text {; subtracting the }\end{array}\right\}$

What if ...

The final answer is wrong but the correct answer is shown in the working.	Where appropriate, detailed guidance will be given in the mark scheme and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether: the incorrect answer is due to a transcription error;	If so, award the mark.
	in questions not testing accuracy, the correct answer has been given but then rounded or truncated;	If so, award the mark.
	the pupil has continued to give redundant extra working which does not contradict work already done;	If so, award the mark.
	the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done.	If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.
The pupil's answer is correct but the wrong working is seen.	A correct response should always be marked as correct unless the mark scheme states otherwise.	
The correct response has been crossed or rubbed out and not replaced.	Mark, according to the mark scheme, any legible crossed or rubbed out work that has not been replaced.	
More than one answer is given.	If all answers given are correct or a range of answers is given, all of which are correct, the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.	
The answer is correct but, in a later part of the question, the pupil has contradicted this response.	A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.	

Marking specific types of question

Responses involving money For example: $£ 3.20$ £7	
Accept \checkmark	Do not accept x
\checkmark Any unambiguous indication of the correct amount eg $£ 3.20$ (p), $£ 320, £ 3,20$, 3 pounds 20, $£ 3-20$, £3 20 pence, $£ 3: 20$, £7.00 \checkmark The $£$ sign is usually already printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the f sign, accept an answer with correct units in pounds and/or pence eg 320 p , 700p	* Incorrect or ambiguous use of pounds or pence eg $£ 320, £ 320$ p or $£ 700$ p, or 3.20 or 3.20 p not in the answer space. x Incorrect placement of decimal points, spaces, etc or incorrect use or omission of 0 $\begin{aligned} & \text { eg } £ 3.2, £ 3 \text { 200, } £ 320, \\ & \\ & £ 3-2-0, \\ & \mathrm{f} .0 \end{aligned}$

Responses involving time
 A time interval For example: 2 hours 30 mins

Accept \checkmark	Take care ! Do not accept \times
\checkmark Any unambiguous indication eg 2.5 (hours), 2h 30 \checkmark Digital electronic time ie 2:30	x Incorrect or ambiguous time interval eg 2.3(h), 2.30, 2-30, 2h 3, 2.30 min ! The time unit, hours or minutes, is usually printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the given unit, accept an answer with correct units in hours or minutes, unless the question has asked for a specific unit to be used.
A specific time For example: 8.40am, 17:20	
Accept \checkmark	Do not accept \times
\checkmark Any unambiguous, correct indication eg 08.40, 8.40, 8:40, 0840, 840 , $8-40$, twenty to nine, 8,40 \checkmark Unambiguous change to 12 or 24 hour clock eg $17: 20$ as $5: 20 \mathrm{pm}, 17: 20 \mathrm{pm}$	x Incorrect time eg $8.4 \mathrm{am}, 8.40 \mathrm{pm}$ x Incorrect placement of separators, spaces, etc or incorrect use or omission of 0 eg 840, 8:4:0, 084, 84

Responses involving coordinates

For example: (5,7)

Accept \checkmark	Do not accept \times
```\checkmark Unambiguous but unconventional notation eg (05,07) ( five, seven ) (  (x=5, y=7)```	x Incorrect or ambiguous notation eg $(7,5)$ ( $5 x, 7 y$ ) $(x 5, y 7)$ $\left(5^{x}, 7^{y}\right)$

## Responses involving the use of algebra

For example: $2+n \quad n+2$ 2n

Accept $\checkmark$	Take care! Do not accept $\times$
$\checkmark$ The unambiguous use of a different case   eg $N$ used for $n$   $\checkmark$ Unconventional notation for multiplication   eg $n \times 2$ or $2 \times n$ or $n 2$ or $n+n$ for $2 n$ $n \times n$ for $n^{2}$   $\checkmark$ Multiplication by 1 or 0   eg $2+1 n$ for $2+n$ $2+0 n$ for 2   $\checkmark$ Words used to precede or follow equations or expressions   eg $t=n+2$ tiles or tiles $=t=n+2$ for $t=n+2$   $\checkmark$ Unambiguous letters used to indicate expressions   eg $t=n+2$ for $n+2$   Embedded values given when solving equations   eg $\begin{aligned} 3 \times 10+2=32 \\ \text { for } 3 x+2=32\end{aligned}$	! Words or units used within equations or expressions should be ignored if accompanied by an acceptable response, but should not be accepted on their own   eg do not accept $n \text { tiles }+2$ $n \mathrm{~cm}+2$   $\times$ Change of variable   eg $x$ used for $n$   x Ambiguous letters used to indicate expressions $\text { eg } n=n+2$   However, to avoid penalising any of the three types of error above more than once within each question, do not award the mark for the first occurrence of each type within each question. Where a question part carries more than one mark, only the final mark should be withheld.   $\times$ Embedded values that are then contradicted $\begin{aligned} & \text { eg } \quad \text { for } 3 x+2=32, \\ & 3 \times 10+2=32, x=5 \end{aligned}$

## Responses involving probability

A numerical probability should be expressed as a decimal, fraction or percentage only.
For example: 0.7

Accept $\checkmark$	Take care! Do not accept $\times$
$\checkmark$ A correct probability that is correctly expressed as a decimal, fraction or percentage.   $\checkmark$ Equivalent decimals, fractions or percentages $\text { eg } \quad 0.700, \frac{70}{100}, \frac{35}{50}, 70.0 \%$   $\checkmark$ A probability correctly expressed in one acceptable form which is then incorrectly converted, but is still less than 1 and greater than 0   eg $\frac{70}{100}=\frac{18}{25}$	The following four categories of error should be ignored if accompanied by an acceptable response, but should not be accepted on their own.   ! A probability that is incorrectly expressed   eg 7 in 10 ,   7 out of 10,   7 from 10   ! A probability expressed as a percentage without a percentage sign.   ! A fraction with other than integers in the numerator and/or denominator.   However, each of the three types of error above should not be penalised more than once within each question. Do not award the mark for the first occurrence of each type of error unaccompanied by an acceptable response. Where a question part carries more than one mark, only the final mark should be withheld.   ! A probability expressed as a ratio $\text { eg } 7: 10,7: 3,7 \text { to } 10$   * A probability greater than 1 or less than 0

## Recording marks awarded on the test paper

All questions, even those not attempted by the pupil, will be marked, with a 1 or a 0 entered in each marking space. Where 2 m can be split into 1 m gained and 1 m lost, with no explicit order, then this will be recorded by the marker as 1

The total marks awarded for a double page will be written in the box at the bottom of the right-hand page, and the total number of marks obtained on the paper will be recorded on the front of the test paper.

A total of 120 marks is available in tiers 3-5 and 6-8.
A total of 121 marks is available in tiers 4-6 and 5-7.

## Awarding levels

The sum of the marks gained on paper 1, paper 2 and the mental mathematics paper determines the level awarded. Level threshold tables, which show the mark ranges for the award of different levels, will be available on the QCA website www.qca.org.uk from Monday, 21 June 2004. QCA will also send a copy to each school in July.

Schools will be notified of pupils' results by means of a marksheet, which will be returned to schools by the external marking agency with the pupils' marked scripts. The marksheet will include pupils' scores on the test papers and the levels awarded.

Tier \& Question				Sports
3-5 4-6	$5-7$ $6-8$			
1			Correct response	Additional guidance
a		1m	Shows a correct amount, with units eg   - £181.99	! Value rounded   In part (a), accept $£ 182$ but do not accept $£ 181$ unless a correct value is also seen In part (b), do not accept $£ 8$ unless a correct value is also seen
b		1 m	Shows a correct amount, with units eg   - $£ 8.02$	! Units omitted Penalise only the first such occurrence
c		1 m	3	! Reference to money left over Accept the correct change shown eg $\text { - } 3 \text { r }(£) 5.03$   Do not accept reference to part of a racket eg $\qquad$



Tier \& Question		Maze		
3-5 4-6	5-7\|6-8			
3			Correct response	Additional guidance
a		1 m	Identifies the correct square, ie	$\checkmark$ Unambiguous indication eg   - Correct square marked A
b		1m	Indicates the correct set of instructions, ie   6 , south   3, east	! For part (b), 6 south and 2 east given Condone   $\checkmark$ Unambiguous indication   eg, for part (b)   - 6.S
c		2 m   or 1m	Indicates the correct set of instructions, ie   3, west   2 , north   The only error is to order the instructions incorrectly, ie   2, north   3, west   or   One instruction is completely correct and correctly ordered, even if the other instruction is incorrect or omitted   or   Both compass directions are correct and correctly ordered   eg   - 2 (error), W   3 (error), N	$\begin{array}{r} \text { e, } 6 \\ \text { e, } 3 \end{array}$   $\times$ Directions other than compass points used eg, for part (b)   - 6 down 3 right






	\&	Quest				Recycling rubbish
$\begin{array}{\|l\|l\|l\|l\|} \hline 3-5 & 4-6 & 5-7 & 6-8 \\ \hline \end{array}$						
8	1				Correct response	Additional guidance
a	a			1 m	Gives a value between 6 and 16 inclusive	$\checkmark$ Value qualified eg   - About 10
b	b			1 m	Indicates only Germany and Norway	$\checkmark$ Unambiguous indication eg   - N, G


Tier \& Question						Shaded shape
$3-5$ $4-6$ $5-7$ $6-8$   9						
9	2				Correct response	Additional guidance
a	a			1m	18	
b	b			1m	Draws a rectangle of area $18 \mathrm{~cm}^{2}$ eg   - 3 by 6 rectangle   - 2 by 9 rectangle   - 4 by 4.5 rectangle	$\checkmark$ Follow through from part (a)   ! Lines not ruled or accurate   Accept provided the pupil's intention is clear




$\begin{array}{\|l\|} \hline \text { Tier \& Question } \\ \hline 3-54-6 \\ \hline \text { 4-7 } \\ \hline 6-8 \\ \hline \end{array}$						Caribbean cordial
12	5				Correct response	Additional guidance
a	a				$\frac{1}{2}$ or equivalent $\frac{3}{4}$ or equivalent $450$	! Change of units   Accept provided the new units are clearly shown   eg, for the second mark accept   - 750 ml   - 75cl   ! Incorrect units inserted in an otherwise correct response eg, for the first mark - 0.5 g   Penalise only the first such occurrence
b	b			1 m	200	


Tier \& Question			Shape rotation		
3-5 4		5-7 6-8			
13	6	1		Correct response	Additional guidance
a	a		1m	Indicates the correct four faces eg	$\checkmark$ Unambiguous indication eg   - Grey faces labelled G
b	b		$2 \mathrm{~m}$   or   1m	Draws a correct view of the cuboid in either of the orientations below, using the isometric grid   The only error is to draw the cuboid in the wrong orientation eg   or   The only error is to omit some external lines or to show some hidden lines eg   -	$\checkmark$ Incorrect or no shading   $\checkmark$ For $2 m$, internal lines omitted   eg   ! Lines not ruled or accurate   Accept provided the pupil's intention is clear   ! Cuboid enlarged   For 2 m or 1 m , accept provided a consistent scale factor has been used for all lengths   $\mathbf{x}$ Shape is not a cuboid



$\begin{array}{\|l\|} \hline \text { Tier \& Question } \\ \hline 3-54-6 \\ \hline \text { 5-7 } \\ \hline \end{array}$				Nepal		
15	8	2			Correct response	Additional guidance
a	a	a		1m	8	
b	b	b		$\begin{array}{c\|\|} \hline 2 \mathrm{~m} \\ \\ o r \\ o r \\ 1 \mathrm{~m} \end{array}$	Draws a bar from -3 to 12 , aligned with 5000 on the $y$-axis, and of the correct thickness   Indicates that the maximum temperature is 12 eg   - $-3+15=12$ seen   - Draws a bar with a right-hand end at 12 or   Indicates on the graph the correct positioning for -3   or   Draws a bar that is 15 units, ie $7 \frac{1}{2}$ squares, in length	! Lines not ruled or accurate Accept provided the pupil's intention is clear   ! For 1m, bar incorrectly aligned with the 5000, or bar of incorrect thickness Condone


Tier \& Question				( Angles		
3-5			6-8			
16	9	3			Correct response	Additional guidance
a	a	a		$1 \mathrm{~m}$	Indicates No and gives a correct explanation that shows the angle sum is incorrect eg   - $30+60+100=190$ but it should sum to 180   - They should add to 180 but these add to 190   - $30+60+100$ is 10 degrees too big	$\checkmark$ Minimally acceptable explanation Accept responses that state the angles should not add to 190 , or that the angles should add to 180 eg   - They add to 190 which is wrong   - Angles in a triangle add up to 180   - The angles don't make 180   - They should add to 180   $\times$ Incomplete or incorrect explanation eg   - The angles add to 190   - When you add up the angles you get the wrong angle sum   - Angles add to 200 (error) not 180   ! Incorrect units   Ignore eg, accept within a correct explanation - $180^{\circ} \mathrm{C}$
b	b	b		$\begin{gathered} 2 \mathrm{~m} \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	Shows or implies a correct method with not more than one computational error eg   - $360-(70+70+90)$   - $360-230$   - $2 \times 70+90=200$ (error), $360-200=160$   - $70+70=140,140+90=330$ (error), answer 30   - 180 - 50	



Tier \& Question			Prime grid		
3-5		5-7\|6-8			
18		4		Correct response	Additional guidance
a	a	a	1m	Gives a correct explanation   The most common correct explanations:   State that 35 is a multiple of 5 and/or 7   eg   - 35 is a multiple of 5   - 7 is a factor of 35   State that prime numbers have only two factors but that 35 has more than two factors eg   - A prime has 2 factors, 35 has 4   State that the last digit of any prime number greater than 5 is $1,3,7$ or 9   eg   - All prime numbers must end in 1, 3, 7 or 9 with the exception of 2 and 5	$\checkmark$ Minimally acceptable explanation   eg   - 5 goes into it   - It's in the 7 times table   - $7 \times 5$   - 1, 5, 7, 35   - It has more than two factors   - 35 divides by more than one and itself   $\times$ Incomplete explanation   eg   - 35 is in some of the times tables   - 35 has factors   - Because it ends in 5   ! Correct explanation accompanied by a statement that uses mathematical language incorrectly   Throughout the question, condone eg, for part (a) accept   - 35 has more than 2 factors, eg 35 goes into 5   - 5 goes into 35 , so it has 2 factors
b	b	b	1m	Gives a correct explanation   The most common correct explanations:   State or imply the numbers in column Y will all be multiples of 6 (or 2 , or 3 ) eg   - They are all in the 6 times table, so they must be multiples of 6   - They are all multiples of 3   State or imply the numbers in column Y will all have a factor of 6 (or 2 , or 3 )   eg   - They all have a factor of 3   - 2 is the only prime that is even and all these numbers are even and greater than 2	$\checkmark$ Minimally acceptable explanation   eg   - It's the 6 times table   - You can divide them by 3   - They are all even   - The only even prime is 2   - None of the numbers ends in $1,3,7$ or 9   $\checkmark$ That column Y starts at 6 is not explicitly stated   Condone   eg, accept   - They are all even and even numbers are never prime   $\times$ Incomplete explanation   eg   - They are all in times tables   - They all divide by something other than one and itself   - $6 \div 3=2$   - It goes up 6 each time   ! Misunderstanding of prime A common misconception is to confuse prime with odd. Hence do not accept statements that refer only to odd eg, do not accept   - The numbers are not odd


Tier \& Question		Prime grid (cont)		
3-5 4-6				
1811	4		Correct response	Additional guidance
c c	c	1m	Gives a correct explanation   The most common correct explanations:   State or imply the numbers in column X will all be multiples of 3 eg   - They are all in the 3 times table, so they must be multiples of 3   State or imply the numbers in column X will all have a factor of 3   eg   - They are all in the 3 times table, so they are all divisible by 3	$\checkmark$ Minimally acceptable explanation   eg   - They are all in the 3 times table   - 3 goes into them   $\times$ Incomplete explanation   eg   - They are all in times tables   - They will all divide by something other than one and itself   - All the other numbers have factors   - It goes up 3 each time   ! Misunderstanding of prime   A common misconception is to confuse prime with odd. Hence do not accept statements that refer only to odd eg, do not accept   - The numbers are not odd



Tier \& Q	Question	Shoe sizes		
3-5 4-6	5-7 6-8			
2013	7		Correct response	Additional guidance
		3m   or 2m   or 1m	Indicates Yes and gives a correct explanation that shows or implies both of the values 40.75 and 41.375   eg   - $7 \times 1.25+32=40.75$, $7.5 \times 1.25+32=41.375$, so they both round to 41   - $8.75+32$ rounds to 41 and so does $9.375+32$   - 8.75 gives 9 and 9.375 gives 9 before adding 32 , so they will end up the same   Shows or implies both of the values 40.75 and 41.375 even if there is an incorrect or no decision, or incorrect further working eg   - Tom wears 40.8 and Karl wears 41.4 so they don't wear the same size   - 40.75 and 41.375 so they both wear 40   Shows the value 41.375   or   Shows the value 40.75 or 41 with correct working   eg   - $7.5 \times 1.25+32=41$   or   The only error is to add 1.25 rather than multiplying   eg   - Indicates No and shows the values 40.75 and 40.25   - Indicates No and shows the values 41 and 40	$\checkmark$ Minimally acceptable explanation   eg, with Yes indicated   - They are both 41   - They are 40.75 and 41.375   ! 40.75 rounded or truncated Accept 41, 40.8 or 40.7   Do not accept 40   ! 41.375 rounded or truncated Accept 41, 41.4, 41.3, 41.38 or 41.37 Do not accept 42   ! 40.75 from incorrect working Note that pupils who add 1.25 rather than multiplying generate the shoe sizes 40.25 and 40.75   For 3 m or 2 m , do not accept explanations based on such misconceptions   eg   - They are both 41 as $7.5+1.25+32=41$ $7+1.25+32=41$



Tier \& Question					Holiday
3-5 4-6	5-7	6-8			
2215	9	2		Correct response	Additional guidance
a	a		$2 \mathrm{~m}$   or   1m	$£ 556.75$   Shows or implies a complete correct method, even if there are rounding errors eg   - $\frac{17}{100} \times 3275$   - $3275 \div 100 \times 17$   - 556   - $10 \%=327.5(0)$ $5 \%=163.75$ $1 \%=32.75$   $327.5(0)+163.75+2 \times 32.75$   - $1 \%=32.75$,   33 (premature rounding) $\times 17=561$   or   Shows the digits 55675	! Value rounded   Accept 557 or 560 For 2 m , do not accept 556 unless a correct method or a more accurate value is seen
b	b		$2 \mathrm{~m}$   or   1m	7.5(...)   Shows or implies a complete correct method eg   - $\frac{1644}{21842} \times 100$   - Shows the digits 75(...)   - 7   or   Gives a value between 7 and 8 inclusive	! Value rounded For 2 m , do not accept 7 or 8 unless a correct method or a more accurate value is seen


Tier \& Question			Straight lines					
3-5 4-6 5-7	5-7 6	6-8						
16	10	3		Correct response				Additional guidance
b	a	a	1 m	Completes $t$ correct coor $x+y=4$ eg   -   Gives a corr eg   - $x+y=$   - $y=4-$   - $x=-y$	table nates,   equat	h any t icating   n	ree sets of or each that	$\checkmark$ Incomplete processing   eg, for $(1,3)$   - $1+3$   ! Values for $(x, y)$ correct but some or all of values for $x+y$ omitted Accept provided a correct equation is given in part (b)
c	c	c	1m	Draws the correct straight line through $(0,6)$ and $(6,0)$				! Line not ruled or accurate   Accept provided the pupil's intention is clear   ! Partial line drawn   Do not accept lines that are less than 5 cm in length   ! Points plotted Ignore   $\times$ Points not joined



Tier \& Question					Cotton reel
3-5 4-6		6-8			
18	12	5		Correct response	Additional guidance
a	a	a	1m	$3 \pi$ or 9.4 or $9.42(\ldots)$ or 9.43 with no evidence of an incorrect method	! Answer of 9   Accept provided a correct method or a more accurate value is seen
b	b	b	2 m   or   1m	Shows or implies that the total length should be divided by the circumference, even if the units are incorrect or there are rounding or truncation errors eg   - $9100 \div 9.42$   - $91 \div 3 \pi$   - Digits $96(\ldots$...) or $97(\ldots)$ seen	! Follow through from part (a)   For 2 m , accept $9100 \div$ their (a), rounded correctly to the nearest ten, provided   $9100 \div$ their (a) is not a multiple of 10   eg, from their (a) as 7.8 , accept for 2 m   - 1170   eg, from their (a) as 7 , do not accept for 2 m   - 1300   $\checkmark$ For 1m, follow through from part (a), even if their (a) is rounded or truncated before being used eg, from their (a) as 7.8, accept   - $9100 \div 8$



Tier \& Question			Recycling		
3-5 4-6		6-8			
19	14	7		Correct response	Additional guidance
a	a	a	$2 \mathrm{~m}$   or   1m	Shows a correct angle for one or more pupils, but not 5 pupils eg   - $60 \div 5=12^{\circ}$ for each one   - 3 pupils is 36   or   Shows a correct method with not more than one computational error eg   - $96 \div(60 \div 5)$   - $96 \div 60=1.6,5 \times 1.6$   - One pupil is 13 (error), and $96 \div 13=7.38$ so 7 pupils   - Total pupils $=5 \times 6=30, \frac{96}{360} \times 30$   - $\frac{5}{60}=0.083,96 \times 0.083$	
b	b	b	$2 \mathrm{~m}$   or   1m	Shows a correct angle for one or more pupils, but not 24 pupils   eg   - 24 is $360^{\circ}, 1$ is $15^{\circ}$   - 3 pupils is 45   or   Shows a correct method with not more than one computational error eg   - $9 \div 24 \times 360$   - $360 \div \frac{24}{9}$   - $360 \div 24=16$ (error), $16 \times 9=144$   or   Shows $\frac{9}{24}$ as a correct percentage   eg   - $37.5 \%$	37.5 rounded or truncated to an integer Do not accept unless a more accurate value is seen   $\times 37.5$ without the percentage sign


Tier \& Question		Russian dolls		
3-5 4-6 5 5-7	6-8			
15	8		Correct response	Additional guidance
a	a	1m	Indicates both 6 and $10 \frac{1}{2}$, in the correct order	$\checkmark$ Equivalent fractions or decimals   ! 10.5 rounded or truncated to an integer Do not accept unless a correct method or a more accurate value is seen
b	b	$\begin{gathered} 2 \mathrm{~m} \\ \\ \begin{array}{c} \text { or } \\ 1 \mathrm{~m} \end{array} \end{gathered}$	Indicates both 5.1 and 7.7 , in the correct order   Indicates one correct value, even if not rounded eg, for the smallest doll   - $\frac{36}{7}$   - 5.1(...)   eg, for the middle doll   - $\frac{54}{7}$   - 7.7(...)   or   Shows or implies a correct method for both dolls, even if there is evidence of premature rounding   eg   - $9 \div 7 \times 4,9 \div 7 \times 6$   - $\frac{9}{7}=1.3$ (rounded), $1.3 \times 4=5.2,1.3 \times 6=7.8$	! 5.1(...) or 7.7(...) rounded or truncated to an integer   Do not accept unless a correct method or a more accurate value is seen   ! Answers are 5 and 8, or round to 5 and 8 For 1 m to be awarded, $9 \div 7$ or 1.3 or $1.28(\ldots)$ must be seen



Tier \& Question			Marking overlay available		Pentagonal pyramid
3-5 4-6 5-7					
	1710	10		Correct response	Additional guidance
	a a	a 1	1m	Gives a correct explanation   The most common correct explanations:   Show or state that the angles in a pentagon sum to 540 , and that angle $a$ is $540 \div 5$ eg   - The interior angle of a regular pentagon is 108 , because $5-2=3,3 \times 180=540$ and $540 \div 5$   Show or state that the exterior angle of a regular pentagon is 72, and that angle $a$ is 180-72   eg   - $360 \div 5=72,180-72$   Show or state that the angle at the centre of a regular pentagon is 72 , and that angle $a$ is 180-72   eg   - $360 \div 5=72,(180-72) \div 2=54,54 \times 2$	$\checkmark$ Minimally acceptable explanation   eg   - $540 \div 5$   - 180-72 (with the exterior angle of 72 marked correctly on the diagram)   - The interior angle of a regular pentagon is 108   - 180-72 (with the centre angle of 72 marked correctly on the diagram)   $\times$ Incomplete explanation   eg   - The angles in a pentagon sum to 540   - $108 \times 5=540$ (with no justification or indication of the relevance of the 540)   - $180-72=108$ (with no justification of the 72)   - The angle of a regular pentagon is 108   - Angle of 108 marked on the diagram
	b b	b 1	1m	Indicates 36 and shows a correct method eg, using a large triangle   - $(180-108) \div 2$   eg, using a small triangle   - $180-2 \times 72$   eg, using a kite   - $360-(3 \times 108)$	$\checkmark$ Minimally acceptable method eg   - $72 \div 2=36$   $\times$ Spurious method eg - $180 \div 5=36$
	c c	c ${ }^{2}$	$\begin{gathered} 2 \mathrm{~m} \\ \\ \\ \\ \hline 1 \mathrm{~m} \end{gathered}$	Completes the perpendicular bisector, fulfilling four conditions below:   1. Ruled   2. Within the tolerance as shown on the overlay, including if their line were to be extended   3. At least 3 cm in length   4. Evidence of correct construction arcs that are centred on C and D, or the vertices next to C and D , are of equal radii, and show at least one intersection   Completes the perpendicular bisector with all of conditions 1 to 3 fulfilled   or   Fulfils condition 4, even if the perpendicular bisector is incorrect or omitted	! Use of construction arcs on the overlay Note that these are to give a visual guide as to whether the correct centres have been used, and do not indicate tolerance   $\checkmark$ Side other than CD used   $\mathbf{x}$ Spurious construction arcs Do not accept arcs drawn without compasses or arcs that do not show a distinct intersection, eg arcs that just touch



Tier \& Question		Squares		
3-5 4-6 5-7	5-7 6-8			
	1912		Correct response	Additional guidance
	a	$2 \mathrm{~m}$ or $1 \mathrm{~m}$	Indicates only the values 0 and 1   Indicates one of the values 0 or 1 , with no incorrect values   or   Indicates both correct values with not more than one incorrect value	! Use of infinity   Ignore   eg, for 2 m accept   - 1,0 , infinity   ! Answer(s) embedded in working Accept provided there is no ambiguity and any statements made are correct eg, for 2 m accept   - $1^{2}=1,0^{2}=0$   - $1,1^{2}, 0,0^{2}$   - $1^{2}, 0^{2}$
	b	$2 \mathrm{~m}$   or   1m	Indicates values between 0 and 1 not including the values 0 and 1   eg   - Numbers greater than nought but less than one   - $0<x<1$   Indicates values between 0 and 1 including either 0 or 1 or both   or   Indicates the correct upper limit, but without including 1   eg   - Numbers less than 1   - All fractions that are not improper   or   Gives at least one correct example of a number that is a member of this set and its square, with no incorrect examples   eg   - $0.5^{2}=0.25$   - $\frac{1}{9}<\frac{1}{3}$   - 0.1 and 0.01	$\checkmark$ Minimally acceptable indication   eg   - Between zero and one   - Numbers that begin 0. something   - Fractions that are positive and not improper   ! Response ambiguous about the inclusion of 0 or 1   eg   - Numbers from zero to one   Mark as 1, 0   $\times$ For $2 m$ or $1 m$, incomplete indication   eg   - Fractions   - Decimals   $\mathbf{x}$ Incorrect statement   eg   - Below 1 and must have 2 or more decimal places



		Triangle calculations (cont)		
3-54-6	5-7 6-8			
	2013		Correct response	Additional guidance
		2m	Indicates No and gives a correct justification   The most common correct justifications:   Use trigonometry to show the sides are inconsistent   eg, using $\sin 50$   - $\sin ^{-1}(0.8)$ is not 50   - $\sin 50 \neq 0.8$   - $\sin 50$ should be $0.7660 \ldots, \frac{12}{15}=0.8$   eg, using $\cos 40$   - $\cos 40 \neq 0.8$   - $15 \times \cos 40 \neq 12$   Calculate what one side should be in order to make the triangle consistent   eg   - $15 \sin 50=11.4906 \ldots$ not 12   - $\frac{12}{\sin 50}=15.6648 \ldots$ not 15   - $\sqrt{ }\left(15^{2}-12^{2}\right)=9$ but $15 \times \cos 50=9.6418 \ldots$   Calculate what one angle should be in order to make the triangle consistent   eg   - $\sin ^{-1}(0.8)=53.1301 \ldots$ not 50   - The angle should be 53.1   - The other angle is $36.8698 \ldots$., but it should be 40   Shows or implies a correct trigonometric ratio eg   - $\sin 50=\frac{12}{15}$   - $15 \times \sin 50$   - $\frac{12}{\sin 50}$	No indication of which angle is being considered   eg $\cdot \sin =\frac{12}{15}$   Accept only if the trigonometric ratio is correct for the angle of $50^{\circ}$




Tier \& Question					Eating
3-5 4-6		6-8			
		16		Correct response	Additional guidance
			1m	7 or 6.7 or 6.67	


Tier \& Question				Equation solving
3-5 4-6	5-7 6-8			
	17		Correct response	Additional guidance
		$\begin{gathered} 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	Shows any two of the following three algebraic processes correctly:   1. Cross multiplication to remove the fraction   2. Multiplication or division to remove brackets   3. Collecting like terms together   eg   - $10 y-15=6 y$ (error) $4 y=15$   (Error in process 1)   - $5(2 y-3)=9 y$ $10 y-3(\text { error })=9 y \text {, so } y=3$   (Error in process 2)   - $5(2 y-3)=9 y$ $2 y-3=1.6 y \text { (error), so } 0.4 y=3$   (Error in process 2)   - $10 y-15=9 y$   (Process 3 not shown)	


Tier \& Question				3-D cut
3-5 4-6	5-7 6-8			
	18		Correct response	Additional guidance
		$\begin{gathered} 2 \mathrm{~m} \\ \\ \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	$30 \sqrt{2}$ or 42 or $42 .(\ldots$.   Shows or implies a correct method for the length of one side of the base eg   - $10 \sqrt{ } 2$   - $\sqrt{200}$   - $\sqrt{ }\left(10^{2}+10^{2}\right)$   - 14.14(...)   - $1.4(\ldots) \times 10$   - $\frac{10}{\sin 45}$   - $\frac{10}{\cos 45}$	$\times$ For $2 m$ or $1 m$, length(s) found only through scale drawing   ! Length rounded Accept 14 or 14.1 provided there is no evidence of an incorrect method




Tier \& Question		Dissection		
3-5-4-6	5-7 $6-8$			
	20		Correct response	Additional guidance
		3 m	Gives a complete correct justification   The most common correct justifications:   Show the length of CD is 9 , then use the similarity of triangles CDE and AEF to show through calculation that EF is 20 eg   - Scale factor is $\frac{12}{9}, \frac{12}{9} \times 15=20$   - The sides of triangle AEF are a third bigger than the corresponding sides of triangle CDE, $15 \times 1 \frac{1}{3}=20$   Show the length of CD is 9 , then use the similarity of triangles CDE and BDF to show through calculation that EF is 20 eg   - Scale factor is $\frac{21}{9}$ $\frac{21}{9} \times 15=35,35-15=20$   - $2 \frac{1}{3} \times 15=35,35=20+15$   - Let $x=$ FE, then $\frac{x+15}{21}=\frac{15}{9}$ $x+15=35, x=20$   Use trigonometry to calculate $\angle \mathrm{CDE}$ as $53.1(\ldots)^{\circ}$, or $\angle \mathrm{DEC}$ as $36.8(\ldots)^{\circ}$, then use the similarity of triangles CDE and AEF (or CDE and BDF) to show through calculation that EF is 20 (or DF is 35 )   eg $\sin ^{-1}\left(\frac{12}{15}\right)=53.1,12 \div \cos 53.1=20$	$\checkmark$ EF taken as 20 then used to demonstrate the sides are in the correct ratio for similarity to hold   eg, using triangles CDE and AEF   - $\frac{20}{12}=\frac{15}{9}$   - $\frac{20}{15}=\frac{12}{9}$   - $\mathrm{FA}^{2}=20^{2}-12^{2}$, so $\mathrm{FA}=16$, and $\frac{20}{16}=\frac{15}{12}$   eg, using triangles CDE and BDF   - $\frac{15}{9}=\frac{35}{21}$   - $\frac{35}{15}=\frac{21}{9}$   ! Values rounded   Accept values shown as rounded, but for 3 m do not accept resultant incorrect values eg, for 3 m accept   - $\angle \mathrm{DEC}=37^{\circ}, \frac{12}{\sin 37}=20$   eg, for 3 m do not accept   - $\frac{15}{9}=\frac{\mathrm{EF}}{12}, 15 \div 9=1.7$,   $1.7 \times 12=20.4$ which rounds to 20   $\times$ For 3m, justification uses only Pythagoras and $E F=20$ used within the argument   $\mathbf{x}$ Circular argument   eg   - $20^{2}-12^{2}=16^{2}$ so FA $=16$   $16^{2}+12^{2}=400$ so EF is 20



NATIONAL
CURRICULUM

## 5-16

GCSE

## GNVQ

## GCE A LEVEL

First published in 2004
© Qualifications and Curriculum Authority 2004

Reproduction, storage, adaptation or translation, in any form or by any means, of this publication is prohibited without prior written permission of the publisher, unless within the terms of licences issued by the Copyright Licensing Agency. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, provided full acknowledgement is given.

Produced in Great Britain by the Qualifications and Curriculum Authority under the authority and superintendence of the Controller of Her Majesty's Stationery Office and Queen's Printer of Acts of Parliament.

The Qualifications and Curriculum Authority is an exempt charity under Schedule 2 of the Charities Act 1993.

Qualifications and Curriculum Authority
83 Piccadilly
London
W1J 8QA
www.qca.org.uk/

NVQ

## OTHER

VOCATIONAL QUALIFICATIONS

## Further teacher packs may be purchased (for any purpose other than statutory assessment) by contacting:

QCA Publications, PO Box 99, Sudbury, Suffolk CO10 2SN
(tel: 01787 884444; fax: 01787 312950)

